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A B S T R A C T

There is growing interest in the use of control theory for interdisciplinary applications, where data may be sparse
or missing, be non-uniformly sampled, have greater uncertainty, and where there is no opportunity to collect
repeat measurements. In such applications, problems posed by observational data and the issue of missing or
irregular data need to be considered. We present a review on dealing with observational, missing and irregular
data for control applications. This considers the following issues: (i) how to identify a system model from ob-
servational data subject to missing measurements, (ii) how to determine control inputs when output data in-
cludes missing measurements, and (iii) how to ensure stability when future update times may be missed. Dealing
with observational data and missing measurements is a key problem within the statistics literature, so we in-
troduce statistical methods for dealing with this type of data. We aim to enable the integration of well-developed
statistical methods of dealing with missing data into control theory. An example problem of using anticoagulants
to control the blood clotting speed of patients is used throughout the paper.

1. Introduction

Concepts and techniques from control theory are increasingly being
used for interdisciplinary applications. Such applications (with selected
examples) include:

• Biological systems, where controllers have been designed to manage
the uptake of CO2 during leaf photosynthesis (Paré, Walker, &
McGrath, 2017; Taylor & Aerts, 2014); model predictive control
(MPC) algorithms have been applied to control animal heart rate
(Aerts, Gebruers, Van Camp, & Berckmans, 2008; Hunt & Liu, 2018;
Leor-Librach, Bobrovsky, Eliash, & Kaplinsky, 1999) and growth
(Aerts et al., 2003); and bio-inspired methods have been used to
develop adaptive controllers (Wilson et al., 2015).

• Climate control, on a global scale, where optimal control theory has
been used to develop strategies for climate manipulation aimed at
reducing global warming (Jarvis, Leedal, Taylor, & Young, 2009;
MacMartin, Kravitz, Keith, & Jarvis, 2014; Soldatenko & Yusupov,
2017); and on the micro-scale, where microclimates within green-
houses, ventilation chambers and grow cells have been controlled
(Luan, Shi, & Liu, 2012; Tsitsimpelis, Wolfenden, & Taylor, 2016;
Underwood, 2002).

• Economics, where constrained optimal control has been used to
manage economic performance (Gaimon, 2002; Westcott, 1984).

• Epidemic analysis, where optimal control has been applied with the

aim of increasing recovery rates and decreasing infection rates with
finite resources (Behncke, 2000; Hansen & Day, 2011; Nowzari,
Preciado, & Pappas, 2016).

• Adaptive interventions, which are sequences of treatments that are
adapted to individuals to achieve health behaviour change, where
MPC has been applied to behavioural research to develop controller-
design-based interventions (Bekiroglu, Lagoa, Murphy, & Lanza,
2017; Deshpande, Nandola, Rivera, & Younger, 2014; Nandola &
Rivera, 2013; Rivera, Pew, & Collins, 2007).

• Resource management and operations research, where control
theory has been applied to planning, ecology and resource man-
agement, including MPC to determine policies for oceanic fisheries
(Cliff & Vincent, 1973), optimal control for water resource man-
agement (Nicklow, 2000), and MPC to control the flow of traffic
(Van den Berg, Hegyi, De Schutter, & Hellendoorn, 2003).

• Medical treatment control, for which examples include using
Proportional-Integral-Derivative (PID) (Hoekstra, Vogelzang,
Verbitskiy, & Nijsten, 2009; Rattan & Nasraway, 2013) and MPC
algorithms (Chakrabarty, Zavitsanou, Doyle III, & Dassau, 2017;
Hovorka et al., 2004; Plank et al., 2006) to control blood glucose
levels by adjusting insulin inputs, and using Proportional-Integral
(PI) and PID based algorithms to control anesthesia (Bibian, Ries,
Huzmezan, & Dumont, 2005; Dumont, 2012; Gentilini et al., 2001).

Applying control theory is attractive as it provides a systematic way
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of designing interventions to achieve a specified performance in the
presence of noise, uncertainty and external disturbances. However, in
many of these applications the controller needs to be built from ob-
servational data which may be sparse or missing, be non-uniformly
sampled and have large uncertainties. Further, often there is no op-
portunity to collect repeat measurements and there are questions as to
causality of effects. This contrasts with the standard control approach
where multiple measurements can be made on the system, the experi-
mental protocol can be designed to enable ‘ideal’ data to be collected,
retesting is straightforward and generally a single system is considered
over a long time period. There is a risk, therefore, that when attempting
control in some interdisciplinary applications there may be lack of
consideration of the nature of the data that are available, especially
when the data are observational rather than experimental.

If control system techniques are to be adopted for interdisciplinary
applications where data collection is problematic, an awareness of the
complexities of the data is required to avoid introducing bias. Our aim
in this article is to review and discuss some of these issues, with most
attention on causation and problems arising through missing and per-
haps irregular data. We consider the challenges of: identifying a system
model from observational data when measurements are missing, de-
termining control inputs when output data are missing, and ensuring
stability when future update times may be missed.

To fix ideas we will root our discussion on a medical example,
namely the long term anticoagulation of patients with chronic condi-
tions, using the records of 152 patients from Newcastle upon Tyne, UK.
Anticoagulants are prescribed to control the blood clotting speed of
patients at risk of thrombosis (blood too easily clots) or severe bleeding
(blood does not clot sufficiently quickly). Clotting speed is measured
through the International Normalised Ratio (INR), which is a standar-
dised measure with high values indicating long clotting times
(Baglin, Keeling, Watson, & the British Committee for Standards in
Haematology, 2006). Usually INR is deemed under control if it is in the
range 2–3 units. To achieve control the most common anticoagulant is
warfarin, which patients can take in various dosages. Raising the dose
increases the clotting time and lowering the dose the opposite. Hence,
with warfarin dose prescribed at clinic visit k considered as the input u
(k), and INR considered as the output y(k), we have a classic control
problem. Unfortunately INR is rarely stable, the effect of warfarin dif-
fers between patients, and in addition it interacts with many lifestyle
factors, including diet, alcohol, exercise and co-medication, meaning
that control is not always straightforward.

Fig. 1 exemplifies, using the results from three patients. The upper
part of each plot shows the dose of warfarin prescribed, and the lower
part shows the measured INR at clinic visits. Patient A is typical of one
class of patient. There is considerable noise in the INR values, even

when the patient is essentially under control. There are periods where
the INR increases, requiring a corresponding decrease in dose, and
other periods where the opposite occurs. The need for changing dose
frequently to react to changing INR is evident. On the other hand, the
second plot shows results for a second class of patient, where there is
some instability when the patient is first prescribed warfarin, but then a
suitable dose is found and the patient remains stable for a considerable
time. Unfortunately, once stability is achieved it is not necessarily
maintained, as illustrated in the third plot. Here a patient was well
controlled for several years until, for unknown reasons, the INR became
highly volatile. Note also that the dose level for stability differs con-
siderably between the three patients: optimum treatment is patient-
specific.

This example will be referenced throughout the paper. In Section 2
we will consider briefly the issue of assigning causation in observational
data. In Section 3 we will discuss system identification from observa-
tional data subject to missingness, explaining some of the ideas and
methods that have been developed in the statistical research literature,
where there is considerable experience in dealing with these problems.
In Section 4 we turn to control in the presence of missing data. We
assume that the intention is to sample periodically in time, but that
occasional planned sample times are omitted. In Section 5 we turn at-
tention to more irregular and variable sampling rates and concentrate
on event-based control. Discussion in Section 6 concludes the paper. A
list of abbreviations used throughout the paper is given in Table 1.

2. Causation

Simple causal reasoning about feedback control systems is difficult
as the inputs are influenced by the outputs (Åström & Murray, 2010).
Therefore, in conventional control system design, the problem is
usually split into two steps: i) system identification from open loop
input-output experiments and ii) control design and implementation.
To identify the system, chosen inputs are applied in open-loop experi-
ments. The term open-loop implies that the response has no influence
on the input and so the issue of causation is not considered. By splitting
the control design into two steps, the issue of causation in identifying a
suitable plant model can effectively be ignored. However, experimental
data can sometimes only be obtained in a closed-loop situation, for
example when a feedback controller is always required due to safety or
stability issues. Hence, methods to identify system models from closed-
loop data have been developed within the control systems literature
(e.g. Gilson and Van Den Hof, 2005; Van den Hof, 1998; Ljung, 1999;
Söderström and Stoica, 1989; Taylor, Young, and Chotai, 2013;
Verhaegen, 1993; Young, 1970; 2012, Section 8.7).

A schematic of an open-loop plant used for system identification is
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Fig. 1. Anticoagulation of three patients. The three subplots have the same vertical scales but different horizontal scales.
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presented in Fig. 2a. The experimenter is free to set the input at any of
the feasible levels and can identify changes in output caused by changes
in input. However, when a plant is to be identified from observational
rather than laboratory or experimental data, the problem of inter-
ference in input determination can rarely be ignored. The most obvious
of these is that in observational data the input is set with the intention
of maintaining control, not for the benefit of the observer. Consequently
there may be rather little spread in the range of inputs selected, and bad
decisions should be rare, which makes system identification more dif-
ficult. Further, often the input will be at least partially informed by the
previous outputs, as in Fig. 2b.

In the warfarin example a large proportion of high INR values are
followed by decreases in dose, and a large proportion of low INR values
are followed by an increase in dose. We will model this in the next
section and show that, although dose is associated with previous INR,
the relationship is not deterministic and there are many occasions
where the dose is unchanged despite high or low INR, and a rather
smaller number of times where the dose moved in the opposite direc-
tion to expectations. Association between output and selected input can
be allowed for by careful consideration of direct and indirect effects.
Thus an output at time k can influence outputs at time +k 1 directly,
through serial correlation in the response, and indirectly by its effect on
the input u(k). Path analysis techniques can be used to disentangle these
(Borgan, Fiaccone, Henderson, & Barreto, 2007; Fosen, Ferkingstad,
Borgan, & Aalen, 2006).

Exogenous variables may also drive input selection. Continuing with
the anticoagulation application, in the hospital notes accompanying the
data there are regular explanatory comments on unusual INR possibly
being caused by co-medication, increased or decreased alcohol, missed
doses, preparation for surgical procedures, and so on. This often meant
the change in dose was different from that which might be expected.
One example alongside some unhealthily high INR values is the com-
ment “Patient has bad sight and may have been taking 3 mg instead of
2 mg. Request large print”. Another is a comment alongside a sharp
decrease then later recovery of INR for one elderly patient: “Nursing
home has been giving patient 1–2 glasses of cranberry juice every day!!.
Advised of effects of cranberry on warfarin. Home will stop”. The
nursing home, like the current authors, was evidently unaware that
cranberry can react with warfarin. In both cases the action was to fix
the underlying problem and not to change dose to accommodate unu-
sual INR. In these cases, if a reason for a dose change is recorded then it
can be allowed for in modelling.

Most often there is no record of exogenous factors or confounders
that could affect either the output or, importantly, decisions on input
level. This is the scenario of Fig. 2c, where both input and output are
associated in some way with a disturbance. Since the disturbance is not
measured, at least directly, then disentangling the effect of the input
from the effect of the disturbance confounder becomes challenging.
This leads naturally to issues that have been discussed in various lit-
eratures, especially clinical epidemiology and social science, under the
name of causal inference. Causation in such literature does not mean
determining the true physical process, at a molecular level for instance
when a drug is administered, but instead reliably attributing an effect to
a cause at a more macro level. Thus changing warfarin by this amount
will lead, on average, to a change in INR of that amount.

There are many approaches to causal inference, some of which are
contentious (e.g. Dawid, 2000; Ding & Li, 2018; Pearl, 2009; Rubin,
2005). The most common is based on the potential outcomes or coun-
terfactual framework introduced by Rubin (1974), though he ac-
knowledged antecedents as far back as Neyman (1923). Associated with
each potential input U(k) is the potential output +Y k U k( 1, ( )) that
would be observed if the actual input u(k) took that value. Causal ef-
fects are then defined in terms of comparisons of +Y k U k( 1, ( )) over
different U(k). Unfortunately the fundamental problem of causal in-
ference (Holland, 1986) is that only one of the potential outcomes can
ever be observed, that corresponding to the selected u(k). Consequently,
as Pearl (2009) states, behind every causal conclusion there must lie
some causal assumption that is not testable in observational studies.

The most important of many technical assumptions are on the input
selection mechanism: how, in the observed data, was the input se-
lected? As stated, if the reasons are known then they can be adjusted
for. The problem is when the reasons are not known. For instance, if a
clinician prescribes a low dose because they are aware that the patient
likes to drink cranberry juice, then an analyst unaware of the additional
information will misinterpret the effect of cranberry as the effect of
warfarin. A fundamental assumption is then of no unmeasured con-
founders: anything that can influence both the input and the output is
recorded in the available data and can be adjusted for in the analysis, at
least in principle (e.g. Ding & Li, 2018; Streeter et al., 2017). How
realistic such an assumption is will be context-specific. Returning to the

Table 1
Abbreviations used throughout document.

Abbreviation Definition Context

AR Autoregressive Model structure
ARMA Autoregressive moving average Model structure
ARMAX Autoregressive moving average with

exogenous terms
Model structure

ARX Autoregressive with exogenous terms Model structure
CC Complete case Imputation method
DDE Delay differential equations Method to analyse NCSs
EM Expectation maximisation Parameter estimation
INR International normalised ratio Measure of blood clotting

speed
KF Kalman filter State estimation
LMI Linear matrix inequalities Method to analyse NCSs
LOCF Last observed carried forward Imputation method
LQ Linear quadratic Optimal control
LQG Linear quadratic gaussian Optimal control
MAR Missing at random Missingness mechanism
MCAR Missing completely at random Missingness mechanism
ML Maximum likelihood Parameter estimation
MNAR Missing not at random Missingness mechanism
MPC Model predictive control Controller
NCS Network control system Control system
ODT Optimal dynamic treatment Decision rule
PI Proportional integral Controller
PID Proportional integral derivative Controller
VAR Visiting at random Visiting schedule

mechanism
VCAR Visiting completely at random Visiting schedule

mechanism
VNAR Visiting not at random Visiting schedule

mechanism

Fig. 2. Measured and unmeasured con-
founders: (a) open-loop system with dis-
turbance; (b) output as measured con-
founder; (c) disturbance as unmeasured
confounder. Here, u(k) and y(k) represent
the input and output respectively, and d
(k) is the disturbance; the boxes represent
general systems, which may not be known
but, in system identification, P is typically
the plant and N the noise model.
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warfarin example the assumption is certainly questionable, as it relies
on all relevant information provided by a patient being recorded in the
notes at each clinic visit. Sensitivity methods are recommended to as-
sess the consequences of the assumption failing (e.g. VanderWeele &
Onyebuchi, 2011).

3. System identification

Much of the control literature on missing-data, or non-uniform
sampling, is concerned with designing stable control systems in the
presence of timing uncertainty and missing information (see Section 5).
A key concern is the performance of the system in the presence of
bounded uncertainties. The approach to this problem tends to be the-
oretical and system models are either pre-specified (Arzén, 1999;
Åström, 2008; Heemels, Sandee, & Van Den Bosch, 2008), or a general
state-space system model is considered (Cloosterman et al., 2010;
Heemels & Van De Wouw, 2010; Lunze & Lehmann, 2010; Sala, 2005).
It is generally assumed that the plant is stable and there are no model
uncertainties (Lunze & Lehmann, 2010). The question of how to iden-
tify the system model from data with missing measurements is often not
considered. It is nonetheless a key issue in designing controllers from
observational data.

There are some examples in the control domain where identification
from data with missing measurements is considered (see Shi &
Fang, 2010 and Ding & Ding, 2010 and the references within). The
estimation of autoregressive with exogenous terms (ARX) models
(Isaksson, 1993; Wallin, Isaksson, & Ljung, 2000), autoregressive (AR)
models (Larsson & Söderström, 2002; Mirsaidi, Fleury, & Oksman,
1997), and autoregressive moving average (ARMA) models (Jones,
1980; Rosen & Porat, 1989) from data with missing, or incomplete
measurements has been considered. A general frequency domain ap-
proach to system identification with missing data is presented in
Pintelon and Schoukens (2000). This approach works for any model
structure (e.g. ARX, ARMAX, output-error, etc.) and is based on treating
missing input, or output data as unknown parameters. This can po-
tentially lead to a large number of parameters to be estimated. The
particular problem of missing output data is considered by Sanchis and
Albertos (2002), where the input (control action) is assumed to be
updated at a fixed rate, with the output measured synchronously with
the input, but with an irregular availability pattern. This is similar to
the situation that could be encountered in our anticoagulation example,
where the patient continues to take a regular fixed dose (input), but
appointments may be missed, so output data are sometimes unavail-
able.

In the control literature, when modelling missing data, the reason or
mechanism for the data being missing is rarely considered. Data are
either assumed to be missing periodically (Markovsky, 2013; Rosen &
Porat, 1989; Sanchis, Sala, & Albertos, 1997), or a random Bernoulli
pattern of missing data is assumed where each measurement has a fixed
probability of being missing and misses are independent (Rosen &
Porat, 1989; Shi & Fang, 2010).

3.1. Missing data mechanisms

The question of how to develop a model from data that contains
missing measurements is a key problem in the statistics literature.
Rubin (1976) introduced three important classifications for missing
data. These are: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR).

Suppose that a vector of responses Y is intended to be measured. Let
R be a vector of observation indicators, with the convention that the
elements of R are one when the corresponding elements of Y are ob-
served, and zero if they are missing. Divide Y into sub-vectors of ob-
served and missing components, Yobs and Ymiss respectively. Use f(.) as
generic notation for probability distributions. Data are said to be:

• Missing completely at random (MCAR) if the missingness mechanism
is independent of the responses:

=f R Y Y f R( , ) ( ).obs miss

• Missing at random (MAR) if the missingness mechanism is con-
ditionally independent of the missing data, given the observed data:

=f R Y Y f R Y( , ) ( ).obs miss obs

• Missing not at random (MNAR) otherwise:

≠f R Y Y f R Y( , ) ( ).obs miss obs

These concepts, and variants thereof (e.g. Mealli & Rubin, 2015;
Seaman, Jackson, & J., 2013), underpin much of the statistical research
into methods for dealing with missing data. They are not considered in
the control literature, where data are generally assumed to be MCAR.

Assuming that the parameters that determine R are distinct from
those that determine Y, it is accepted that simply ignoring the missing
data reduces efficiency under MCAR (as there is less data to use) but
otherwise leads to no difficulty. Some statistical methods, notably
maximum likelihood (ML) estimation, remain valid under MAR if the
missing data are ignored (Little, Rubin, & Zangeneh, 2017). To see this
note that we need to maximise the observed data likelihood. This is
obtained by integrating out Ymiss from the full data distribution:

∫

∫

∫

∫

=

=

=

=

=

f Y R f Y Y R dY

f R Y Y f Y Y dY

f R Y f Y Y dY

f R Y f Y Y dY

f R Y f Y

( , ) ( , , )

( , ) ( , )

( ) ( , ) under MAR

( ) ( , )

( ) ( ).

obs obs miss miss

obs miss obs miss miss

obs obs miss miss

obs obs miss miss

obs obs

So all parameters in f(R∣Yobs) and f(Yobs) can be estimated con-
sistently. Åström and Torsten (1965) introduced the ML framework to
the control community, and Isaksson (1993) implements ML with a
Kalman filter to estimate ARX model parameters from missing data.

Data are said to be ignorable in the context of likelihood inference
when the parameters describing the measurement process are func-
tionally independent of the parameters describing the missingness
process and the data are MCAR or MAR. When these conditions are not
met the data are non-ignorable. If data are ignorable, inferences can
proceed by analysing the observed data only. Ignoring missing data
under MNAR will usually lead to biased and inconsistent estimation.
Correct inference needs to take into account the missing data and me-
chanism, and then depends upon the modelling assumptions all being
correct. This is of course a common requirement across all areas of
modelling and estimation but a difference in the missing data sphere is
that it is impossible to verify MNAR assumptions no matter how much
data are available: see, for example, the informatively-titled article
“Every missingness not at random model has a missingness at random
counterpart with equal fit” by Molenberghs, Beunckens, Sotto, and
Kenward (2009).

3.2. Longitudinal data

Observational data for control design are likely to be longitudinal.
In healthcare applications, longitudinal data (often termed time-series
data in control) contain measurements from individuals that are taken
repeatedly through time. In longitudinal data, partially observed se-
quences due to missed appointments, or especially dropout (patient
leaves study after a time and there are no subsequent measurements
taken) are very common (Diggle, 2002). There is a huge literature on
missing data methods in longitudinal studies; see, for example:
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Diggle (2002), Molenberghs and Kenward (2007), Ibrahim and
Molenberghs (2009), Molenberghs et al. (2004), Ibrahim, Chen, Lipsitz,
and Herring (2005), Pigott (2001), and Farewell, Huang, and
Didelez (2017) and the references therein.

Simple methods for analysing longitudinal data subject to missing-
ness include complete case (CC) and last observation carried forward
(LOCF) techniques. In CC analysis only subjects without missing data
are included in the estimation procedure, while under LOCF missing
values are simply imputed from the last observed value. Both of these
methods have been justifiably criticised but seem still to be in use
(National Research Council, 2010).

More principled methods rely on models to at least some extent,
with early approaches falling into one of three general classes. Recalling
that Y represents the responses of interest and R indicates whether
values are observed or missing, writing =f Y R f R Y f Y( , ) ( ) ( ) leads to
the selection model class, in which the marginal distribution of Y is
modelled, by a multivariate Gaussian distribution for example, and then
the observation indicator is allowed to depend upon Y through an ap-
propriate binary data model. On the other hand writing

=f Y R f Y R f R( , ) ( ) ( ) leads to the pattern mixture class of models based
on the marginal distribution of R and then separate models for Y given
each possible R. Mathematically the two factorisations are equivalent
but they lead naturally to different modelling assumptions. A third
general class is also in widespread use, the shared parameter approach.
Here it is assumed that association between Y and R arises because of
shared dependence upon an unobserved random effect W, i.e.

=f Y R W f Y W f R W f W( , , ) ( ) ( ) ( ) (Fitzmaurice, Davidian, Verbeke,
and Molenberghs, 2009; Henderson, Diggle, and Dobson, 2000, Chapter
19).

Given the assumed model, estimation techniques include direct
likelihood, Bayesian analysis, the expectation-maximisation (EM) pro-
cedure, single and multiple imputation and estimating equations
(Fitzmaurice et al., 2009, Chapters 15, 17–21). Doubly robust proce-
dures have been developed which attempt to reduce the dependence
upon untestable assumptions by creating valid inference either if as-
sumptions about R are correct or if assumptions about Y are correct, but
not necessarily both (Bang & Robins, 2005; Carpenter, Kenward, &
Vansteelandt, 2006; Ding & Li, 2018).

3.3. Anticoagulation example

A simulated model based on the warfarin data is developed and used
here, and later in the article, to demonstrate various issues with missing
data.

The output y(k) is the log(INR) and the input u(k) the dose (mg) of
warfarin. In the data (9851 records from 152 patients), 98% of dose
changes are from the set − −{ 0.5, 0.25, 0, 0.25, 0.5}. We fitted a propor-
tional odds model (McCullagh, 1980) to the observed dose changes and
used this to generate changes in inputs in the simulations. The most
important factors are the most recent INR (if high tend to reduce dose)
and the previous change in dose (tendency to reverse). Table 2 com-
pares the actual changes with those predicted by the model (as the most
likely).

For the outputs we used the simple model,

= − + − +y k a y k b u k( ) ( 1) ( 1) ɛ.1 1 (1)

Based on a typical patient, we take =a 0.41 and =b 0.25,1 together with
ε∼N(0, σ2) where =σ 0.25. Example input-output data generated
using this model are given in Fig. 3: the patterns look very similar to
those in the real data. To generate different mechanisms for missingness
in the observed data, we used a logistic model for the probability p(k)
that y(k) is observed:

= − − − −z k y k a y k b u k( ) ( ) ( 1) ( 1)1 1 (2)

= + − + − +p k θ θ z k θ u k θ z k( ) expit( ( 1) ( 1) ( ))0 1 2 3 (3)

where = +x x xexpit( ) exp( )/{1 exp( )}.
To illustrate we chose the parameter values in Table 3 to give 50%

missingness under each of the three mechanisms. The non-zero coeffi-
cients are large as z(k) is usually small. Parameters were estimated by
ML with allowance for correlation between successive y(k). When there
were missing data, we estimated using all values k such that y(k),

−y k( 1) and −u k( 1) were observed. Table 4 summarises our results. If
there are no missing data, the parameters are estimated well. All means
are within the simulated noise of the true values. Under MCAR there is
no bias but there is more variability – this is simply because there are
less data available for estimation. Under MAR there is no bias because
we used ML estimation, which remains consistent if MAR missing data
are ignored. Under MNAR there is severe bias in the estimated para-
meters.

4. Periodic control

This section considers control design and implementation with
periodic missing data, i.e. data are sampled periodically but for certain
samples the output data are missing. For model-based control, the
problem can be split into independent issues of model identification and
model-based design. The issue of model identification was summarised
in the previous Section 3.3, where an ARX model was fitted to simu-
lated data with missing outputs. In this section we study control design
and performance. We first evaluate the performance of controllers de-
signed using models developed from missing data, but where all control
data are available, before considering the case when not all the control
data are available. We end this section with discussion on optimal dy-
namic treatment (ODT) techniques and explore how these link to a
general control problem.

4.1. Control design using incomplete observations

Controllers developed for non-standard applications tend to be
based on PID, PI, or MPC designs. PID controllers are one of the most
ubiquitous control solutions, and as expected PI and PID controllers
have been applied to the control of non-traditional systems. Examples
include: in the control of anaesthesia (Dumont, 2012; Dumont,
Martinez, & Ansermino, 2009); for the control of blood glucose using
insulin (Hoekstra et al., 2009; Rattan & Nasraway, 2013); and for
micro-climate control (El Ghoumari, Tantau, & Serrano, 2005). Due to
the ability to handle constraints, which can be numerous in real world
problems, MPC methods are also popular, probably more so than PID
and PI methods. Examples include: again the control of blood glucose
using insulin (Chakrabarty et al., 2017; Hovorka et al., 2004; Plank
et al., 2006); the design of adaptive interventions (Rivera et al., 2007);
for the solution of decision problems in economics (Grüne, Semmler, &
Stieler, 2015); and to control the heart rate (Aerts et al., 2008; Leor-
Librach et al., 1999) and growth (Aerts et al., 2003) of animals.

In applying control to non-traditional areas it may be necessary to
use observational data for control design. As described in the previous
section, this can lead to a biased estimated model when data are
missing. To illustrate the effect of this model bias on control system
performance, we use the warfarin model of the previous section and

Table 2
Frequencies of observed and predicted dose changes.

Predicted change

−0.5 −0.25 0 0.25 0.5

−0.5 25 58 49 5 0
Actual −0.25 78 418 481 6 1
change 0 43 492 5537 619 59

0.25 3 3 622 448 75
0.5 0 2 46 70 17
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evaluate the performance of PI and MPC controllers designed using
both an accurate system model ( =a 0.4,1 =b 0.251 ), and a biased system
model ( =a 0.68,1 =b 0.221 ), as obtained under MNAR. For the PI con-
trol design we used LQ optimisation, as described in Section 5.4 of
Taylor et al. (2013), with weights of = = =W W W0.1, 1, 0.5e u y . For the
MPC controller, we used a receding horizon control law with a pre-
diction horizon of three, that was based on minimising the sum of the
squares of differences between a reference trajectory and predicted
future outputs (based on a discrete state space model). No constraints
on the inputs were used, so a simple analytical solution for the optimal
inputs could be computed (Camacho & Alba, 2013). In this simple ex-
ample, offset-free MPC was not used i.e. the MPC control law does not
include the equivalent of integral action (Maeder, Borrelli, &
Morari, 2009).

Sample sizes of 100 were used and the desired INR output (reference
trajectory) defined to be 2.5 for the first 50 samples, then 3.5 for the
remaining 50 samples. These are the normal targets for patients with
occasional and recurrent deep vein thrombosis respectively
(Baglin et al., 2006), with the increase mimicking a change in diagnosis.
Performance is evaluated by considering the proportion of INR outputs
that are within ± 0.5 of the desired INR, and performance metrics are
the averages from 1000 different trials. Example control responses from
one trial are summarised in Fig. 4 and performance metrics given in
Table 5. In all cases the noise to signal ratio is high, so none of the
methods yield results that are within the desired INR range for more

than 50% of samples. Performance is improved when MPC is used with
the correct model, however using MPC with an incorrect model results
in steady-state errors. This is expected as the performance of MPC is
strongly associated with the accuracy of the model. Steady state errors
could be removed by, for example, introducing an integral of error state
into the MPC rule (Akçakaya & Sümer, 2009; Di Ruscio, 2013;
Exadaktylos & Taylor, 2010). MPC techniques that are robust to model
mismatch have also been developed (Kothare, Balakrishnan, &
Morari, 1996). In practice these methods have rarely been used when
MPC has been applied to non-conventional control examples. However,
they could increase control performance in cases when the model is
estimated from observational data and may be biased. The performance
of the PI controller is less affected by model mismatch. Again this is as
expected since, although the PI weights were tuned using a specific
model, the resultant response is relatively slow and reasonably robust;
and inclusion of integral action ensures there are no steady state errors
when the model is incorrect.

4.2. Control implementation with missing data

During control implementation there are two distinct approaches to
dealing with missing data, either the missing values can be estimated
(reconstructed/ imputed) (Phillips & Tomizuka, 1995; Shi & Fang,
2010), or the control decision can be delayed until data are available
(Astrom & Bernhardsson, 2002; Heemels et al., 2008). The second of
these is an event based control strategy (Åström, 2008) which will be
discussed in Section 5, while the first of these is considered here.

The theory for time-driven, periodic systems is well developed.
Therefore, when data are missing it is attractive to provide estimates of
the outputs at a constant sampling rate, so as to have access to the
systems theory for time driven systems (Heemels et al., 2008). A
Kalman filter can be used to estimate outputs with uniform sampling
period when measurements are missing (Heemels et al., 2008; López-
Orozco, de la Cruz, Besada, & Ruipérez, 2000). Similarly, a Leuen-
berger-type observer has also been used to estimate the state of the
plant at uniform times (Heemels et al., 2008; Phillips & Tomizuka,
1995).

Several Kalman filter based methods can be used to estimate the
state of a system when data are missing (Khan & Gu, 2009; Sinopoli
et al., 2004a). Of these, the simplest method is zero-correction (KF
zero), where if no output data are available (e.g. data are missing) the
predicted state estimate is used as the true state without updating (Khan
& Gu, 2009). This method yields simple, fast estimation without any
need to store observations. However, drawbacks include reliance on the
system model and spike phenomena in the estimation error. An alter-
native approach is to use past observations (KF past), where the

Fig. 3. Example of anticoagulation simulation. The blue lines represent dose in mg of warfarin and the red crosses INR. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 3
Missingness simulation parameter values.

θ0 θ1 θ2 θ3

MCAR 0 0 0 0
MAR 0 −10 0 0
MNAR 0 −10 0 10

Table 4
Effect of missingness on parameter estimates. Results of 20,000 simulations,
each of sequence length 100. Approximately 50% of the observations are
missing under each of MCAR, MAR and MNAR.

=a 0.41 =b 0.251 =σ 0.25

Missingness Mean Std dev Mean Std dev Mean Std dev

None 0.42 0.07 0.24 0.03 0.25 0.02
MCAR 0.39 0.17 0.26 0.07 0.24 0.04
MAR 0.39 0.23 0.26 0.07 0.24 0.04
MNAR 0.68 0.20 0.22 0.08 0.19 0.04
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previous observations are used to correct the predicted state (Khan &
Gu, 2009). This reduces some of the shortcomings of the zero-correction
method, but it requires the most recent observation to be stored.
Khan and Gu (2009) have also considered the development of more
complex Kalman filter based optimisation algorithms.

Missing data can be even more simply estimated by replacing the
missing measurement with the last measured value. This removes the
need for Kalman filtering, but requires the previous observation to be
stored. This last observed carried forward (LOCF) technique is an ad hoc
method for inference that assumes data are MAR (Molenberghs et al.,
2004). More principled statistical approaches to imputation include
direct likelihood, Markov chain Monte Carlo, the EM algorithm and
multiple imputation (Ibrahim & Molenberghs, 2009; Molenberghs &
Kenward, 2007).

To illustrate, PI control of the warfarin model system is evaluated
when approximately 50% of output data are missing and the missing-
ness can be described as MCAR, MAR or MNAR using the method de-
scribed in Section 3.3. Different methods are used to impute the missing
data: KF zero, KF past and LOCF (also, an event based method, as dis-
cussed in Section 5.1.2). Results averaged over 1000 trails are given in
Table 6. Values for the percentage in range are only given for the
measured data, as in practice unmeasured values would be unavailable.
A key issue during control is ensuring that the unmeasured values also
have reasonable values. Results show that the KF zero imputation
method, which is most reliant on the model, provides best performance
when the model is correct and worst when it is biased.

4.3. Optimal dynamic treatment

There is a link, so far perhaps not fully exploited, between control
methodology and research into optimal dynamic treatment (ODT)
techniques developed for personalised medicine. In ODT, also called
adaptive strategy or adaptive intervention, medical interventions adjust

to changing individual circumstances. For overviews and a range of
techniques see, for example: Chakraborty and Moodie (2013),
Luedtke and van der Laan (2016), Orellana, Rotnitzky, and
Robins (2010), Schulte, Tsiatis, Laber, and Davidian (2014),
Zhao, Zeng, Rush, and Kosorok (2012), Zhang, Tsiatis, Laber, and
Davidian (2012), and Zhou, Mayer-Hamblett, Khan, and
Kosorok (2017). An archetypal situation is the anticoagulation scenario
of Section 1, where dosage of warfarin is adjusted to reflect change in
INR as a result of new diets, co-medication and so on. Thinking of
treatment as input u(k) and an appropriate health measure such as INR
as outcome y(k), the generic control and ODT scenarios are one and the
same. Despite this, there seems to have been little input from the
control community into developments in ODT. This may be because
many early applications of ODT, starting with Murphy (2003), con-
centrated on cases where there were few potential treatment options
available, classically simply a choice between two or three possible
treatments, and few (again, just two or three) repeat visits. There has
been more recent interest in applications in which the treatment can
take a large number of values, such as the dose of a drug, and can be
considered as effectively continuous, and for chronic conditions in
which follow-up is long, again as in the warfarin application (Barrett,
Henderson, & Rosthøj, 2014; Henderson, Ansell, & Alsibani, 2010;
2011; Rich, Moodie, & Stephens, 2014; Rosthøj, Keiding, &
Schmiegelow, 2012).

The ODT literature has concentrated primarily on modelling, esti-
mation and inference, i.e. system identification as discussed in
Section 3. There has been less attention given to subsequent use of the

Fig. 4. Example control results. The desired INR is defined as the region between the dashed lines.

Table 5
Control performance averaged across 1000 trials for different control designs.

Control method Estimated model In range (%)

None N/A 0.39
PI =a 0.4,1 =b 0.251 40.39
PI =a 0.68,1 =b 0.221 40.00
MPC =a 0.4,1 =b 0.251 47.35
MPC =a 0.68,1 =b 0.221 38.62

Table 6
Control performance when data are missing, averaged across 1000 trails for
different control designs.

Estimated model Method In range (%)

MCAR MAR MNAR

KF zero 42.32 44.13 41.79
=a 0.4,1 =b 0.251 (correct) KF past 41.04 42.83 42.65

LOCF 40.56 41.78 41.98

Event 38.99 40.01 39.03
KF zero 33.45 35.83 30.07

=a 0.68,1 =b 0.221 (biased) KF past 38.42 42.10 40.50
LOCF 39.54 42.47 41.50
Event 38.75 39.23 37.19

E.D. Wilson et al. Annual Reviews in Control 46 (2018) 94–106

100



modelled systems for control, which means large and well established
areas of control expertise could and should be brought to bear in per-
sonalised medicine; robust control for instance. In the other direction
some of the techniques developed in ODT could be taken into control
applications, including careful handling of sparse and noisy observa-
tional data, and perhaps the use of A-learning techniques borrowed
from machine learning and adapted to allow causal inference
(Chakraborty & Moodie, 2013; Murphy, 2003; Robins, 2004).

Missing data causes two distinct issues in ODTs. These are in-
troduced by Rosthøj, Henderson, and Barrett (2014). The first of these
is the issue of missing data in the past. This refers to the situation where
the data set used for estimation of the optimal regime contains missing
values. This issue is comparable to the identification of models from
missing data (see Section 3) and standard techniques of parameter es-
timation in the presence of missing covariates or responses in long-
itudinal data can be used. The second issue is missing data in the future;
when calculating the optimal treatment it is assumed that the patient
will be seen again at all future time points, so the treatment can be
changed if necessary. This second issue is potentially more of a problem
and has been given much less consideration within the literature.

To our knowledge the issue of missing data in the future has been
considered in the ODT literature only by Rosthøj et al. (2014), who
proposed the use of a fixed-dose allocation rule. In their optimal dy-
namic fixed-dose strategy it is assumed that each patient has visits
scheduled for regular times = …k 1, 2, but the possibility that some
visits may be missed is allowed for, at least under the assumption that
missingness is completely at random. At each time point k a fixed dose
strategy assigns the current dose u(k) to the patient for all times within
a future observation window. The optimal fixed dose is the dose the
patient should stay on to optimise the potential outcome if it is assumed
that the dose will not change throughout the window, hence providing
protection against the patient missing future visits. It is proposed to
recalculate the optimal fixed dose at each visit that does take place.
Rosthøj et al. (2014) showed that when there are no missed visits the
optimal dynamic fixed dose strategy does not differ considerably from
the optimal dynamic strategy. When there are missed visits the optimal
dynamic fixed dose strategy outperforms the optimal dynamic strategy.
A similar strategy, without missing data, is proposed by
van der Laan, Petersen, and Joffe (2005) and Petersen, Deeks, Martin,
and van der Laan (2007). At each visit (or time point) a future treat-
ment regime is fully specified, this is updated at subsequent visits. Such
a strategy is a form of MPC, something that we return to in the next
section.

5. Irregular control

The usual approach to digital control is to sample periodically in
time, which is known as periodic, Reimann (Astrom &
Bernhardsson, 2002), or single-rate (Hu & Michel, 2000) sampling. The
previous sections have considered periodic data with missing outputs.
However, in many applications such as medical treatment control, or
resource management, scheduling may be irregular and not synchro-
nised with any underlying sampling period. Irregular data are not
uniformly sampled and occur when scheduled visits (or measurements)
are not uniformly distributed. Data could be constrained to treat the
problem as one of periodic missing data, but if a fast underlying time
period is used then data may be very sparse; alternatively using a
slower time period may give poor resolution of when the actual event
occurred. In such cases it may be better to treat the data as irregular.

In our anticoagulation example, Patient A (Fig. 1) has relatively
regular observations, with 68% of intervals being within 10% of 7, 14,
21 or 28 days. There are nonetheless some 13% of intervals in excess of
one month. Table 7 shows the distribution of gaps between visits. Many
patients have more irregular sampling times.

As in the case of missing data, irregular visiting schedules can be
categorised into: visiting completely at random (VCAR), visiting at

random (VAR) and visiting not at random (VNAR). The term VCAR is
used when the visit time is independent of the outcomes, VAR when the
visit time is independent of the outcome given previously observed
data, and VNAR when the visit time is not independent of the outcome
given previously observed data (Pullenayegum & Lim, 2016).

5.1. Event based control

In an event-based system, the sampling is event-triggered, as op-
posed to time-triggered. It is the occurrence of an event, rather than the
passing of time, that determines when samples should be taken (Arzén,
1999; Åström, 2008; Heemels et al., 2008). Within the literature dif-
ferent terminologies have been used to describe event-based control
(Lunze & Lehmann, 2010). These include event-based sampling
(Åström, 2008), event-driven sampling (Heemels et al., 2008), Le-
besgue sampling (Astrom & Bernhardsson, 2002), aperiodic control
(Arzén, 1999), and asynchronous control (Losada, Rubio, &
Bencomo, 2015). All describe sampling that is not time triggered, but
driven by the occurrence of an event.

In time-driven controllers the focus is on performance, while in
event-driven controllers the aim is to balance performance with prac-
tical aspects (Heemels et al., 2008) such as the availability of data, and
resource utilization. There are several reasons for using event-triggered
sampling. These include: (i) the nature of the measurement e.g. the
system may use event driven sensors such as encoders (Åström, 2008);
(ii) the difficulty in sticking to a time-triggered paradigm, such as in
modern distributed control systems (Zhang, Branicky, & Phillips, 2001),
or applications like medical treatments; and (iii) resource utilisation,
for which event-triggered sampling may reduce the number of control
updates necessary (Liu, Wang, He, & Zhou, 2014). Also, interestingly in
the context of developing optimal treatment rules in healthcare, event
driven control is the dominating control principle in biological systems,
including humans (Åström, 2008; Gawthrop, Loram, Lakie, & Gollee,
2011; Loram, Van De Kamp, Gollee, & Gawthrop, 2012).

In event-driven control, the nature of the event can vary, and ex-
amples of events could include a signal passing a threshold, or the ar-
rival of a data packet to a node. The arrival of new data, or lack of data,
is an example of unintentional event driven control and the passing of a
threshold an example of intentional event driven control. Most ex-
amples of intentional event driven control consider the event as the
signal, or a state, passing a threshold. Research into unintentional event
driven control has focused on the area of Networked Control Systems
(NCS).

A block diagram of a simplified event based control loop is shown in
Fig. 5. The controller operates in open-loop between the events, with
feedback actions occurring at events. Periodic systems also operate in
open loop between sampling instants. In periodically sampled systems,
the standard procedure is to keep the control constant between the
sampling instants using a zero-order-hold scheme. Sensor signals are
periodically sampled, and a zero order hold used on actuators. In event
based systems, update times are not scheduled or known. The way the
open-loop signal is generated is key and properties of the system de-
pend on how this signal is generated (Åström, 2008; Cervin & Åström,
2007; Lunze & Lehmann, 2010). In event based control the sampler is
replaced by an event generator, and the hold by the control input
generator.

Table 7
Sampling intervals for Patient A. We take intervals to be ≃ 7 etc. if within 10%.
The maximum interval was 84 days. The balance of intervals are within one
month but not close to multiples of 7 days.

Sampling interval (days)

≤ 5 ≃ 7 ≃ 14 ≃ 21 ≃ 28 31–60 61–90

Percentage 2% 6% 30% 22% 10% 9% 4%

E.D. Wilson et al. Annual Reviews in Control 46 (2018) 94–106

101



The concept of a control input generator (Fig. 5) was introduced by
Åström (2008). It could represent a generalised hold, but is introduced
due to the importance of the control signal generator in determining
behaviour in event based control. Åström (2008) shows that it is de-
sirable to have holds that give control signals that are initially large,
and then decay fast to ensure the system is robust to changes in when
the event occurs.

Gawthrop and colleagues (Gawthrop et al., 2011; Gawthrop &
Wang, 2007; 2009) use basis functions to specify the controller evolu-
tion in the open-loop between events, where the open-loop control
signal is constrained to be the linear sum of pre-specified basis func-
tions. The use of basis functions to generate the control signal between
events is equivalent to using a generalised hold and, therefore, similar
to using the control input generator described by Åström (Åström,
2008; Cervin & Åström, 2007).

5.1.1. Intentional event driven control
In event driven control, the nature of the event can vary. The most

commonly studied type of intentional event is the case when a signal, or
state, deviates by a set amount. This can be cast, for example, as the
measurement signal crossing a specified level, or as the absolute error
exceeding a certain amount. The logic for event detection is discre-
tionary, however, having a very complex event detector may needlessly
complicate the control algorithm (Arzén, 1999). When the behaviour is
event driven, it is not until the event detection criteria has been met
(e.g. until the measurement signal has deviated sufficiently from the
desired set point) that a new control action is taken.

The difference between an event-based, and a sampled-data con-
troller is considered by Åström and Bernhardsson (Åström, 2008;
Åström & Bernhardsson, 1999; Astrom & Bernhardsson, 2002) for a
simple system. In this key work, the authors derive analytical results for
a simple single-order system, to compare the performance of event-
based and sampled-data control loops, where an event occurs when the
measurement is out of range. In certain situations the event based
strategy performs better in terms of minimising the output variance for
similar mean sample times. In the event based strategy communications
are increased in time intervals with large disturbances, and decreased
when disturbances are small.

Another key early paper on intentional event based control con-
siders an event based PID controller (Arzén, 1999). The event detection
logic is kept simple i.e. an event occurs if the absolute value of the
difference between the current value of the error e(tk) and the value of
the error the last time a control signal was calculated e(ts) exceeds a
limit, or if a set amount of time has elapsed since the last sample. It is
shown through simulations that large reductions in resource utilisation,
with only minor control performance degradation, are possible using an
event based PID controller. The difficulty is guaranteeing stability and
the lack of systems theory for event based control.

Event-based MPC algorithms have also been developed (Bernardini
& Bemporad, 2012; Eqtami, Dimarogonas, & Kyriakopoulos, 2011;
Henriksson, Quevedo, Peters, Sandberg, & Johansson, 2015). MPC is an
optimal control strategy. At each sampling instant (k) a control strategy

that minimises an objective function (cost) is computed over a given
time horizon ( +k p). It is standard practice to use only the first com-
puted control input and then resample the plant state and repeat the
optimisation starting from this next state. In event triggered MPC, ra-
ther than just use the first computed control inputs, the control inputs
until the next event are applied. The computed input sequence is ap-
plied to the system from time k until time instant +k i. At this time
instant a new sample is taken and the optimisation is repeated from this
state. Chakrabarty et al. (2017) apply event driven MPC to control
blood glucose using insulin. Control actions in the optimal MPC input
sequence are applied until the event condition is met. Event conditions
are: the norm of the output estimation error exceeds a given threshold,
or a given number of control actions in the optimal input sequence have
been implemented, or safety conditions have been violated. This re-
quires the system to be continually monitored and when the event
condition is met, control is triggered (Heemels, Johansson, &
Tabuada, 2012). The nature of the event is dependent on the system
and method of data collection: for many applications if signals cannot
be continually monitored and measured, an event may just be the ar-
rival of new data.

5.1.2. Unintentional event driven control
Aperiodic sampling is not necessarily implemented through choice,

instead it can be imposed due to the nature of the system being con-
trolled. We term the case where the limitation is the information ex-
change and availability of data ‘unintentional’ event driven control. In
our anticoagulation control example, the outputs are only measured
when the patient attends an appointment, so it is not possible to con-
tinually monitor the system until an event defined by the signals occurs.
Instead, we could treat the arrival of new information in itself as an
event. This means that the system will not be able to react to increases
in the error (e.g. due to set point changes, or disturbances). Decisions
on changes to medications can take place only when the patient attends
an appointment.

To illustrate, we modified the PI controller described in the simu-
lation study in Section 4 into an event based PI controller using the
approach described by Arzén (1999). In divergence from continually
monitoring the error, as in Arzén (1999), the event condition is the
arrival of data, e.g. Yobs(k) is available. The integral control gain is
recalculated at each event by using the elapsed time since the last event
to determine the sampling period, kITs→ hkITs, where kI is the integral
control gain, Ts the sample period and set to one in simulations, and h is
the number of elapsed samples since the last update. When data are
missing the inputs are held. Control simulation results with 50%
missing data are given in Table 6, Section 4. The method is not quite as
accurate as imputing data, but requires approximately half as many
updates, as decisions are only made when data are available.

Event based control shows promise for applications where data are
not available at every periodic sampling instant. The key issues are the
analysis of the control system and guarantees of worst-case perfor-
mance. The absence of a systems theory for event driven controllers is a
major reason why time driven control still dominates (Heemels et al.,

Fig. 5. Block diagram of an event-based control loop (Lunze & Lehmann, 2010). Solid lines denote continuous signal transmission and the dashed lines event based
signal transmission. The control input generator may also make use of an observer.
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2008). However, due to the huge increased interest in network control
systems, the event driven control literature is rapidly expanding and
staring to address these issues, and this includes steps towards devel-
oping an event-driven systems theory (Heemels et al., 2012; Heemels
et al., 2008; Hetel et al., 2017; Lunze & Lehmann, 2010).

Network control systems provide an example of a system where
aperiodic sampling and timing issues are imposed, and a vast amount of
literature on aperiodic sampling is concerned with the NCS control
problem. An overview of some of the main research themes is provided
here, however, it is by no means exhaustive and it should be noted that
several reviews of research within the area of NCSs exist (Gupta &
Chow, 2010; Heemels & Van De Wouw, 2010; Hespanha,
Naghshtabrizi, & Xu, 2007; Hetel et al., 2017; Liu et al., 2014; Tipsuwan
& Chow, 2003; Yan, Yan, Zhang, & Zhao, 2014; Yang, 2006; Zhang
et al., 2001). The main limitations of research into NCS are that most of
the literature only considers linear systems, and most results do not
consider plant uncertainty (Yang, 2006).

Unlike sampled data systems, there is no generalised framework for
analysing and designing NCSs. Research into NCSs can be grouped ac-
cording to the type of network-induced uncertainty (e.g. time varying
sampling, time varying delay, packet loss), according to the approach
used to model and analyse the system under these network induced
uncertainties, and how the network induced uncertainty is modelled
(Hespanha et al., 2007). Hetel et al. (2017) provide a thorough recent
overview on the stability of systems with aperiodic sampling.

Network timing uncertainties are generally modelled in one of two
ways (Cloosterman et al., 2010), either by imposing bounds on the
delays, sampling intervals, and maximum number of packet dropouts
(Cloosterman et al., 2010; Fujioka, 2009b; García-Rivera & Barreiro,
2007), or by using a stochastic modelling approach (Nilsson,
Bernhardsson, & Wittenmark, 1996; Nilsson et al., 1998; Sinopoli,
Schenato, Franceschetti, Poolla, & Sastry, 2004b). In the first of these
two approaches the time variations resulting from network imperfec-
tions can be considered as disturbances. Many studies into NCS consider
only one or two network induced imperfections, and several approaches
have been proposed for modelling and control of the system. These
approaches can be broadly categorised as: (i) an input delay approach
(Fridman & Shaked, 2005; Gao, Chen, & Lam, 2008; Hespanha et al.,
2007; Mirkin, 2007); (ii) a discrete-time approach (Cloosterman, van de
Wouw, Heemels, & Nijmeijer, 2006; Cloosterman et al., 2010; Dritsas &
Tzes, 2009; Fujioka, 2009a; 2009b; García-Rivera & Barreiro, 2007;
Heemels et al., 2008; Sala, 2005); (iii) a model-based approach
(Estrada, Lin, & Antsaklis, 2006; Montestruque & Antsaklis, 2004; 2002;
2003); (iv) an emulation approach (Dačić & Nešić, 2007; Nesic & Teel,
2004); and (v) a stochastic optimal control approach (Nilsson et al.,
1996; Nilsson et al., 1998; Sinopoli et al., 2004b). Further details are
given by Heemels and Van De Wouw (2010) and the previous refer-
ences, however, the general methodology behind each approach is
briefly summarised here.

The input delay approach models the NCS as a continuous-time de-
layed differential equation (DDE). The stability is then studied using
Lyaponov-Krasovskii methods (Hespanha et al., 2007), and linear ma-
trix inequalities (LMIs). Mirkin (2007) showed that this approach is
conservative as it does not take into account the piecewise constant
nature of the control signal that occurs due to the zero-order hold.
Alternative DDE approaches (Naghshtabrizi & Hespanha, 2005;
Naghshtabrizi, Hespanha, & Teel, 2006; 2008) have been proposed that
are less conservative, and do take the piecewise constant nature of the
control signal into account. In the discrete-time approach, discrete-time
representations of the sampled data system are constructed based on
the exact discretisation of the continuous-time plant over a sample in-
terval. These models are then used in a robust stability analysis based
on Lyaponov-functions (Cloosterman et al., 2010; Fujioka, 2009a;
2009b) or LMIs (Cloosterman et al., 2006; Dritsas & Tzes, 2009; García-
Rivera & Barreiro, 2007). In the constrained case, where the delay is
smaller than the sampling period, lifted state vectors (Cloosterman

et al., 2006; García-Rivera & Barreiro, 2007; Yamamoto, 1996), or
Lyaponov–Krasonoskii functions (Xie & Wang, 2004) have been used to
address the analysis and design problem.

Model based control of NCSs was introduced by Montestruque and
Antsaklis (2004, 2002, 2003). It uses an explicit model of the plant to
estimate the plant state between transmission times and provide ap-
proximate control signals when sensor data are not available. The
model is updated using the true values of the plant state when avail-
able. The emulation approach considers continuous time controllers
using a continuous-time (sampled-data) NCS model in the form of a
hybrid system. This is used to quantify allowable levels (to ensure
stability) of network uncertainties (maximum transmission intervals,
maximum delay). The problem is considered as a linear-quadratic-
Gaussian (LQG) problem by the stochastic optimal control approach,
where the LQG matrix is based on the network delay statistics. This
method generally assumes that time delays are less than the sampling
period.

6. Discussion

Control theory is increasingly being applied to nonstandard appli-
cations. The use of control theory is appealing as it provides a sys-
tematic way of determining control inputs in the presence of noise and
uncertainty. In such applications, data may be observational, sparse,
missing or irregular, with no opportunity to collect repeat measure-
ments. This poses the following challenges: i) system identification from
observational data with missing measurements; ii) determining control
inputs when output data are missing; and iii) ensuring stability when
future update times are unknown. In this paper we reviewed methods in
the literature that deal with these issues. The example of antic-
oagulation control using warfarin was used throughout to illustrate
some of the challenges and potential solutions.

Identifying models from observational data is a fundamental issue
within the statistics community. To analyse such data, the assumption
of no unmeasured confounders is key, which requires that there is
knowledge of all predictors of treatment decisions (for medical appli-
cations) that are also independent risk factors for the outcome of in-
terest. A significant amount of literature exists on estimating model
parameters from longitudinal, observational data with missing covari-
ates; key to this are the assumptions that are made regarding the nature
of the data and scheduling, or missing, mechanisms. Traditionally, data
collection and analysis assumptions are rarely considered within the
context of control. Generally, multiple measurements can be made on
the system and the experimental protocol can be designed to enable
‘ideal’ data to be collected. Where data are missing, it is assumed that
the data are either missing periodically, or MCAR. If control systems
techniques are to be adopted for nonstandard applications, an aware-
ness of the complexity of the data and any missingness mechanisms is
required to avoid introducing bias. Here techniques from statistics
could be used to ensure careful handling of sparse and noisy observa-
tional data. When estimated models are biased, robust control techni-
ques provide a way of ensuring controllers behave well in the presence
of modelling uncertainty, external disturbances and sensor noise.

There are two distinct approaches to handling missing data during
control. The first of these is to impute missing data. Several methods for
imputing missing data exist. If the imputation method is more reliant on
a model of the system, then control performance is more reliant on the
accuracy of this model. The second general approach is to use an event
based control scheme. Using an ‘unintentional’ event based scheme
would mean control inputs were only updated when data were avail-
able, resulting in a system that is unable to react to increases in error.
Such a scheme still gives reasonable performance when applied to our
anticoagulation simulation example, and required ≈ 50% fewer up-
dates than the imputation method. Alternatively, if the system could be
continually monitored, an ‘intentional’ event based control scheme
could be used, where control updates are implemented when a signal,
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or state, deviates by a set amount. Event based methods lead to asy-
chronous control, and the rapidly expanding control literature on NCS
means a systems theory for asynchronous control is starting to develop.
Such theory could usefully be applied to ensure stability when applying
control to nonstandard applications.

The dominating control principal within biological systems is event
based control. Event based control may, therefore, provide a natural
solution for controlling the health of biological systems using medical
interventions (as well as in the control of other nonstandard systems).
Event-driven control requires the system to be continually monitored
and when the event condition is met, control is triggered. The devel-
opment of sensor technology means certain health variables, such as
blood glucose using a continuous glucose monitor, can now be mea-
sured online. Where online monitoring is possible, event based control
strategies may improve resource utilisation and reduce the number of
dose (or treatment) changes necessary. However, in certain contexts,
continual health monitoring may be infeasible or impractical. In this
case the event triggering condition may just be the arrival of data.

If the system cannot be continually monitored, self driven control,
an alternative asynchronous, proactive control strategy could be im-
plemented. In self driven control the time of triggering the next control
update is precomputed at the current control update time, based on
predictions using the history of the data and knowledge of the plant
dynamics (Heemels et al., 2012). A model of the plant dynamics is re-
quired, which relates back to the system identification problem. In
general, self-triggering results in asynchronous sampling that is de-
pendent on the predicted state of the system. The self driven control
problem is closely related to event driven control in terms of ensuring
stability given bounds on variations in the sample rate. In the context of
medical treatment and ODT, self driven control would provide a
method of scheduling future appointments (or measurements), but
alone would not provide protection against missed visits.

In protecting against future missing measurements, within the
control literature it is generally assumed that there are some bounds on
the timing, and methods of designing control systems that are able to
deal with given variations have been developed. This contrasts with the
statistics approach, which considers that a visit may never occur again
(Rosthøj et al., 2014). Again, these contrasting approaches are likely to
be due to the nature of the system being controlled. Much of the work
on missing and non-uniform sampling in control is within the context of
NCS, where it may be reasonable to assume bounds on packet dropouts,
or system delays. In the statistics literature, within the context of ODTs,
patient scheduling is likely to be less predicable and so within this
context it is harder to give upper bounds on the timing between visits.
However, in certain contexts, assuming some bounds on the missing-
ness (e.g. patients miss no more than two consecutive appointments, or
patient must make at least one visit a month) may help to simplify the
control problem and could help to develop stricter rules on the sche-
duling of the next appointments, or measurements, to ensure con-
straints are not violated.

An awareness of the context and assumptions imposed by applying
control to non-traditional areas is essential. Many methods exist for
dealing with missing, or non-uniformly sampled data and the suitability
of these methods depends on the actual study being considered. For
example, in the case where a patient’s health is continually monitored
(e.g. blood glucose), event-based control theory may be key for de-
termining treatments. However, it is of no use if we are unable to
monitor the event triggering condition. Similarly, an awareness of the
limitations of the data is essential in order to understand the limitations
and bias that can occur in the estimated models.
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