OEN8
OPEN ACCESS JOURNA ne

Volume 52 > Number 1 > 2018

Selection and characterization
of autochthonous strains of Oenococcus oeni
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Abstract

The use of autochthonous strains of Oenococcus oeni for inducing malolactic fermentation (MLF) in wines is increasing
because they are well adapted to the conditions of a specific area. The main aim of this work was to select O. oeni strains from
Priorat (Catalonia, Spain) wines that would be able to carry out the MLF while maintaining the characteristics of the wine.
Forty-five autochthonous strains were selected based on their degradation of L-malic acid, resistance to low pH and high
ethanol, and the absence of biogenic amine genes. The three strains with the best characteristics were inoculated and MLF was
carried out successfully with the final wines showing good characteristics. One of the inoculated O. oeni strains would be a
good candidate to study as possible starter culture. It shows that autochthonous O. oeni strains, once selected, have the potential
to be used as an inoculum for wines.
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Introduction

Oenococcus oeni is the major species among lactic
acid bacteria (LAB) involved in the malolactic
fermentation (MLF) of wine (Wibowo et al., 1985;
Henick-Kling, 1993). During MLF, L-malic acid is
decarboxylated to L-lactic acid, resulting in wine
deacidification. This is a crucial step in red
winemaking as it provides enhanced organoleptic
qualities and microbial stabilization of the wine
(Davis et al., 1988; Lonvaud-Funel, 1999; Liu, 2002;
Bartowsky, 2005; Cappello et al., 2017).

MLF can be induced by inoculating commercial
starters of O. oeni. However, this is not always
successful because wine is a very harsh environment
for bacterial growth (Coucheney ef al., 2005; Spano
and Massa, 2006; Ruiz et al., 2010), mainly due to
the presence of ethanol (Capucho and San Romao,
1994; Zapparoli et al., 2009). The other limiting
conditions of wine (few nutrients, phenolic
compounds, low pH) may restrict cell viability in
such a way as to make MLF sluggish or even fail
(Carreté et al., 2002). In addition, the application of
similar commercial bacterial starters across different
world regions may lead to a certain product
uniformity (Mas et al., 2016). Hence, the application
of an autochthonous starter culture, well adapted to
the conditions of a specific wine-producing area, has
already been suggested (Nielsen et al., 1996; Ruiz et
al., 2010). For this reason, several studies have been
performed on the characterization of O. oeni
biodiversity with the aim of selecting putative
autochthonous starter cultures (Capozzi et al., 2010;
Capozzi et al., 2014; Gonzalez-Arenzana et al., 2014;
Lamontanara et al., 2014).

Climate change poses a major additional problem for
MLF. Over the last 10-30 years, evidences of earlier
fruit maturation patterns, and consequently modified
vine development, have been observed, both of
which have been attributed to rising temperatures
worldwide (Jones et al., 2005). The faster ripening of
the grapes leads to a higher sugar content and
therefore a higher ethanol content in the wines (Mira
de Orduna, 2010; Webb et al., 2011). In the
prestigious qualified appellation of Priorat in
southern Catalonia (northeast Spain), wines easily
reach an ethanol content of 14%, and sometimes
more (De Herralde et al., 2012). The low acidity of
these wines together with the earlier fruit maturation
patterns diminishes their L-malic acid content, thus
restricting the growth of O. oeni. Resistance to these
harsh conditions (high ethanol and low pH) was the
main criterion for strain selection in this work.
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The preferences of consumers call for superior wines
from a particular region to possess unique qualities
and character (terroir wines) that differentiate them
from wines of the same variety from other regions
(Bisson et al., 2002). Wines perceived as being of
high quality can be produced anywhere, even though,
according to the concept of terroir, the local
environment will influence the composition of the
wine produced in a specific growing region (Gilbert
et al., 2014; Zarraonaindia et al., 2015). Among other
things, this involves the contribution of the
indigenous microbiota in shaping the unique quality
of the wine (Bartowsky et al., 2015).

A huge diversity of autochthonous O. oeni strains
performing MLF has been found in wines (Reguant
and Bordons, 2003; El Khoury ef al., 2017), and this
diversity is important within the same location
(Lopez et al., 2007; Cappello et al., 2010). Population
structure analyses of strains in wines from diverse
geographic origins have shown that there are two
major genetic groups of O. oeni strains, known as A
and B (Bilhére et al., 2009; Bridier et al., 2010). For
this reason, a minimal genetic characterization of the
selected strains using the single nucleotide
polymorphism (SNP) method was included as an aim
in this work.

Another decisive characteristic for our strain selection
was the absence of the ability to produce biogenic
amines (BA), which are compounds that are
undesirable in wines because they may induce
headaches, respiratory distress, hyper-hypotension
and various allergenic disorders (Silla-Santos, 1996).
Different results have been reported for BA
production by O. oeni and other LAB and it is of
utmost importance to avoid formation of these
amines during MLF (Costantini et al., 2006; Landete
etal.,2007a).

The main aim of this study was therefore to
characterize LAB strains isolated from Priorat wine
samples in order to select those with the best
characteristics for application as oenological starter
cultures. Hence, the selected strains needed to be
evaluated by inoculating them into a real Priorat wine
in the cellar, checking their imposition and analysing
the final wines.

Materials and methods
1. Strains

A total of 45 autochthonous LAB strains (Table 1)
isolated from Priorat wines from vintages 2012 and
2013 and described in a previous study (Franques et
al., 2017) were chosen following the criterion of



having been isolated at least twice in two different
wines. They consisted of 41 O. oeni strains, two
Lactobacillus plantarum strains, one Fructobacillus
tropaeoli strain and one L. mali strain. Six of the
O. oeni strains were found in both 2012 and 2013
vintages.

2. L-malic acid degradation test in a wine-like
medium

The strains were grown in MRSm1 (Franques et al.,
2017), which is MRS (De Man et al., 1960)
supplemented with L-malic acid (3 g/L), fructose
(5 g/L), L-cysteine (0.5 g/L) and tomato juice
(100 mL/L) at pH 5, until Agyg,m = 1.6. The pellet
obtained was inoculated (2%) into 50 mL of wine-
like medium (WLM) (Bordas et al., 2013), which
contained ethanol (12 or 14% v/v) added aseptically
to the following sterilized base medium: 2 g/L
fructose, 2 g/L tartaric acid, 0.5 g/L citric acid, 2 g/L
L-malic acid, 5 g/L yeast extract, 0.1 g/L acetic acid,
and 5 g/L glycerol, adjusted to pH 3.4 with
1 N NaOH. Then, it was incubated at 20°C, in
duplicate for each strain. The L-malic acid was
measured enzymatically (Miura One, TDI S.A.) and
both the L-malic acid consumption and fermentation
speed were calculated.

3. Stress resistance test

The strains were precultured in a grape juice medium
(GJM) similar to that used for El Khoury et al.
(2017), which contained per liter 250 mL white grape
juice (final sugar content of 50 g/L), 5 g yeast extract,
1 mL Tween 80, and 6% (v/v) ethanol, at pH 4. When
the population reached approximately 10% CFU/mL,
they were inoculated (0.2%) into 10 mL tubes of the
same GJM so that a stress resistance test could be
carried out in eight conditions combining different
pH (2.8, 3, 3.3, 3.6 and 4) and ethanol concentrations
(6, 12, 14 and 16%, v/v). The growth of the strains at
20°C was followed for 3 weeks, checking the ODg,
every 48 hours with a POLARstar Omega
spectrophotometer (BMG Labtech).

4. Biogenic amine gene detection

The detection of the histidine decarboxylase (hdc),
tyrosine decarboxylase (tdc) and ornithine
decarboxylase (odc) genes was performed by specific
PCRs. The DNA extraction was performed according
to Ruiz-Barba et al. (2005). The hdc gene was
detected using HDC3 and HDC4 primers (Coton and
Coton, 2005), the #dc gene using P1-rev and p0303
primers (Landete et al., 2007b), and the odc gene
using primers 3 and 16 (Marcobal et al., 2005). LAB
strains having the BA genes were used as positive
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controls: Lactobacillus sp. 30a (ATCC 33222) for
hdc, L. brevis Enolab 4415 (kindly provided by Sergi
Ferrer, University of Valencia) for tdc, and O. oeni
Enolab 4783 (also provided by S. Ferrer) for odc.

The hdc PCR products were analysed using MultiNA
equipment (Microchip Electrophoresis System for
DNA/RNA Analysis, Shimadzu) and the MultiNA
kit (DNA 100-1500 bp, Shimadzu). SYBR Gold
buffer (Invitrogen) diluted 100 times in TE (pH 8)
and the molecular marker phiX174-Haelll digest
(Promega) were used. The tdc and odc PCR products
were checked by electrophoresis in 1.2% (w/v)
agarose gels with Tris-borate-EDTA buffer (TBE)
0.5x (80V, 1h30) and dyed with ethidium bromide.
DNA molecular weight markers 1KB Plus Invitrogen
(REF 10787-018) were used for reference purposes.

5. Classification of strains in phylogroups using
SNP genotyping

The simple nucleotide polymorphism (SNP)
technique was used to analyse O. oeni strains and
include them in phylogroups A and B. Two other
O. oeni strains with previously characterized SNPs
(Campbell-Sills et al., 2015) were also included in
the study: PSU-1 (ATCC-BAA-331) and ATCC-
BAA-1163, which belong to groups A and B,
respectively. Before genotyping, a real time PCR was
performed to compare the DNA samples with each
other and check the DNA concentration of each.

SNP methodology was applied following Campbell-
Sills et al. (2015) and El Khoury et al. (2017).
Manual curation and selection were performed to
select 39 SNPs, which were amplified and sequenced
using the Sequenom strategy. The genotyping results
of these SNPs for each strain were concatenated into
a single sequence of 39 bp. The sequence alignments
and phylogroup analysis were performed using
MEGA software 6.0.5 (Tamura ef al., 2013) with
1000 bootstrap replications on neighbour-joining
distance calculation using Kimura 2-parameter.

6. Performance of MLF in industrial wines
inoculated with the selected strains

The selected strains (WW strains, from the Wildwine
project) were used as starter culture for the
inoculation of two industrial wines (one from
Grenache and the other from Carignan) at the Ferrer-
Bobet winery, located on road T-740, between Falset
and Porrera, in Priorat. The alcoholic fermentations
(AF) were carried out with autochthonous S.
cerevisiae strains (CECT13132, CECT13133 and
CECT13134) isolated in the same Priorat area (Mas
et al., 2015; Padilla et al., 2017). The main analytical
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characteristics at the end of AF are shown in Table 2.
For each wine, the strains were grown separately in
1.5 L of MRSm1 medium until ODgyy = 1.6,
corresponding to 10° CFU/mL. The total pellet
obtained was washed with saline solution and used to
inoculate (2%) oak barrels containing 225 L of wine.
Other barrels were inoculated with the commercial
0. oeni CHI1 strain (Viniflora® CHI11, from Chr.
Hansen A/S, Hersholm, Denmark) as a control,
following the manufacturer’s indications.

All barrels were kept in the Ferrer-Bobet winery
cellar and set aside for MLF at 20°C. L-malic acid
consumption was followed by enzymatic analysis in
the laboratory of the same winery. The final MLF
samples were collected and cultured in solid MRSm3
(Franques et al., 2017), which is MRSml
supplemented with nystatin (100 mg/L) and sodium
azide (25 mg/L). In order to confirm the presence of
the bacteria inoculated, 30 colonies of each sample
were selected and their DNA extracted, then they
were typed using the VNTR technique (Claisse and
Lonvaud-Funel, 2012) including the modifications
made by Franqueés et al. (2017).

7. Wine chemical analysis

The main chemical characteristics (sugars, ethanol,
glycerol, pH, total and volatile acidity, organic acids,
nitrogen, sulphur dioxide and phenolics; see details in
Table 2) of the final real wines after MLF by the
selected strains were analysed following OIV
methods (OIV, 2009) by the Catalan Institute of
Vineyard and Wine (INCAVI, Vilafranca del
Penedgs, Catalonia, Spain).

Results and discussion

In a previous study (Franques et al., 2017), a survey
of autochthonous LAB was carried out in the Catalan
wine region of Priorat, with 166 strains being
identified and typed. Of these, the 45 that were
isolated at least twice were chosen to select strains
with the greatest potential as malolactic cultures.

1. L-malic acid degradation test in wine-like
medium

The 45 strains (41 O. oeni strains and four non-
Oenococcus strains) were characterized by their L-
malic acid degradation efficiency and their
fermentation speed in WLM at 12% and 14% ethanol
(Table 3). A clear difference could be seen between
most strains of O. oeni and the few strains of other
species. Regarding the O. oeni strains, three different
behaviour groups were observed, with 75% (group
E3) being accounted for by strains that consumed
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100% of the L-malic acid (2 g/L) in both 12% and
14% (v/v) ethanol fermentations and were the
quickest to do so. Some of the most rapid strains
reached L-malic acid consumptions of 42 mg/L/h and
28 mg/L/h in the presence of 12% and 14% ethanol,
respectively. This speed is equivalent to a
consumption of 2 g/LL L-malic acid in just four days.

The four non-Oenococcus isolates were considered as
belonging to group E1 because none of them
consumed more than 80% of the L-malic acid in 14%
(v/v) ethanol, despite the fact that most of them
consumed all the L-malic acid in 12% ethanol.
L. mali and F. tropaeoli were slower than most O.
oeni strains but quicker than the L. plantarum strains
in both the 12% and 14% ethanol fermentations. The
better performance of O. oeni over other species
confirms once again its known characteristic of being
the predominant LAB of MLF in wine (Wibowo et
al., 1985; Gonzalez-Arenzana et al., 2013).

2. Stress resistance test

Using both the viable culture results and the ODygy
measurements over three weeks, the studied isolates
were classified into five different groups depending
on their degree of resistance, with R0 being the least
resistant and R4 the most resistant, as shown in
Table 1.

Twenty-one strains were unable to grow in the
preculture step (pH 4 and 6% ethanol) in GIM. These
were tagged as RO and discarded from the
experiment, as they could not grow in the least
stressful condition. These 21 strains included 14
O.oeni that had been considered part of the more
efficient E3 group in the previous experiment.
Regarding these differences, it must be borne in mind
that the efficiency assay was done in WLM, which is
not as restrictive as the GJM medium used in the
stress resistance test. Moreover, the inocula for WLM
were grown in the rich MRS medium at 2%, whereas
the inocula for GJM were grown in GIM at 0.2%.
Therefore, the initial population in WLM was higher
than in GJM. Finally, it must be taken into account
that the goal of the efficiency assay was to measure
the degradation of L-malic acid, while that of the
resistance test was to see the possible growth under
the different stress conditions.

The 12 isolates in group R1 showed good growth at
pH 4, 3.6 and 3.3 with 6% ethanol. The growth
kinetics of strain 1Pw4, representative of this R1
group, can be seen in Figure 1. In all other conditions,
there was no growth even after three weeks of
tracking. The four isolates in group R2 showed good
growth in 6% ethanol and pH 4, 3.6 and



Table 1. LAB strains used and characterized in this study.

] ] Efficiency Resistance
Strains Species . . Phylogroup © Gene odc Gene hdc
oTOUD OTOUD
1Pwl Oenococcus E3 RI B — —
oeni
1Pw3 v E2 — — — +
1Pw4 v E3 R1 B — —
1Pw5 7 El — — — +
1Pw6 7 E3 — — — —
1Pw7 7 E3 — — — +
1Pw8 v E3 — — — —
1Pw9 v E3 R4 A — —
1Pw10 7 E2 — — — +
1Pwll 7 E3 — — — +
1Pw12 7 E3 — — — +
1Pw13 7 E3 R4 A — —
1Pwl14 7 E3 — — — +
1Pw15 7 E3 — — — —
1Pw16 ¥ 7 E3 — — — —
1Pw17 ¥ 7 El R3 A — —
1Pw18 v E3 — — — +
1Pw19 7 El — — + —
1Pw20 7 E3 R1 B — —
1PwW2 ¥ 7 E3 R1 B — —
2Pw2 7 E3 R1 B — —
2Pw3 7 E3 R1 B — —
2Pw5 7 E3 — — — —
2Pw6 7 E3 — — — —
2Pw7 ¥ 7 E3 — — — —
2Pw8 7 E3 — — — —
2Pw9 7 El — — — —
2Pw10 7 E2 R2 A — —
2Pwll 7 E3 R1 B — —
2Pw12 7 E3 R1 B — —
2Pw13 7 E3 R2 B — —
2Pwl14 7 E3 R2 A — —
2Pwl15 7 E3 R4 A — —
2Pw16 7 E3 R3 A — —
2Pwl17 7 E3 R3 A — —
2Pw19 ¥ 7 E3 — — — —
2Pw20 v E3 R3 A — —
2Pw21 7 E3 R2 B — —
2Pw22 7 E3 R4 A — —
2Pw23 7 E3 R4 A — —
2Pw24 7 E3 R4 A — —
1Pl Fructobaci{lus E1l RI o o o
tropaeoli
1Pmal Lactobac.illus E1l o o o o
mali
1Ppl21 L. plantarum El — — — —
1Ppl24 7 El R1 — — —

2Efficiency groups of strains according to Table 3, with E1 being the least efficient and E3 the most efficient.
"R1 is the group with the least resistant strains and R4 the most resistant strains. Strains with an empty field belong to group RO, since they

were unable to grow with 6% ethanol at pH 4.

¢Phylogroup of O. oeni strains. T These strains were found in both the 2012 and 2013 vintages.
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Table 2. Main analytical characteristics of the wines made at the Ferrer-Bobet winery after MLF with inoculated
strains of O. oeni. WW: mix of selected strains (1Pw13, 2Pw15 and 2Pw22) from the Wildwine project. CO:

commercial O. oeni strain CH11. AF: alcoholic fermentation.

Inoculated strains WW CO wWwW CO

Wine variety Grenache Grenache Carignan Carignan

Glucose + fruct 0.25 0.45

pH 3.20 3.18
Contents at end of AF Ethanol 14.95+0.11 13.95+0.10

Acetic acid 0.31 0.44

L-malic acid 0.4 1.0
Glucose + fructose g/L 0.16 0.23 0.13 0.21
Glycerol g/L 6.80 6.80 8.66 8.43
pH 332 3.32 3.34 3.33
Tartaric acid g/L 2.41 2.49 2.51 247
Total acidity g/L 5.7+0.2 5.9+0.2 6.5+0.2 6.5+0.2
Volatile acidity g/L 0.45+0.07 0.41+0.08 0.55+0.09 0.54+0.08
L-lactic acid g/L 0.41 0.21 0.72 0.7
L-malic acid g/L <0.1 0.4 <0.1 <0.1
Citric acid g/L <0.05 <0.05 <0.05 <0.05
Alpha-amino nitrogen mg/L 13.2 55.9 47.7 48.2
Ammoniacal nitrogen mg/L 7.8 7.9 5.9 6.5
Folin-Ciocalteu Index 62.96 67.71 55.32 53.89
Anthocyanins mg/L 466 484 555 546
Tannins g/L 3.71 3.76 2.53 2.50

3.3 conditions. During the third week, the R2 isolates
showed little growth in the medium with 12%
ethanol and pH 4. The five isolates in group R3
showed active growth in 6% ethanol and pH 4, 3.6
and 3.3 conditions and in 12% ethanol and pH 4.
Little growth was also noticed during the third week
in the medium with 14% ethanol and pH 4. Finally,
there were six isolates in group R4 that showed good
growth in 6% ethanol and pH 4, 3.6 and 3.3
conditions and in 12% and 14% ethanol and pH
4 conditions. Little growth was also noticed during
the third week in the medium with 6% ethanol and
pH 3, as shown in Figure 2 for strain 2Pw22, which
is representative of this R4 group.

Of the few non-Oenococcus isolates, only the
F. tropaeoli and one of the L. plantarum strains were
classified in the R1 resistance group (Table 1).
Nevertheless, all these isolates presented very low
efficiency when degrading L-malic acid (Table 3).

3. Biogenic amine gene detection

MLF is generally considered to be a crucial factor for
BA production, and studies have shown that the main
BA generated in this phase are putrescine, histamine
and tyramine (Lonvaud-Funel, 2001; Marcobal et al.,
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2006). Consequently, the isolates were tested for the
presence of the corresponding genes.

None of the strains tested contained the tdc gene
fragment, only one (1Pw19) contained the odc gene
fragment, and eight (18%) contained the hdc gene
fragment (Table 1). The strains that contained any of
the three BA genes were discarded in the selection.
This ensured that those selected would have no risk
of producing these amines. Incidentally, all the strains
harbouring BA genes were also discarded in the stress
resistance test (see above).

4. Classification of O. oeni strains in phylogroups
using SNP genotyping

SNP genotyping was carried out on 22 O. oeni
preselected strains, in line with the above results and
discarding the least resistant strains (group R0O) and
those containing BA genes. The 22 strains are those
shown in Table 1 with their resistance group (R1, R2,
R3 or R4). They could be assigned to the A and B
subpopulations described earlier (Bilhére et al., 2009;
Borneman et al., 2012; Campbell-Sills et al., 2015; El
Khoury et al., 2017). In order to verify this, the
known PSU-1 and ATCC-BAA-1163 strains
representative of the A and B subpopulations,
respectively, were included in the SNP analysis.



Table 3. L-malic acid consumption (2 g/L) in wine-like medium (WLM) and MLF speed of the predominant strains
from different species. Strains are grouped by their efficiency according to both degradation and MLF speed. Assays
were done in duplicate with both 12% and 14% (v/v) ethanol.

Efficiency No. of

% no. strains /

% L-malic acid consumed ~ MLF speed (m

Species .
group  strains total 12% Ethanol  14% Ethanol  12% Ethanol

E3 34 75 100 100 nov-42

0. oeni E2 3 7 100 80-100 nov-14
El 4 9 50-100 50-100 avr-21

L. mali El 1 2 100 73 15

F. tropaeoli E1l 1 2 100 66 15

L. plantarum El 2 4 36-100 <50 avr-15

0. oeni strain 1Pw4

14

1.2 1

1.0

0.8

oD

0.6

0.4

0.2

0.0

Time (d)

—&— 6% pH2.8 —B5— 6% pH3 —B— 6% pH3.3 —6— 6% pH3.6

—@—6%pH4 - ©O— 12%pHA — & —14% pH4 B 16% pHA

Figure 1. Growth Kinetics of O. oeni 1Pw4, a representative strain of the R1 resistance group.

Time (d)

—&—6% pH2.8 —8—6% pH3 ——6% pH3.3 —8—6% pH3.6

—8—(%pH4 = O= 12%pH4 = A =14% pHa B~ 16% pH4

Figure 2. Growth Kinetics of O. oeni 2Pw22, a representative strain of the R4 resistance group.

A total of 39 SNPs were manually selected following
El Khoury et al. (2017) and checked for each of the
22 selected strains and for the two “control” strains
characterized previously (Bridier et al., 2010). SNP
data analysis revealed that all 24 strains possessed
SNP combinations corresponding to seven of the
predefined sequence types (ST) (El Khoury et al.,

-51-

2017). Using these data, an unrooted tree was
reconstructed by the neighbour-joining method
(Figure 3). The result confirmed the assignment of all
strains to groups A (upper branch) and B (lower
branch) (Figure 3).

As can be seen in Figure 3, 12 of the 22 strains were
assigned to phylogroup A and the other 10 to
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2Pw14
—8‘3| 2Pw15
2Pw17
|2Pw22
|2Pw23
2Pw24
A - PSU-1
77_| 1Pw3
90! '1Pw13
2Pw10
67 |1Pw17
95|2Pw16
2Pw20
ATCC-BAA-1163
1Pw1
B 1Pw2
%9 1Pw4
1Pw20
2Pw2
57 2PW3
2Pw11
2Pw12
2Pw13
2Pw21
QTI

Figure 3. Distribution of preselected O. oeni strains in phylogroups. The neighbour-joining tree was constructed using
the 39 concatenated sequences of single nucleotide polymorphism (SNP) identified by analysing 24 strains. The number
of nodes indicates the bootstrap values (%). The scale bar represents the number of substitutions per site.

group B. The strains with the best characteristics, i.e.
the six in group R4 (Table 1), are located in
phylogroup A. This agrees with the hypothesis that it
is usually the A strains that are best adapted to wine
conditions (Campbell-Sills ef al., 2015), but we must
not forget that some B strains with good malolactic
behaviour in MLF were also isolated by our group
from other wines of the same region (Bordas et al.,
2013).

5. Performance of MLF in industrial wines
inoculated with three selected strains of O. oeni

Of the initial 45 LAB strains, the best were selected
according to the results shown above, i.e. the L-malic
acid degradation test, the absence of BA genes and
the stress resistance test. The best strains (Table 1)
were the six in the resistance group R4 (1Pw9,
1Pw13, 2Pw15, 2Pw22, 2Pw23 and 2Pw24), which
were assigned to the best efficiency group E3 and
lacked the three BA genes. Bearing in mind that
some of these strains presented the same SNP profile
(see Figure 3: 1Pw9-1Pwl13 and 2Pw22-2Pw23-
2Pw24), three were selected, one from each SNP
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profile: 1Pw13, 2Pw15 and 2Pw22. All were O. oeni
and had been isolated from different cellars (Franqués
et al., 2017). As expected, the strains with the best
inoculum characteristics were from O. oeni, the
species most used for MLF induction (Kunkee, 1984;
Solieri et al., 2010).

Barrels from the Ferrer-Bobet cellar with 225 L of
Grenache and Carignan wines were inoculated with a
mixed pellet of these three selected WW strains
(1:1:1), previously grown in MRSm1 medium. As a
control, other barrels of the same wines were
inoculated with a commercial strain (CHI11) of
O. oeni.

The inoculum prepared with the three WW strains
completed MLF in one Grenache (10 d) and one
Carignan (77 d) wine. Final viable cell numbers of
LAB (in MRSm3) were 10* and 10° CFU/mL in these
Grenache and Carignan wines, respectively. In spite
of these low numbers, all colonies were verified to be
O. oeni. The imposition of two inoculated
O. oeni strains (1Pw13 and 2Pw22) in those MLFs
was confirmed by typing 30 colonies using the



VNTR technique (Table 4). Another strain (profile
“I””), which was not inoculated, was found at a low
concentration (4%) in the Carignan wine. This “I”
strain had been isolated previously in the same cellar
(Franqués et al., 2017). The 2Pw15 strain was not
recovered from any wine. The 1Pw13 strain was
recovered from every wine and was the predominant
strain in every case. The profile of the commercial
strain O. oeni CHI1 was found exclusively in the
wines inoculated with this strain.

MLF was successfully carried out in the Grenache
and Carignan wines in the cellar. This was despite the
high ethanol content, especially for the Grenache
wine (14.95%). The duration of MLF with WW
strains was shorter in the Grenache than in the
Carignan wine. Initial L-malic acid was low in the
wines (0.4 and 1 g/L in Grenache and Carignan,
respectively), but these concentrations are the ones
currently measured in Priorat wines. The better MLF
performance in the Grenache than in the Carignan
wine despite the harsher conditions (more ethanol
and less L-malic acid) must surely be due to the
different wine matrix of the two wine varieties, and in
the Carignan there is probably some growth-limiting
nutrients or other inhibiting substances (Gockowiak
and Henschke, 2003).

MLF in the Grenache wines was performed by
autochthonous strains and not by the commercial
strain. Thus, the WW strains selected and used as
inoculum were efficient. It is worth noting that the
1Pw13 strain, which was detected as the predominant
strain in both the Grenache and Carignan wines
(Table 4), performed the MLF in relatively short
times. Moreover, this strain managed MLF without
special previous adaptation, since the WW strains
were grown in rich MRS medium and then harvested
and inoculated directly into the wine. Therefore, it
can be suggested that 1Pw13 is a good candidate for a
starter culture and also for studying the molecular
mechanisms of stress response to wine adaptation.

6. Wine chemical analysis

The results of the main analytical characteristics of
the final wines after MLF using the three selected
strains are shown in Table 2. It can be seen that all the
wines had a high ethanol content, nearly 15% in the
Grenache.

The initial L-malic acid was low, especially in this
Grenache, with only 0.4 g/L. MLF was carried out
quickly by WW strains in this wine and after 10 days
the L-malic acid was exhausted. However, in the
Grenache wine inoculated with the commercial
O. oeni strain, the L-malic acid content did not

-53 -

Table 4. Proportions of O. oeni strains found at the end
of MLF carried out in the cellar and inoculated
with the three selected strains (1Pw13, 2Pw15 and
2Pw22). Proportions were obtained by typing 30
colonies of each sample by the VNTR technique. “I”
is a wild (not an inoculated) strain
that was previously found in the same cellar.

Wine Grenache Carignan
Duration of MLF (d) 10 77
0. oeni strain Proportions (%)
1Pw13 73 88
2Pw22 27 8

“r _

decrease after more than two months. Consequently,
the L-lactic acid content rose to 0.41 g/L in the
Grenache wine with WW strains and only to 0.21 g/L
in the one inoculated with the commercial strain.
MLF was slower in the Carignan wines, but after
77 days L-malic acid was exhausted in the Carignan
wine with WW strains, and two days earlier in the
one inoculated with the commercial strain. Since the
initial content of L-malic acid was 1 g/L in the
Carignan wines, the L-lactic acid content (around
0.7 g/L) was higher than in the Grenache, as
expected.

Meanwhile, citric acid was not detected (< 0.05 g/L)
in any of the final wines (Table 2). It suggests that it
was completely consumed by the same LAB strains,
probably in connection with the lower initial
concentration of L-malic acid in these wines. O. oeni
usually degrades citric acid slightly after L-malic
acid consumption (Bartowsky and Henschke, 2004),
and here the low levels of L-malic acid would have
facilitated the rapid consumption of citric acid.
Despite this, volatile acidity remained at a reasonable
level.

Other differences between the wines inoculated with
WW strains and the commercial strain include the
final residual sugar contents, which were slightly
lower in those inoculated with WW strains (0.16 and
0.13 g/L glucose+fructose in Grenache and Carignan,
respectively) than in those inoculated with the
commercial strain (0.23 and 0.21 g/L in Grenache
and Carignan, respectively). Another difference was
that the alpha-amino nitrogen content was much
lower in the Grenache wine with WW strains
(13.2 g/L) than in the one inoculated with the
commercial strain (55.9 g/L). This lower residual
sugar content and alpha-amino nitrogen content in
the wines fermented with WW strains can be seen as
another positive characteristic of these strains. It
means that they have an active metabolism under
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these harsh conditions and that these wines would
run less risk of being contaminated by other bacteria.

Conclusions

In this study, three O. oeni strains were selected from
45 autochthonous LAB strains from Priorat wines
based on their efficiency in degrading L-malic acid
and most especially their resistance to high ethanol
and low pH. The absence of biogenic amine genes in
these strains was verified, and the SNP analysis
placed them in phylogroup A, the same group in
which other good wine-adapted strains have been
found. After being inoculated into industrial wines,
one of the strains showed good performance when
carrying out the MLF. The characteristics of these
wines suggest that this strain would be a good
candidate for starter culture.

Acknowledgements

The authors would like to thank the Wildwine EU
project for funding FP7-SME-2012-315065,
including the Council of the DOQ Priorat and the
Ferrer-Bobet winery. J. Franqués is grateful for the
predoctoral fellowship 2012BPURV-28 from the
Universitat Rovira i Virgili, and the mobility grant
2013CTP00024 from the Generalitat of Catalonia.
We also thank Olivier Claisse and Hugo Campbell-
Sills from the Institut des Sciences de la Vigne et du
Vin (Bordeaux, France) and Sergi Ferrer and Lucia
Polo from the Universitat de Valéncia (Valencia,
Spain) for their help in this study.

Conflict of interest: The authors declare no conflict
of interest.

References

Bartowsky E.J., 2005. Oenococcus oeni and malolactic
fermentation — moving into the molecular arena. Aust
J Grape Wine Res 11: 174-187. doi:10.1111/j.1755-
0238.2005.tb00286.x

Bartowsky E.J., Henschke P.A., 2004. The “buttery”
attribute of wine-diacetyl-desirability, spoilage and
beyond. Int J Food Microbiol 96: 235-252.
doi:10.1016/j.ijfoodmicro.2004.05.013

Bartowsky E.J., Costello P.J., Chambers P.J., 2015.
Emerging trends in the application of malolactic
fermentation. Aust J Grape Wine Res 21: 663—669.
doi:10.1111/ajgw.12185

Bilhére E., Lucas P.M., Claisse O. and Aline Lonvaud-
Funel, 2009. Multilocus sequence typing of
Oenococcus oeni: detection of two subpopulations
shaped by intergenic recombination. Appl Environ
Microbiol 75: 1291-1300. doi:10.1128/AEM.02563-
08

OENO One, 2018,52, 1,45-56
©Université de Bordeaux (Bordeaux, France)

-54 -

Bisson L.F., Waterhouse A.L., Ebeler S.E., M. Andrew
Walker, 2002. The present and future of the
international wine industry. Nature 418: 696—699.
doi:10.1038/nature01018

Bordas M., Araque, 1., Alegret J.O. EIl Khoury M., Lucas
P., Rozeés N., Reguant C. and Bordons A. 2013.
Isolation, selection, and characterization of highly
ethanol-tolerant strains of Oenococcus oeni from
south Catalonia. Int Microbiol 16: 113-123.
doi:10.2436/20.1501.01.186

Borneman A.R., McCarthy J.M., Chambers P.J. and
Bartowsky E.J., 2012. Comparative analysis of the
Oenococcus oeni pan genome reveals genetic
diversity in industrially-relevant pathways. BMC
Genomics 13: 373. doi:10.1186/1471-2164-13-373

Bridier J., Claisse O., Coton M., COton E. and Lonvaud-
Funel A., 2010. Evidence of distinct populations and
specific subpopulations within the species

Oenococcus oeni. Appl Environ Microbiol 76:
7754-7764. doi:10.1128/AEM.01544-10

Campbell-Sills H., El Khoury M., Favier M., Romano A.,
Biasioli F., Spano G., Sherman D.J., Bouchez O.,
Coton E., Coton M., Okada S., Tanaka N, Dols-
Lafargue M. and Lucas P., 2015. Phylogenomic
analysis of Oenococcus oeni reveals specific
domestication of strains to cider and wines. Genome
Biol Evol 7: 1506-1518. doi:10.1093/gbe/evv084

Capozzi V., Russo P., Beneduce L., Weidmann S.,
Grieco F., Guzzo J. and Spano G., 2010.
Technological properties of Oenococcus oeni strains
isolated from typical southern Italian wines. Lett Appl
Microbiol 50: 327-334. doi:10.1111/7.1472-
765X.2010.02795.x

Capozzi V., Russo P., Lamontanara A., Orru L.,
Cattivelli L. and Spano G., 2014. Genome sequences
of five Oenococcus oeni strains isolated from Nero di
Troia wine from the same terroir in Apulia, southern
Italy. Genome Announc 2: ¢01077-14. doi:10.1128/
genomeA.01077-14

Cappello M.S., Zapparoli G., Stefani D. and Logrieco A.,
2010. Molecular and biochemical diversity of
Oenococcus oeni strains isolated during spontaneous
malolactic fermentation of Malvasia Nera wine. Syst
Appl Microbiol 33: 461-467. doi:10.1016/j.syapm.
2010.09.003

Cappello M.S., Zapparoli G., Logrieco A. and
Bartowsky E., 2016. Linking wine lactic acid
bacteria diversity with wine aroma and flavour
(Review). Int J Food Microbiol 243: 16-27.
doi:10.1016/j.ijfoodmicro. 2016.11.025

Capucho L., San Romao M.V., 1994. Effect of ethanol and
fatty acids on malolactic activity of Leuconostoc
oenos. Appl Microbiol Biotechnol 42: 391-395.
doi:10.1007/BF00902747

Carrete R., Vidal M.T., Bordons A. and Constanti Magda,
2002. Inhibitory effect of sulfur dioxide and other
stress compounds in wine on the ATPase activity of



Oenococcus oeni. FEMS Microbiol Lett 211:
155-159. doi:10.1111/5.1574-6968.2002.tb11218.x

Claisse O. and Lonvaud-Funel A., 2012. Development of a
multilocus variable number of tandem repeat typing
method for Oenococcus oeni. Food Microbiol 30:
340-347. doi:10.1016/j.fm.2012.01.001

Costantini A., Cersosimo M., Del Prete V. and Garcia-
Moruno E., 2006. Production of biogenic amines by
lactic acid bacteria: screening by PCR, thin-layer
chromatography, and high performance liquid
chromatography of strains isolated from wine and
must. J Food Prot 69: 391-396. doi:10.4315/0362-
028X-69.2.391

Coton E. and Coton M., 2005. Multiplex PCR for colony
direct detection of Gram-positive histamine- and
tyramine-producing bacteria. J Microbiol Meth 63:
296-304. doi:10.1016/j.mimet.2005.04.001

Coucheney F., Desroche N., Bou M., Tourdot-
Maréchal R., Dulau L. and Guzzo J., 2005. A new
approach for selection of Oenococcus oeni strains in
order to produce malolactic starters. Int J Food
Microbiol 105: 463—470. doi:10.1016/j.ijfoodmicro.
2005. 04.023

Davis C.R., Wibowo D., Fleet G.H. and Lee Terry H.,
1988. Properties of wine lactic acid bacteria: their
potential enological significance. Am J Enol Vitic 39:
137-142. http://www.ajevonline.org/content/
39/2/137 short

de Herralde F., Savé R., Nadal M., Pla E. and Lopez-
Bustins J.A., 2012. Global change influence on wine
quality in Priorat and Montsant (NE Spain). Acta
Hortic 931: 39-46. doi:10.17660/ActaHortic.
2012.931.3

de Man J.C., Rogosa M., Sharpe M.E., 1960. A medium
for the cultivation of lactobacilli. J Appl Bacteriol 23:
130-135. doi:10.1111/5.1365-2672.1960.tb00188.x

El Khoury M., Campbell-Sills H., Salin F., Guichoux E.,
Claisse O. and Lucas P., 2017. Biogeography of
Oenococcus oeni reveals distinctive but non-specific
populations in wine-producing regions. Appl Environ
Microbiol 83: €02322-16. doi:10.1128/AEM.02322-
16

Franques J., Araque 1., Palahi E., Portillo M., Reguant C.
and Bordons A., 2017. Presence of Oenococcus oeni
and other lactic acid bacteria in grapes and wines
from Priorat (Catalonia, Spain). LWT Food Sci
Technol 81: 326-334. doi:10.1016/j.1wt.2017.03.054

Gilbert J.A., van der Lelie D. and Zarraonaindia 1., 2014.
Microbial terroir for wine grapes. Proc Natl Acad Sci
USA 111: 5-6. doi:10.1073/pnas. 1320471110

Gockowiak H. and Henschke P.A., 2003. Interaction of
pH, ethanol concentration and wine matrix on
induction of malolactic fermentation with
commercial “direct inoculation” starter cultures. Aust
J Grape Wine Res 9: 200-209. doi:10.1111/5.1755-
0238.2003.tb00271.x

-55-

Gonzalez-Arenzana L., Santamaria P. and Lopez-Alfaro .,
2013. Indigenous lactic acid bacteria communities in
alcoholic and malolactic fermentations of
Tempranillo wines elaborated in ten wineries of La
Rioja (Spain). Food Res Int 50: 438-445.
doi:10.1016/j.foodres.2012.11.008

Gonzalez-Arenzana L., Lopez R., Portu J., Santamaria P.,
Garde-Cerdan T and Lopez-Alfaro I., 2014.
Molecular analysis of Oenococcus oeni and the
relationships among and between commercial and
autochthonous strains. J Biosci Bioeng 118:
272-276. doi:10.1016/j.jbiosc.2014.02.013

Henick-Kling T., 1993. Malolactic fermentation. In: Fleet
GH (ed.) Wine microbiology and biotechnology.
Harwood Academic, Chur, Switzerland, pp 289-326.

Jones G.V., White M.A., Cooper O.R. and Storchmann K.,
2005. Climate change and global wine quality. Clim
Change 73: 319-334. doi:10.1007/310584-005-4704-
2

Kunkee R.E., 1984. Selection and modification of yeasts
and lactic acid bacteria for wine fermentation. Food
Microbiol 1: 315-332. doi:10.1016/0740-0020(84)
90065-0

Lamontanara A., Orru L., Cattivelli L., Russo P., Spano G.
and Capozzi V., 2014. Genome sequence of
Oenococcus oeni OM27, the first fully assembled
genome of a strain isolated from an Italian wine.
Genome Announc 2: ¢00658—14. doi:10.1128/
genomeA.00658-14

Landete J.M., Ferrer S. and Pardo 1., 2007a. Biogenic
amine production by lactic acid bacteria, acetic
bacteria and yeast isolated from wine. Food Control
18: 1569-1574. doi:10.1016/j.foodcont.2006.12.008

Landete J.M., Pardo I. and Ferrer S., 2007b. Tyramine
and phenylethylamine production among lactic acid
bacteria isolated from wine. Int J Food Microbiol
115: 364-368. doi:10.1016/j.ijfoodmicro.2006.
10.051

Liu S.Q., 2002. Malolactic fermentation in wine — beyond
deacidification. J Appl Microbiol 92: 589-601.
doi:10.1046/1.1365-2672.2002.01589.x

Lonvaud-Funel A., 1999. Lactic acid bacteria in the
quality improvement and depreciation of wine.
Antonie van Leeuwenhoek 76: 317-331. doi:10.1023/
A:1002088931106

Lonvaud-Funel A., 2001. Biogenic amines in wines: role
of lactic acid bacteria. FEMS Microbiol Lett 199:
9-13. doi:10.1111/j.1574-6968.2001.tb10643.x

Lopez L., Tenorio C., Zarazaga M., Dizy M., Torres C. and
Ruiz- Larrea F., 2007. Evidence of mixed wild
populations of Oenococcus oeni strains during wine
spontaneous malolactic fermentations. Eur Food Res
Technol 226: 215-223. doi:10.1007/s00217-006-
0529-0

Marcobal A., De las Rivas B., Moreno-Arribas V. and
Mufioz R., 2005. Multiplex PCR method for the

OENO One,2018,52, 1,45-56
©Université de Bordeaux (Bordeaux, France)



Judit Franques et al.

simultaneous detection of histamine-, tyramine-, and
putrescine-producing lactic acid bacteria in foods. J
Food Prot 68: 874-878. doi:10.4315/0362-028X-
68.4.874

Marcobal A., Martin-Alvarez P.J., Polo M.C., Mufioz R
and Moreno-Arribas M.V., 2006. Formation of
biogenic amines throughout the industrial
manufacture of red wine. J Food Prot 69: 397-404.
doi:10.4315/0362-028X-69.2.397

Mas A., Padilla B., Esteve-Zarzoso B. and Beltran G.,
Beltran G., 2015. Utilizacion de inodculos mixtos de
levaduras autdctonas como herramienta para
reproducir la huella microbiolégica de la zona.
ACEnologia 149: 8/7/2015. http://www.acenologia.
com/cienciaytecnologia/inoculos_mixtos_levaduras
autoctonas_cienc0715.htm

Mas A., Padilla B., Esteve-Zarzoso B., Beltran G.,
Reguant C. and Bordons A., 2016. Taking advantage
of natural biodiversity for wine making: the
Wildwine project. Agric Agric Sci Procedia 8: 4-9.
doi:10.1016/j.aaspro.2016.02.002

Mira de Orduna R., 2010. Climate change associated
effects on grape and wine quality and production.
Food Res Int 43: 1844—1855. doi:10.1016/j.foodres.
2010.05.001

Nielsen J.C., Prahl C. and Lonvaud-Funel A., 1996.
Malolactic fermentation in wine by direct inoculation
with freeze-dried Leuconostoc oenos cultures. Am J
Enol Vitic 47: 42-48. http://www.ajevonline.org/
content/47/1/42.short

OIV (International Organisation of Vine and Wine), 2009.
Compendium of international methods of analysis of
wines and musts. OIV-MA-AS315-05B. Paris,
France. http://www.oiv.int/en/technical-standards-
and-documents/methods-of-analysis/compendium-
of-international-methods-of-analysis-of-wines-and-
musts-2-vol

Padilla B., Zulian L., Ferreres A., Pastor R., Esteve-
Zarzoso B., Beltran G. and Mas A., 2017. Sequential
inoculation of native non-Saccharomyces and
Saccharomyces cerevisiae strains for wine making.
Front Microbiol 8: 1293. doi:10.3389/fmicb.2017.
01293

Reguant C. and Bordons A., 2003. Typification of
Oenococcus oeni strains by multiplex RAPD-PCR
and study of population dynamics during malolactic
fermentation. J Appl Microbiol 95: 344-353.
doi:10.1046/1.1365-2672.2003.01985.x

OENO One, 2018,52, 1,45-56
©Université de Bordeaux (Bordeaux, France)

-56 -

Ruiz P., Izquierdo P.M., Sesefia S., Llanos Palop M., 2010.
Selection of autochthonous Oenococcus oeni strains
according to their oenological properties and
vinification results. Int J Food Microbiol 137:
230-235. doi:10.1016/j.ijfoodmicro.2009.11.027

Ruiz-Barba J.L., Maldonado A. and Jiménez-Diaz R.,
2005. Small-scale total DNA extraction from bacteria
and yeast for PCR applications. Anal Biochem 347:
333-335. doi:10.1016/1.ab.2005.09.028

Silla-Santos M.H., 1996. Biogenic amines: their
importance in foods. Int J Food Microbiol 29:
213-231. doi:10.1016/0168-1605(95)00032-1

Solieri L., Genova F., De Paola M. and Giudici P., 2010.
Characterization and technological properties of
Oenococcus oeni strains from wine spontaneous
malolactic fermentations: a framework for selection
of new starter cultures. J App! Microbiol 108:
285-298. doi:10.1111/j.1365-2672.2009.04428 x

Spano G. and Massa S., 2006. Environmental stress
response in wine lactic acid bacteria: beyond Bacillus
subtilis. Crit Rev Microbiol 32: 77-86. doi:10.1080/
10408410600709800

Tamura K., Stecher G., Peterson D., Filipski A. And
Kumar S., 2013. MEGAG6: molecular evolutionary
genetics analysis version 6.0. Mol Biol Evol 30:
2725-2729. doi:10.1093/molbev/mst197.

Webb L.B., Whetton P.H. and Barlow E.W.R., 2011.
Observed trends in winegrape maturity in Australia.
Glob Chang Biol 17:2707-2719. doi:10.1111/j.1365-
2486.2011.02434.x

Wibowo D., Eschenbruch R., Davis C.R., Fleet G. H. and
Lee T.H., 1985. Occurrence and growth of lactic
acid bacteria in wine: a review. Am J Enol Vitic 36:
302-312. http://www.ajevonline.org/content/36/4/
302

Zapparoli G., Tosi E., Azzolini M., Vagnoli P. and
Krieger S., 2009. Bacterial inoculation strategies for
the achievement of malolactic fermentation in high-
alcohol wines. S Afr J Enol Vitic 30: 49-55.
http:/jsaa.ac.za/index.php/sajev/article/viewFile/1424
/629

Zarraonaindia I., Owens S.M., Weisenhorn P., West K.,
Hampton-Marcell J., Lax S., A Bokulich N.,
Mills D., Martin G., Taghavi S., van der Lelie D. and
Gilbert Jack,, 2015. The soil microbiome influences
grapevine-associated microbiota. mBio 6:
€02527-14. doi:10.1128/mBi0.02527-14



