
Academic Editor: Theophanis V.

Karambas

Received: 5 November 2024

Revised: 13 December 2024

Accepted: 29 December 2024

Published: 31 December 2024

Citation: Arias, A.; Almar, R.; Regard,

V.; Bergsma, E.W.J.; Castelle, B.; Garlan,

T. Assessment of Beach Slope and

Sediment Grain Size Anywhere in the

World: Review of Existing Formulae,

Integration of Tidal Influence, and

Perspectives from Satellite

Observations. J. Mar. Sci. Eng. 2025,

13, 58. https://doi.org/10.3390/

jmse13010058

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Assessment of Beach Slope and Sediment Grain Size Anywhere
in the World: Review of Existing Formulae, Integration of Tidal
Influence, and Perspectives from Satellite Observations
Amélie Arias 1 , Rafael Almar 1,* , Vincent Regard 2 , Erwin W. J. Bergsma 3 , Bruno Castelle 4

and Thierry Garlan 5

1 Laboratoire D’études en Géophysique et Océanographie Spatiales (LEGOS, Université de
Toulouse/CNES/CNRS/IRD), 31400 Toulouse, France; amelie.arias@univ-tlse3.fr

2 Géosciences Environnement Toulouse (GET, CNRS/Université de Toulouse/IRD/CNES), 31400 Toulouse,
France; vincent.regard@get.omp.eu

3 French Space Agency (CNES), Earth Observation Lab, 31400 Toulouse, France; erwin.bergsma@cnes.fr
4 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC, University of

Bordeaux/CNRS), 33615 Pessac, France; bruno.castelle@u-bordeaux.fr
5 Service Hydrographique et Océanographique de la Marine (SHOM), 29200 Brest, France;

thierry29.garlan@gmail.com
* Correspondence: rafael.almar@ird.fr

Abstract: Grain size and beach slope are critical factors in coastal science and management.
However, it is difficult to have information on their distribution everywhere in the world,
as most of the coast has never been documented. For many applications, it is essential
to have at least a rough estimate when local field measurements are not available. Here,
we review the existing prediction formulas relating beach slope to grain size and wave
conditions, using publicly available global datasets and comparing them with a benchmark
dataset of ground measurements from different authors worldwide. Uncertainties arise
from the input parameters, in particular coastal waves, a key parameter of all formulae,
but also from empirical coefficients that are undocumented or inaccessible with the global
dataset. Despite the recognized importance of tides, they are often overlooked in formulae
relating beach slope to sediment grain size. We therefore present an improved formulation
that incorporates tidal effects. Although satellites offer a promising alternative to predictive
formulae for direct estimation of beach slope and grain size, the current accuracy and
methodologies of satellite data are insufficient for global applications. Continued advances
in satellite missions, including higher resolution and revisit frequency, as well as new
sensors, are essential to improve predictive capabilities and facilitate wider implementation.

Keywords: beach slope; sediment grain size; satellite optical imagery; waves; tide

1. Introduction
Coastal areas are dynamic environments that undergo continuous changes due to

natural processes and human activities [1]. Understanding and predicting beach evolution
is essential for effective coastal management, risk assessment, and sustainable development.
Among the various parameters of beach morphology, beach slope is particularly critical [2].
It significantly influences the type and intensity of wave breaking (from spilling to surging
to plunging [3–5]), which is crucial for beach safety and lifeguarding [6]. Beach slope
also affects the reflection of gravity and infragravity waves at the shore [7] and is a key
parameter in many empirical and semi-empirical formulas used, for example, to estimate
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wave run-up [8] and total water level [9,10] or longshore drift [11]. These formulas typically
assume that beach slope is a fixed, time-invariant parameter. However, beach slope is
not homogeneous along the beach profile and continuously evolves in response to storm,
seasonal, and interannual variations in incident wave conditions. This temporal and spatial
variability of beach slope remains poorly understood.

The median particle diameter d50 is a key parameter (Figure 1) because it influences the
ability of particles to be transported by hydrodynamic agents [12–14]. Several morphody-
namic or one-line shoreline models, such as the Coastal Evolution Model (CEM) proposed
by [15] and the XBeach model, as well as the ShorelineS model created by [16,17], rely on
d50. In these models, coastal changes are induced by the longshore transport produced
by waves, which can be calculated using various formulations [11,18–20]. Dimensional
analysis has shown that the longshore transport rate is a function of a combination of wave
steepness, beach slope, wave angle, and relative grain size in the breaking zone [11]. Larger
particles require more energy to be transported and are typically found in high-energy
environments such as fast-flowing rivers or coastal areas [18]. In contrast, finer particles
are transported by weaker currents or winds, leading to their accumulation in low-energy
environments such as lakes or deep-sea basins.
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Figure 1. Illustration of the wide variety of sediment grain size along world beaches (Photos from E.
Anthony at Grand Popo, Benin, left, and A. Arias at Oleron island, France, right).

Linking sediment grain size and beach slope is critical because it provides insight into
sedimentary processes and coastal dynamics. As demonstrated by [12], the beach-face slope
is correlated with the sediment median diameter. Over the years, researchers have explored
this relationship, resulting in empirical formulas that relate beach-face slope to grain
size [21–24]. However, many of these formulas exclude tidal influences, which are critical
in shaping beach morphology (e.g., [25]). Tidal effects redistribute wave energy over a larger
area, resulting in gentler slopes and the formation of intertidal features [26]. Conversely,
low tidal ranges concentrate wave energy, creating steeper slopes and localized erosion. To
better understand the links between d50 and beach slope, large datasets spanning the entire
dissipative-reflective beach state continuum are required. Collecting such datasets through
in situ measurements is challenging. However, satellite remote sensing offers a promising
alternative for large-scale data acquisition and analysis.

Recent advances in satellite technology have enabled the integration of satellite data
into coastal evolution models, providing regional to global datasets on waterline position,
coastal topobathymetry [27], and more [28–31]. Satellites offer long-term information
and access to remote or poorly studied areas. However, while satellite images have been
used to monitor changes in coastal morphology and sediment distribution [32,33], their
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application to deriving beach slope and median grain size has been limited. Notable
contributions in this area include the work of [34] on satellite-derived beach slope and [35]
on satellite-derived beach grain size.

In this paper we aim to pragmatically test the existing options for inferring beach
slope and grain size, potentially anywhere in the world, as a first pass. We first review the
empirical formulae relating beach slope to grain size and test their application against in
situ measurements using publicly available global reanalysis datasets. Next, we propose a
modification of existing formulations to include tidal range. We then evaluate the accuracy
of direct satellite-derived slope estimates and use these modified formulas to infer beach
grain size. Finally, we discuss the uncertainties of the formulas, our approach using global
datasets and satellite techniques, and identify opportunities for future improvement.

2. Data and Methods
We use ground data from existing literature and globally available wave information

(Figure 2—Appendix A) to compare the performance of commonly used empirical formulas.
The selected sites focus exclusively on open coast beaches, where ERA5 data reliably
measures inshore wave conditions. This approach avoids the inaccuracies that could arise
in sheltered and/or embayed coasts, where ERA5 may not represent near-breaking wave
conditions. Across our 20 study sites, grain size varies widely, with fine particles around
0.18 mm (5th percentile), typical grains around 0.35 mm (median) and coarse particles up
to 1.68 mm (95th percentile). Beach slopes also show considerable variation, ranging from
gently sloping beaches at 0.02 to steeper slopes at 0.15, with an average of around 0.09.
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Figure 2. Location of the studied field sites (black circles) in (a), with the distribution of formula
parameters, hydrodynamic forcing from global numerical models, wave (b) Hs and (c) Tp, (d) tidal
range (M), and locally measured (e) grain size and (f) beach slope.

The significant wave height (Hs) and peak period (Tp) for each point considered
in this study are extracted from the ECMWF ERA5 reanalysis. These parameters are
extracted on a grid of 0.5◦ × 0.5◦, with a daily temporal resolution, and averaged over
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the 2000–2019 period. Hs and Tp range from 0.5, 1.4, and 2.0 m, and 5.8, 10.8, and 13 s,
for the 5th, median, and 95th percentiles. Noteworthy, Hb, required in the formulas, is
not available worldwide and would require accurate local wave modelling or in situ
observation. Astronomical tides are extracted from the global tide model FES (Finite
Element Solution, [36]) at the field sites. The mean tidal range (M, computed as 4 times the
standard deviation) is computed from hourly resolution over the 1993–2023 period. Tide
ranges from 0.2, 1.03, and up to 2.2 for the 5th, median, and 95th percentiles.

Beach slope is estimated on the basis of the tidally varying waterline position following
the principle proposed by [33]. The beach slope (slopesat) is calculated as the average of the
change in elevation over the displacement in the cross-shore position (Equation (1)).

slopesat =
∆Z
∆X

(1)

where ∆Z represents the change in sea level anomaly, and ∆X is the cross-shore displace-
ment of the shoreline position. In this study, two types of satellite-derived datasets were
utilized, as described in the next two paragraphs.

First, we utilize a global satellite dataset defined by [37], which includes optical-based
waterlines and sea level data from altimetry, covering the period from 1993 to 2023. The
dataset consists of 14,140 sampling points at 0.27◦ intervals (with a 500 m alongshore
buffer) along the global coastline, which were filtered to retain 3592 points corresponding
to sandy beaches, as identified by [38]. For further analysis, we extracted the closest points
to the field sites. Waterlines, representing the interface between land and sea surfaces,
were determined using the Normalized Difference Water Index (NDWI, [39], derived from
Landsat 30 m data in Google Earth Engine (GEE) on a monthly basis. Monthly water levels
were approximated from regional sea levels obtained through satellite altimetry time series
using the SSALTO/DUACS multi-mission data [40]. Dynamical Atmospheric Corrections
(DAC) were acquired from the hourly outputs of the MOG2D-G model [36], which were
forced by surface winds and atmospheric pressure from the ERA-5 reanalysis [41].

Second, satellite data, specifically refined Sentinel-2 imagery and instantaneous 10 m
SCOWI indexes, were utilized to create a site-specific dataset for more precise local analysis.
We adopted methods from the toolkit of [34] to focus on extracting locally specific waterlines
using Google Earth Engine (GEE) and processed through the Shoreliner Pipeline [42].
At this finer scale, water levels were approximated using astronomical tides derived
from FES2022 [36]. This approach aims to reduce potential inaccuracies associated with
relying on a broad, global dataset that may not accurately reflect conditions at the actual
field site. Additionally, we applied the principle from [35] to explore whether Sentinel-2-
derived shoreline position variability could be used to directly estimate grain size (d50_sat,
Equation (2)).

d50_sat = a∆X (2)

3. Results
3.1. Review of Empirical Formulas Linking Beach Slope and Grain Size

Here, we review some existing published empirical formulas, listed in Table 1. These
formulas are derived from data, in situ and laboratory (see Table 2), which do not cover
the full spectrum of possible values for each parameter. This is why we also describe the
type of data and range used to define each formula. Full beach profile formulas Dean’s
formulas (e.g., [41,43]) are not considered here and included in Table 1 because they focus
primarily on equilibrium beach profiles characterized by a concave shape, rather than
providing a direct empirical estimate of linear beach slopes. The complexity of comparing
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a non-linear, concave profile to these linear models would require detailed justification and
an alternative analytical framework, which is beyond the scope of this specific review.

Table 1. Synthesis of the different empirical formulae explored in this work.

Name in This Work and Reference Empirical Formula for Beach Slope Estimation Parameters

Sunamura84 [22] tan β = 0.12
[

d50gTp2

Hb

]0.5

Hb Breaking wave height
g Acceleration due to gravity

d50 Median grain size
Tp Wave period

Reis_Gama10 [23] tan β = 0.9 ∗ H−10/3
b ∗ d4/3

50
Hb Breaking wave height

d50 Median grain size

Kim14 [44] tan β = 0.332 ∗ Tp−0.416 ∗ d0.122
50

d50 Median grain size
Tp Wave period

Bujan19 [45] tan β = −0.154(d50 − 0.125)−0.145 + 0.268 d50 Median grain size

Table 2. Range of values and type of source (in situ or laboratory) on which formulas have been
established and/or validated. These formulas do not account for tide which is not documented here.

Formula Range of In Situ Variable Values Range of Laboratory Variable Values

Sunamura84 [22]

Hb [0.8–1.6 m]
d50 [0.2–1.0 mm]

Tp [6–12 s]
tan β [0.01–0.3]

d50 [0.2 and 1 mm]
tan β[0.1 to 0.7]

Reis_Gama10 [23]
Hb [0.3–3.2 m]

d50 [0.18–0.65 mm]
S = 0.9 (sphericity)

Not applied

Kim14 [44] Not applied d50 [0.2–0.7 mm]
Tp [1.5–9 s]

Bujan19 [45]

d50 [0.07–770 mm];
10–90 percentile = [0.2–25 mm]

tan β [0.01–0.8];
10–90 percentile = [0.025–0.18 mm]

Not applied

In 1975, [22] introduced a “static” formula based on earlier studies by Kemp and
Plinston (1968). It assumes that the beach slope stabilizes instantaneously under wave
action and is a function of the dimensionless parameter Hb/g0.5d0.5

50 Tp, where Hb is wave height
at breaker, g is gravitational acceleration, d50 the median grain size, and T is wave period.
This formula has been refined using laboratory and field data, yielding slopes ranging
from 0.1 to 0.7 (laboratory) and 0.01 to 0.3 (field), with grain sizes between 0.2 and 1 mm.
Although the formula captured the relationship between beach parameters and slope,
significant data scatter was found, probably due to the static slope assumption. In 1984,
Ref. [22] (referred to after as Sunamura84) tested the dependence of slope on Hb/g0.5d0.5

50 Tp

using laboratory and field data and again found large scatter. This overdispersion was
attributed to factors such as variations in wave data, errors in slope measurement, and
difficulties in obtaining accurate wave heights at breaking points.

Ref. [23] developed a model, hereafter referred to as Reis_Gama10, to describe the
movement of waves as they advance and retreat along the beach face (swash), incorpo-
rating both surface flow and flow through the porous sand bed, which has an average
porosity of 0.35. The permeability of this sand bed, which is influenced by the size and
sphericity of the sand grains (0.9 for beach sand), is determined using the Kozeny–Carmán
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equation. Ref. [23] applied the Constructal Law, as introduced by [45], and found that the
beach face slope varies with H3/4 and d50

4/3. Ultimately, they derived the relationship:
tan β = E ∗ H−10/3

s ∗ d4/3
50 where E is a scaling coefficient determined by field conditions,

including grain sphericity, porosity, and fluid viscosity [44].
Ref. [44] reviewed various beach slope equations to identify weaknesses and refine

them for more robust predictions. They developed a general equation, Kim14, applicable
to all coastal types, assuming no tide, equilibrium beach slope, normal wave direction,
uniform grain size, and flat onshore berms. Using laboratory data, they derived an em-
pirical formula relating beach slope to wave parameters. Ref. [44] concluded that while
wave height affects the width of the bed profile, wave period has a significant effect
on bed morphology. They proposed an empirical formula for equilibrium beach slope:
tan β = cTpmdn

50, where c, m, and n are empirical coefficients. This formula was calibrated
using existing laboratory data and compared with the formulas of Sunamura1984 and
Reis_Gama10. However, it was calibrated and tested on a limited range of wave periods
(1.5–9 s) and mean grain sizes (0.2–0.7 mm).

Ref. [45] sought a formula that would work for a wider range of sediment sizes. To
do this, they compiled 2144 measurements of beach face slope with grain size records
from the literature and assumed that this relationship could be described by a power law
function. This formula, Bujan19 (Table 1), is satisfactory for sediment sizes smaller than
cobble (d50 < 64 mm). This value represents a threshold above which another formula must
be found, especially for ridges.

3.2. Test of Formulas: Key Differences and Application

In terms of range of applicability for Bujan19, there are two domains, whether finer
or coarser than coarse sands (0.5–1 mm). Sunamura84 is valid for coarse sediment,
Reis_Gama10 works for fine sediment, while Bujan19 should work for all grain sizes
up to cobbles. Kim14 has too small a range to be useful for us. In the following we decide
to only work on fine to intermediate sediment typical for most of the world’s beaches (see
observation distribution on Figure 3), as the physics for coarse sediment may be different.
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To assess whether these formulas accurately describe natural systems across a
range of grain sizes, we use ground data and globally available wave information
(Figure 1—Appendix A) to perform a comparison of the performance. The results in re-
lation to our validation dataset are shown in Figure 3. Among the empirical formulas
considered, Bujan19, Sunamura84, and Kim14 are in decreasing order of performance
in predicting grain size with our field data across the entire sediment size spectrum. In
contrast, the Reis_Gama10 formula is the least performing equation, mainly out of range
and therefore not shown here. Interestingly, Bujan19 seems to perform better while it is the
one that depends on the lesser parameters, in particular not the waves.

The performance of Bujan19 is based uniquely on grain size, and adding more input
variable does not necessarily mean a better score (Table 3). To assess the importance of
the parameters to be accounted for to estimate beach slope, we conducted a multilinear
regression and computed the fraction explained by each parameter. In our ground-based
dataset, where the spatio-temporal variability of coastal variables is not fully captured due
to single-point or one-time measurements or, in contrast, time-averaged values, combining
grain size, wave parameters (Hs, Tp), and median tidal range (M) explains 52% (R2) of
the total variance in beach slope. Waves (Hs and Tp together: 48%) result as one of the
predominant parameters influencing the slope, followed by grain size (30%) and tide (21%)
(Figure 4). Thus, this suggests that it is somehow a good idea to consider unique grain
size but indicate that waves and tides both have an important role on beach slope. Not
including tide would bring dispersion, as already suggested by previous studies (e.g., [2]).
In this sense, Sunamura84 seems to be a good basis to implement the tide effect.

Table 3. Score of the considered formulas when applied to our natural beaches dataset.

Formula RMSE Correlation

Sunamura84 [22] 0.03 0.48
Reis_Gama10 [23] 0.09 <0.2

Kim14 [44] 0.03 0.71
Bujan19 [45] 0.02 0.69
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3.3. An Adaptation Needed to Include Tidal Influence

Our data count with: 13% of sites where Hs is large relative to the tidal range
M (Hs > 2xM) and can be defined as wave-dominated; 39% of sites where the tidal range
is large (2x) relative to Hs and can be defined as tide-dominated; and 47% of sites present
Hs and tidal range of comparable magnitude (2Hs > M > Hs/2) and can be considered as
mixed. In order to address the influence of tide on the links between grain size and beach
slope, which was disregarded in previous studies, we extracted the median astronomical
tidal range (M) from the global tide model FES (Finite Element Solution, Carrere et al.,
2014) at all field sites (see Data Section). To integrate tidal range into beach slope models,
semi-empirical relationships can be used, such as the integration of the tidal range (M) into
the formulation (Equation (3)).

Hs_tide = Hs ∗
(

1 +
M
Hs

)
= Hs(1 + RTR) (3)

where RTR is the Relative Tidal Range introduced by Masselink and Short (1993)—
Equation (4):

RTR = M/Hs (4)

In Equation (3), the tidally modulated Hs indicates that this hydrodynamic term
Hs_tide is unchanged and is similar to Hs when tidal range tends to zero but is artificially
increased up to reaching tidal range when Hs is small and tidal range is large. Hs_tide

can be re-injected in formulas depending on Hs, here Sunamura84, proposing a modified
formulation (Equation (5)).

tan β = 0.12
[

d50gT2

Hb(1 + RTR)

]0.5

(5)

The RMSE then reduces to 0.02, and the correlation increases to 0.66, showing the
influence of tide on reshaping the beach slope (Figure 5).
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4. The Satellite View: From Beach Slope Estimation to Beach Grain Size
4.1. Beach Slope Estimation

Using the global and site-specific local datasets we extract waterlines and sea level.
From the global monthly and coarse dataset, the calculation of beach slope (Figure 6a)
yielded a Root Mean Square Error (RMSE) of 0.03 and a correlation of 0.48 with ground-
truth data, indicating a signal-to-noise ratio of 1.5, indicating not only a possible use for a
first pass estimation but also that the measurement may still be too noisy and not reliable
for precise analyses. Interestingly, the use of site-specific estimation in this case does not
yield an improved score with a Root Mean Square Error (RMSE) of 0.06 and a correlation
of 0.21 with ground-truth data. The assumption in this approach is also that topography
changes are minimal, and shoreline position changes are driven by sea level variations,
which we acknowledge is far from reality at sandy beaches.
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4.2. Grain Size Estimation

Using the global dataset, the correlation between grain size (d50_sat) and cross-shore
displacement (∆X) was found to be 0.3, with a large dispersion (RMSE = 0.4 mm) and a
signal-to-noise ratio of 1.2, which is close to 1. These results suggest that the estimation of
grain size using shoreline mobility from satellite data is challenging. Using the site-specific
satellite-derived data gives very similar scores with a correlation coefficient of 0.27 and
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RMSE of 0.36 mm (Figure 6b). In either dataset, the weak performance could be due to
either the principle of the method itself or the high local variability of grain size, which
may not be well-captured by a regional satellite dataset. Additionally, shoreline mobility
might be influenced by factors more complex than grain size alone.

The analysis of grain size and beach slope revealed that both regional and local factors
play an important role in shaping coastal beach characteristics. Regional factors such as
wave regime, hydrodynamic conditions, sediment supply, and geological context were
found to contribute to broad patterns in grain size and slope across different coastal envi-
ronments. However, local factors such as beach orientation, urbanization, and nearshore
dynamics were shown to have a more pronounced influence on finer-scale variations. These
local processes often dominate, resulting in substantial variability in beach characteristics
over short distances. The combined influence of both scales poses a challenge to accurate
generalization of coastal characteristics, as local conditions often alter grain size and slope
beyond what regional trends would predict.

5. Discussion
5.1. Common and Original Parameters from Formulas

The main differences between the models of [22,23,44,45] lie in their approaches and
data coverage. Ref. [22] uses an empirical, static approach with dimensionless parameters
and has significant data scatter due to natural variability. The main limitation is the
significant data dispersion and approximations. Ref. [23] use a theoretical, dynamic model
that incorporates fine physical properties such as porosity. Its main limitation is the focus on
specific physical properties and conditions that are difficult to assess in the field. Ref. [44]
empirically refine existing formulas under simplified conditions, focusing on wave period
and grain diameter. However, it is calibrated for specific ranges of wave periods and
grain sizes, with assumptions that may limit applicability. In contrast, Ref. [45] develop an
empirical function from a large dataset, tailored to a wide range of sediment sizes down to
cobbles, providing broader applicability. It requires a different formula for larger sediment
sizes, especially for ridges. Tide is not explicitly considered in these formulas, as laboratory
experiments are conducted without tidal influence. At field sites, the focus is on wave
action and grain size, with tidal effects implicitly included within the natural variability
and measurement dispersion.

5.2. Uncertainties in the Formula Inputs

Here, we wanted to test the use of beach slope and grain size formulae in natural
conditions, which can differ significantly from the optimal ones when they were developed,
generally in controlled laboratory conditions. We have also used data that are publicly
available anywhere in the world, with the idea of having a first-pass estimation, as we
do not believe that these formulas and public coastal datasets are mature enough to be
used operationally.

For example, in terms of hydrodynamic drivers, wave data are critical inputs to these
formulas. However, waves are typically expressed in terms of breaker height in the beach
slope formulae, which is difficult to assess on natural beaches due to complex nearshore
transformations. These transformations depend on the local bathymetry, which is not
uniformly available around the world. As a result, the use of offshore wave data can
lead to significant inaccuracies. In addition, waves are highly variable over time, making
it difficult to effectively use time-averaged data in these models. Here, we have used
ERA5 offshore wave characteristics, which can differ significantly from the waves at the
onset of breaking, which are required in the slope formulae. Similarly, tides and sea levels
(altimetric regional sea level and atmospheric surge) are derived from satellite observations
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and model reanalysis and are subject to errors that can reach tens of centimeters from
coastal sea level [46].

The application of beach slope formulae also depends on the accurate characterization
of grain size, which varies greatly in both space and time due to natural forces and sedi-
ment heterogeneity (e.g., [47,48]). Spatial variability is observed along the beach profile,
with different zones, such as the swash zone, berm, and foreshore, experiencing different
hydrodynamic conditions resulting in different grain sizes. Temporal variability is driven
by factors, such as seasonal changes, storms, and tidal cycles, which cause shifts in sedi-
ment distribution. To accurately predict beach slope, it is critical to measure grain size at
multiple locations and depths, capturing both surface and subsurface conditions, and to
make repeated measurements over time to account for seasonal and event-driven changes.
However, this is not feasible due to the time-consuming nature of the task. Finally, the in
situ dataset used here from the literature often lacks slope and grain size time stamps and
accurate localization, which is a major uncertainty in our study.

Therefore, both grain size and hydrodynamic inputs are challenges that need to be
carefully managed to improve the accuracy of beach slope predictions.

5.3. Challenges in Satellite Estimations

In addition to previous uncertainties, current periodic revisit optical satellite missions
have an accuracy of tens of meters, which at best gives an accuracy of tens of meters on the
shoreline, particularly for flat beaches [34], even if subpixel accuracy can now be reached
(e.g., [36]).

A study by [35] showed some potential in correlating Sentinel-2-derived shoreline
variability with grain size, but much of this variability was attributed to local conditions
such as beach morphology and localized sediment inputs. In this case, regional satellite
datasets have limitations in explaining grain size variability due to the dominance of local
processes at finer scales, highlighting the difficulty of generalizing grain size patterns from
regional data alone. The satellite-derived estimation of beach slope and grain size highlights
the difficulty of capturing coastal characteristics at different spatial scales. While regional
factors such as wave energy regime, sediment supply due to geological background, and
large-scale tidal characteristics can explain broad trends in both slope and grain size, local
processes often dominate finer-scale variations in space and time [2,49]. In our study, the
regional and monthly dataset provided reliable estimates of beach slope compared to the
site-specific local approach, which is more prone to intrinsic noise and uncertainty from
stochastic processes (i.e., swash) inherent in a snapshot observation, suggesting that large-
scale and slowly evolving patterns and equilibria may be easier to capture with satellite
data, capturing general behavior and smoothing out individual discrepancies. However,
the weak correlation between grain size and shoreline mobility from both datasets suggests
that grain size is influenced by more complex local factors, such as wave transformation,
beach morphology, and sediment transport dynamics, which are not easily captured by
satellite imagery alone.

Alternatively, direct estimation of beach sediment grain size from satellites has been
introduced, based on high-resolution multispectral imagery [31,50,51], texture analysis,
and potentially machine learning. However, environmental factors must be carefully
considered, and ground truth data are required.

Beaches change over a wide range of spatio-temporal scales, from tidal cycles to
interannual changes due to changes in climate regimes and geological factors [1]. While the
magnitude of slope change at different timescales varies from site to site, it is very optimistic
to define a constant beach slope value for a beach and position on the profile, which is
widely carried out in the literature (i.e., values without a time stamp). Although it has been
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overlooked due to difficulties in measurement, grain size also varies significantly along the
profile and over time. Such fine and fast dynamics are currently out of reach with satellite
imagery, even with the regular 5–10-day (clear sky) revisits of the current mission [28,52,53].
Overall, some efforts are still needed to mature the techniques for estimating grain size and
also beach slope from satellites, but the sky is clear when considering new high-resolution
satellite missions and sensors such as radar [54] and especially SWOT [55].

6. Conclusions
The characterization of grain size and beach slope is crucial for coastal science and

management. This study aims to test the ability to derive these parameters as a first pass
anywhere in the world with publicly available datasets, from model reanalysis and satellites.

First, we have reviewed numerous published formulae linking beach slope to grain
size and wave conditions for the particular aim of deriving these parameters as a first
pass, anywhere in the world, with a publicity available dataset from model reanalysis
and satellites. Of these parameters, waves are often the least well defined due to their
variability and the challenges associated with accurate field measurement. In addition,
empirical coefficients, physical properties that influence scaling factors, and thresholds for
larger sediment sizes complicate efforts to make accurate and generalizable predictions at a
remote site without detailed documentation.

We have also shown that tides have often been excluded from beach slope predictions,
despite their significant influence. In a pragmatic way, we have addressed this gap by
proposing a formulation (Equation (5)) that incorporates the tidal influence on waves and
beach slope, using a benchmark dataset derived from in situ measurements by different
authors. This formulation builds on the approach of [22], modifying the hydrodynamic
forcing by modulating the significant wave height to account for tidal effects.

By providing data at any location in the world, without dependence on field mea-
surements, satellites offer an attractive alternative for direct estimation compared to these
formulae, which depends on uncertain inputs and simplified physics. However, our results
show that the current accuracy of satellite data and methods is not yet adequate for global
application. Further technical developments and new missions with improved revisit rates
and resolution are needed to improve this capability.
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Appendix A

Authors Location Beach Slope
(tan β)

Grain Size
(mm) Hs (m) Tp (s) Tidal Range (m)

[56] Australia 0.10 0.40 1.38 8.91 1.05

[57] Spain 0.16 0.85 0.94 5.17 0.14

[58] USA 0.13 1.66 1.87 11.94 1.24
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Authors Location Beach Slope
(tan β)

Grain Size
(mm) Hs (m) Tp (s) Tidal Range (m)

[59] USA 0.08 0.40 1.87 11.94 1.24

[60] Australia 0.09 0.40 2.05 13.01 0.46

[61] New Zealand 0.12 0.63 1.43 10.53 0.99

[62] South Africa 0.05 0.30 1.76 11.59 1.10

[63] Australia 0.09 0.26 1.66 12.86 0.50

[64] New Zealand 0.11 1.82 1.43 10.53 0.99

[65] Kenya 0.05 0.16 1.31 8.59 2.08

[66] Portugal 0.09 0.50 0.78 9.18 1.89

[23] Portugal 0.11 0.39 1.98 10.84 1.91

[67] Portugal 0.08 0.56 1.98 10.84 1.91

[68] Chile 0.06 0.20 1.69 12.69 1.00

[68] Vietnam 0.13 0.30 0.92 6.49 0.93

[68] Benin 0.15 0.60 1.16 11.33 0.98

[69] Australia 0.09 0.30 1.38 8.91 1.05

[70] France 0.09 0.35 1.77 10.84 2.40

[71] USA 0.04 0.20 0.85 13.07 1.31

[72] USA 0.10 0.30 0.39 6.95 0.47
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