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Bacterial synthase-dependent exopolysaccharide 
secretion: a focus on cellulose 
Petya V. Krasteva1,2   

Bacterial biofilms are a prevalent multicellular life form in which 
individual members can undergo significant functional 
differentiation and are typically embedded in a complex 
extracellular matrix of proteinaceous fimbriae, extracellular 
DNA, and exopolysaccharides (EPS). Bacteria have evolved at 
least four major mechanisms for EPS biosynthesis, of which the 
synthase-dependent systems for bacterial cellulose secretion 
(Bcs) represent not only key biofilm determinants in a wide array 
of environmental and host-associated microbes, but also an 
important model system for the studies of processive glycan 
polymerization, cyclic diguanylate (c-di-GMP)-dependent 
synthase regulation, and biotechnological polymer applications. 
The secreted cellulosic chains can be decorated with additional 
chemical groups or can pack with various degrees of 
crystallinity depending on dedicated enzymatic complexes and/ 
or cytoskeletal scaffolds. Here, I review recent progress in our 
understanding of synthase-dependent EPS biogenesis with 
a focus on common and idiosyncratic molecular mechanisms 
across diverse cellulose secretion systems. 
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Introduction 
Whether in abiotic environments or associated with eu-
karyotic hosts, bacteria typically live in close quarters as 
mono- or mixed-species multicellular communities 

called biofilms. A key feature of the latter is spatial 
differentiation, where subsets of members are desig-
nated to secrete extracellular matrix components — such 
as extracellular DNA (eDNA), proteinaceous fimbriae 
(e.g. cell-surface adhesins or amyloid curli), and/or exo-
polysaccharides (EPS) — whereas others take charge of 
cell proliferation and biofilm dispersal [1–3]. EPS often 
provide the structural scaffold of biofilm macrocolonies 
and partake in redox control, biofilm hydration, nutrient 
exchange, surface colonization, and immune escape 
within the host. Bacteria have evolved a remarkable 
variety of systems for EPS and glycoconjugate biogen-
esis, which can be viewed as variations of four major 
mechanisms [4–7]. Apart from surface-associated su-
crases, which generate dextrans or levans from hydro-
lyzed extracellular sucrose, the three other pathways — 
ATP-binding cassette (ABC) transporter-, Wzx/Wzy-, 
and synthase-dependent — rely on intracellular pre-
cursor polymerization and multicomponent assemblies 
for the export and modifications of the polymeric pro-
ducts [4–7]. 

Both ABC transporter- and Wzx (flippase)/Wzy (poly-
merase)-dependent systems involve the synthesis of iso-
prenoid- or phospholipid-linked polysaccharides or 
oligosaccharidic modules that are exported across the inner 
membrane (IM) using the energy of coupled ATP hydro-
lysis cycles or the countermovement of protons, respec-
tively. ABC transporter-dependent pathways involve the 
biosynthesis of some lipopolysaccharide (LPS) O-antigens, 
isoprenoid-linked glycans for protein N-glycosylation, 
phosphatidylglycerol-linked capsular polysaccharides 
(CPS) in Gram-negative mucosal pathogens, and cell wall 
teichoic acids in Gram-positive bacteria [4–7]. Many O- 
antigen LPS are alternatively synthesized by Wzx/Wzy- 
like flippase-dependent systems and similar pathways en-
sure the biogenesis of diverse capsular and biofilm poly-
saccharides in both Gram-positive and Gram-negative 
bacteria (e.g. Streptococcus pneumoniae CPS, Xanthomonas 
campestris xanthan and Xylella fastidiosa fastidian gums, 
Pseudomonas aeruginosa Psl and Vibrio cholerae Vps, en-
terobacterial colanic acids, etc.) [4–7]. 

In contrast to the above, most synthase-dependent sys-
tems do not require lipid-linked initial acceptors and use 
highly processive polymerase/copolymerase tandems to 
couple linear glycan polymerization with IM transloca-
tion [4,7,8]. Examples include the alginate, poly-N- 
acetylglucosamine (PNAG) and Pel EPS (e.g. in P. 
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aeruginosa), bacterial hyaluronic acid (e.g. in Streptococcus 
pyogenes), and cellulose secretion systems, encoded by 
dedicated operons or gene clusters with high mosai-
city [4,7–10]. 

Over the last few years, an impressive anthology of re-
solved structures, mechanistic idiosyncrasies, and com-
monalities among synthase-dependent EPS secretion 
systems has been reported in the literature, whereas 
comparative genomics and modeling studies allow to 
identify and predict functionalities of homologous sys-
tems in an ever-growing catalog of microbes of interest. 
This mini-review highlights key aspects of these im-
pressive machineries with focus on the widespread and 
intrinsically diverse bacterial cellulose secretion (Bcs) 
systems. 

Cellulose synthases: activity and regulation 
Glycan polymerization and IM translocation in synthase- 
dependent systems can be carried out by separate pro-
teins (e.g. PelF and PelG, respectively, in Pel systems), 
or be incorporated in a single subunit as is the case with 
BcsA, Alg8, and PgaC in cellulose, alginate, and PNAG 
biogenesis [7,8,11]. Importantly, EPS synthases are 
likely to function as parts of macromolecular trans-en-
velope complexes, where similar functionalities have 
evolved across multiple different systems, often despite 
a lack of sequence or fold conservation across the re-
spective subunits [7,8,11]. These include tight associa-
tion with an IM copolymerase necessary for the 
activation and/or stability of the catalytic subunit (e.g. 
PelE, BcsB, Alg44, and PgaD); c-di-GMP-sensing pro-
tein modules for system activation (e.g. PilZ domains on 
BcsA and Alg44, I-site motifs on degenerate [*] GGDEF 
domains from BcsE and PelD, and a composite binding 

site at the PgaC and PgaD interface); tetratricopeptide 
repeat (TPR)-rich periplasmic scaffolds (e.g. AlgK and 
periplasmic modules of BcsC, PelB, and PgaA); polymer- 
modification (e.g. alginate and cellulose acetylation 
complexes) and hydrolase/lyase enzymes (e.g. AlgL, 
BcsZ, PelA, and PgaB) in the periplasm; and β-barrel 
export modules in the outer membrane (AlgE and porin 
domains from PelB, BcsC, and PgaA) [7,8,11] (Figure 1). 

Dependent on encoded accessory subunits discussed 
below, Bcs systems have been grouped into several 
major types: Type-I systems characterized by the pre-
sence of the BcsD scaffolding subunit; Type-II or E. 
coli-like systems encoding the BcsE c-di-GMP-sensing 
and BcsG phosphoethanolamine (pEtN)-transferase 
subunits; Type-III systems, which lack all three of the 
above and often feature BcsK instead of BcsC in the 
periplasm; Wss systems for acetylated cellulose secre-
tion; and hybrid systems combining features from the 
above [7,10] (Figure 1). 

BcsA’s core for EPS polymerization and export is con-
served from bacteria to higher plants and consists of an 
α-helical transmembrane domain (TMD) interrupted by 
a D,D,D,Q(Q/R)xRW-type glycosyltransferase (GT) 
domain from the GT2 family of enzymes, and a so-called 
gating loop that caps the active site pocket [7,12,13]. 
The last tryptophan from the Q(Q/R)xRW motif co-
ordinates the terminal glycosyl moiety of the nascent 
EPS at the active site and two of the conserved spaced 
aspartates (D246xD in R. sphaeroides BcsA) coordinate the 
substrate’s diphosphate via a divalent metal ion. The 
third aspartate (D343 in R. sphaeroides BcsA) serves as the 
catalytic base and lies at the tip of the so-called ‘finger 
helix,’ whose minute movements aid polymer 

Figure 1  
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Major types of synthase-dependent EPS secretion systems in Gram-negative bacteria. *, ATP binding and hydrolysis are likely involved in Bcs system 
assembly and not in glucose polymerization and cellulose extrusion. 
Updated and expanded from reference [7] (http://creativecommons.org/licenses/by-nc/4.0/). 
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translocation [7,12,13]. In bacteria, the cellulose syn-
thase contains a third, PilZ domain, whose core-adjacent 
linker carries the RxxxR motif for dimeric cyclic digua-
nylate (c-di-GMP) coordination [7,13,14]. Dynamic di-
nucleotide binding causes gating loop relaxation and 
together with the ‘finger helix’ regulates the reiterative 
processes of uridine diphosphate (UDP) product release, 
polymer translocation, UDP-glucose substrate entry, 
gating loop closure, and catalysis [7,13]. 

Whereas the catalytic BcsA cycle has been characterized 
primarily in crystallo in saturating concentrations of di-
nucleotide [14], product, and/or substrate-like ligands, in 
nature, multiple mechanisms have evolved for the local 
enrichment of activating c-di-GMP. E. coli, for example, 
resorts to one or more dedicated diguanylate cyclases 
such as synthase-interacting AdrA/DgcA in some strains 
or YedQ/DgcQ in others [15,16]. In addition, E. coli BcsA 
forms a stable, multicomponent biosynthetic macro-
complex encompassing most of the inner-membrane and 
cytosolic subunits (BcsR2Q2AB5–6E2F2) (Figure 2). In it, 
the essential-for-secretion BcsRQ tandem has been 
proposed to regulate macrocomplex assembly in an 
ATP-dependent manner and to contribute to BcsA 
maintenance and catalytic activity in the membrane  
[17,18]. The BcsE protein, on the other hand, features a 

tripartite architecture of catalytically or phosphotransfer- 
incompetent NTPase (NTPase*), receiver (REC*), and 
diguanylate cyclase (GGDEF*) domains. Dimeric BcsE 
is recruited by BcsF to the membrane, where each BcsE 
copy presents a composite site for dimeric c-di-GMP 
coordination formed by two RxxD motifs on its degen-
erate receiver and diguanylate cyclase domains 
(BcsEREC*-GGDEF*) [19,20] and, together with the 
BcsRQ subunits, BcsE forms a c-di-GMP-binding cyto-
solic vestibule around BcsA’s PilZ domain [17,18] 
(Figure 2). Changes in the contribution of either RxxD 
motif have been shown to alter the BcsE’s affinity for c- 
di-GMP and its observed dynamic structure — evi-
denced in both crystallographic and cryo-EM experi-
ments — has been proposed to act as a dynamic partner 
for dinucleotide recycling in processive synthase activa-
tion [7,18,20]. 

As mentioned above, BcsA functions in tandem with the 
BcsB copolymerase [7]. The latter features a donut- 
shaped periplasmic module that incorporates 2 carbo-
hydrate-binding and 2 flavodoxin-like domains alter-
nating along the polypeptide chain, and a C-proximal 
membrane anchor that is required for BcsA’s catalytic 
function and is composed of a short amphipathic and a 
transmembrane α-helices [12,18,21]. Crystal structures 

Figure 2  
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Structure–function insights into the pEtN-cellulose secretion system. TMD, transmembrane domain; AF, alphafold2 model; NTPase*, degenerate, that 
is, catalytically incompetent, NTPase-like domain; REC*, degenerate, that is, phosphorylation-incompetent, receiver domain; GGDEF*, degenerate, 
that is, diguanylate cyclase-incompetent, GGDEF domain; I-site, an RxxD c-di-GMP-binding motif found on diguanylate cyclase domains as an 
inhibitory or diguanylate signal relay motif; D, domain. Structural data from references [18,20,31,33,40]. (a) a dimeric BcsF stoichiometry has not been 
directly visualized but is consistent with the protein’s running behavior in denaturing gel electrophoresis, bacterial two-hybrid (BACTH) assays of 
protein interactions, and the BcsF-dependent recruitment of BcsE to the membrane (BcsE is dimeric both in the soluble Bcs-ERQ complex and the 
membrane-embedded Bcs macrocomplex). (b) BACTH experiments have shown that BcsG interacts with the E. coli-specific BcsANTD domain, 
whereas tubular densities in the detergent micelle have been interpreted as two copies of BcsGNTD in a low-resolution cryo-EM study of the Bcs 
macrocomplex. (c) ATP hydrolysis is not required for synthase activity in vitro, however, BcsRQ mutation analyses indicate that both ATP binding and 
hydrolysis might be necessary for cellulose biogenesis in vivo. In particular, bcsQ mutations disrupting ATP complexation (e.g. BcsQN152A–R156A–N171A) 
lead to loss of cellulose secretion, mutations stimulating BcsRQ ATPase activity (e.g. BcsQR156E) lead to enhanced cellulose secretion, and mutations 
that lead to a stable, ATP-binding, but catalytically inactive BcsRQ complex (e.g. BcsQT15K) lead again to loss of cellulose secretion, thus excluding a 
purely structural role for nucleotide complexation.   
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of the Rhodobacter sphaeroides BcsAB tandem have re-
vealed a 1:1 complex where the C-terminal BcsB anchor 
helix completes BcsA’s export domain [12] and a similar 
1:1 architecture was observed in a low-resolution nega-
tive-stain electron microscopy reconstruction of a het-
erodimeric G. hansenii BcsAB tandem [22], itself encoded 
by a fused bcsAB gene and further supporting equimolar 
BcsA:BcsB assembly [7,10]. 

Surprisingly, the cryo-EM structure of the E. coli Bcs 
macrocomplex, revealed a drastically different, non-
canonical BcsA:BcsB stoichiometry [18]. In it, a single 
BcsA subunit assembles with up to 6 BcsB protomers 
that use a β-sheet complementation mechanism to form 
a superhelical ‘crown’ in the periplasm, with cellulose 
proposed to glide outward along stacked luminal loops 
from BcsB’s carbohydrate-binding domains [18] (Figure 
2). Importantly, the superhelical assembly of the peri-
plasmic modules and the presence of the transmem-
brane BcsB tail anchors likely induce and favor 
significant negative curvature in the membrane [18] 
(Figure 2). Interestingly, visualization of the assembly 
ATPase BcsQ in cells and of secreted cellulose in biofilm 
cryosections is consistent with elongated cell shape and 
polar pEtN-cellulose secretion in the younger biofilm 
layers (i.e. Bcs targeting to membrane domains with 
the highest negative curvature), whereas the oldest 
surface layers present rounded, nondividing cells fully 
enclosed in a mesh of pEtN-cellulose and curli [23,24]. 
Whether subcellular targeting of the Bcs system can be 
achieved by covarying cell shape and BcsA:BcsB stoi-
chiometry remains to be experimentally examined. 

Cellulosic homo- and heteropolymers 
Although some bacterial EPS-producing synthases can 
yield mixed-linkage glycans [25], most of these enzymes 
typically use a specific nucleotide sugar donor to transfer 
the glycosyl moiety via a unique glycosidic linkage onto 
a processively extruded polymer. Nevertheless, this 
more prevalent “one enzyme–one substrate–one 
linkage” principle does not necessarily translate into the 
secretion of homopolymers as bacteria have evolved a 
number of mechanisms to decorate and/or heterogenize 
their biofilm polysaccharides [7,11,26] (Figure 1). For 
example, the Pel system of P. aeruginosa uses the cyto-
solic PelF GT to polymerize UDP-N-acet-
ylgalactosamine (UDP-GalNAc) into a homopolymer 
extruded through the PelG translocation pore in the 
periplasm, where the nascent chain is partially deacety-
lated by the PelA deacetylase-hydrolase enzyme to yield 
a positively charged polymer [11,27]. The latter — once 
funneled through the PelC–PelB OM export tandem 
— would then cross-link negatively charged eDNA in 
the stalks of the typical mushroom-shaped biofilm 
structures [27]. Similarly, alginate-secreting mucoid P. 
aeruginosa polymerizes GDP-D-mannuronate via the 

bifunctional GT Alg8 that also translocates the polymer 
across the IM. Once in the periplasm, the polymer is 
subject to both partial D-mannuronate to L-guluronate 
epimerization by the periplasmic AlgG subunit and to O- 
acetylation by the AlgIFJX complex [11] (Figure 1). 

Similarly, secreted cellulosic polymers come in a variety 
of shapes and flavors [7] (Figure 1). Some bacteria, such 
as members of the Gluconacetobacter lineage, feature 
longitudinal arrays of synthase terminal complexes 
(TCs) whose secreted, chemically pure cellulose chains 
bundle into so-called cellulose ribbons that lead to the 
formation of thick biofilm mats with a high cellulose 
crystallinity index [28,29]. Many enterobacteria, such as 
E. coli, S. enterica serovar Typhimurium, and others, se-
crete a chemically modified cellulose where up to half of 
the glycosyl moieties feature pEtN residues at the C6 

position [30]. The pEtN-transferase function is carried 
out in the periplasm by BcsG, an inner-membrane-em-
bedded, Zn-dependent enzyme from the alkaline 
phosphatase superfamily that likely partakes in direct 
but more dynamic interactions with the biosynthetic 
BcsAB platform [7,30–33]. Indeed, bacterial BcsG was 
found to interact with an E. coli-specific N-terminal 
domain (NTD) of the BcsA synthase [17] and a separate 
cryo-EM study of the Bcs macrocomplex attributed 
tubular densities within the detergent micelle to two 
copies of BcsGNTD, whose poorer resolution and lack of 
corresponding resolved densities for the C-terminal 
catalytic domain indicate highly heterogeneous occu-
pancy [33]. Interestingly, whereas in some species and 
strains BcsG is dispensable for secretion of non-modified 
cellulose in vivo (e.g. in AR3110, UTI89, or the naturally 
BcsG-deficient rUT12 [30,34]), in others, it appears re-
quired for cellulose biogenesis. For example, in E. coli 
1094, a nonpolar bcsG deletion effectively abolishes cel-
lulose secretion [17]; similarly, in S. enterica serovar Ty-
phimurium not only does the transmembrane NTD of 
BcsG appear to influence the integrity of the cellulose 
synthase, but also BcsG point mutants carrying a cata-
lytically inactive BcsG C-terminal domain do not secrete 
cellulose even in the presence of wild-type BcsA levels, 
thus suggesting direct requirement for the pEtN mod-
ification itself [32]. The pEtN-derivatized cellulose has 
been further shown to determine biofilm architecture 
and tensile strength by directly interacting with and af-
fecting the polymerization dynamics of the other major 
enterobacterial matrix component, amyloid curli [35,36]. 
Finally, some species such as Pseudomonas fluorescens 
SBW25 and Orrella dioscoreae feature wss gene clusters, 
whose products are proposed to introduce a different 
chemical modification — cellulose acetylation — that 
can affect the biofilm strength, architecture, and/or the 
overall ecological success of the species [26,37,38]. The 
predicted Wss subunits share structural and functional 
homology with the AlgIFJX components from the algi-
nate acetylation complex and include a membrane- 
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bound O-acyltransferase (MBOATs WssH and AlgI, re-
spectively) proposed to flip acetyl moieties from as-yet 
uncharacterized cytosolic donors through the IM, one or 
more immunoglobulin-like adaptor proteins (WssG/ 
AlgF), and SGNH hydrolase-like O-acyltransferases 
proposed to act on the nascent polymers in the periplasm 
(WssI/AlgJ and WssF/AlgX) [7,9,11,26,39,40]. Indeed, 
recent studies on purified WssI homologs from P. fluor-
escens and the multi-organ pathogen Achromobacter in-
suavis have demonstrated in vitro acetylesterase and 
acetyltransferase activities using a variety of rationally 
designed acetyl donors and cellooligosaccharidic sub-
strates [39]. Nevertheless, the exact structures, stoi-
chiometry, and functional roles of the putative cellulose 
acetylation complexes, as well as the exact composition 
of the modified extracellular polymers, remain to be 
further experimentally examined. 

Periplasmic and outer membrane export 
Once exported in the periplasm, the secreted EPS need 
to cross the peptidoglycan mesh and outer membrane, 
which is generally achieved through a tandem of a TPR- 
rich periplasmic scaffold and an outer membrane β- 
barrel porin [7,11]. The two modules can be part of the 
same (e.g. BcsC in cellulose, PgaA in PNAG, and PelB 
in Pel secretion) or different proteins (e.g. AlgK–AlgE in 
alginate secretion), and the number of TPR motifs and 
porin β-strands can vary across systems [7,11]. In some 
cases, export can be further facilitated by additional 
components such as the PelC lipoprotein, which is pro-
posed to form an OM-proximal dodecameric ring whose 
negatively charged lumen would funnel the cationic Pel 
EPS through to the PelB porin domain [41]. 

The TPR-rich periplasmic scaffolds likely adopt flexible 
solenoid folds that extend across the periplasmic space  
[7,11,42] and can recruit additional functional partners. 
Whereas functional data on BcsC’s NTD are currently 
limited, studies on its functional homolog PgaA from the 
PNAG secretion system have shown that the protein 
binds both PNAG and the periplasmic enzyme PgaB to 
stimulate the latter’s deacetylase and glycoside hydro-
lase activities [43]. Similarly, AlgK recruits the peri-
plasmic O-acetyltransferase AlgX in a stable, alginate- 
binding complex that is key to periplasmic polymer 
modification and downstream biofilm attachment [44]. 
In E. coli, BcsC features 19 TPR repeats in its N-term-
inal periplasmic region and a 16-stranded β-barrel porin 
domain with a large, electronegative lumen constricted 
near the extracellular surface and lined with conserved 
polar and aromatic residues. An ∼15-residue-long pro-
line-rich C-terminal extension folds into the channel to 
position the last aromatic (W1157) residue midway across 
the lumen [45]. These features, conserved across pEtN- 
cellulose-secreting bacteria, likely prevent permeability 
for solutes in the resting state while facilitating the take- 

up and outward gliding of hydrated, zwitterionic pEtN- 
cellulose [7,45]. 

Interestingly, many bcs clusters do not feature a bcsC 
gene but instead encode BcsK, which has multiple TPR 
motifs but no obvious porin domain, so how the polymer 
crosses the outer membrane has remained enigmatic  
[7,10] (Figure 1). Finally, some cyanobacterial systems 
likely feature a very different, Type-I protein secretion 
system-like Bcs architecture where the BcsB copoly-
merase and BcsC are substituted by proteins similar to 
the membrane fusion protein HlyD and the outer 
membrane efflux protein TolC, respectively [46]. 

Intracellular cytoskeletal scaffolds 
Crystalline cellulose secretion by bacteria from the 
Gluconacetobacter lineage has long attracted interest as a 
source of chemically pure polymer for a variety of bio-
technological applications [47]. Almost half a century 
ago, freeze-fracture and negative-stain electron micro-
scopy experiments visualized the longitudinal linear as-
sembly of synthase TCs, their colocalization with the 
exit points of secreted cellulose microfibrils, and the 
latter’s extracellular bundling into a single crystalline 
cellulose ribbon per cell [28]. Two different Bcs proteins 
were subsequently identified as cellulose crystallinity 
factors: BcsD (CesD) and BcsH (CcpAx). BcsD is a 
small, ∼17-kDa protein, which in G. hansenii assembles 
into donut-shaped D4-symmetric octamers featuring 4 
independent luminal passages capable to bind cellulosic 
oligosaccharides [48,49]. This peculiar architecture had 
led to a functional model in which BcsD serves as a 
periplasmic guide for individual cellulose chains exiting 
the BcsA translocation pores and fluorescence-based 
imaging studies showed that indeed BcsD localizes in a 
longitudinal line along the cell body, similarly to the 
synthase TCs [48,50]. Importantly, this linear BcsD lo-
calization is required for crystalline cellulose biogenesis 
and depends on direct interactions with the second 
crystallinity factor BcsH, initially proposed to be a short, 
∼8-kDa periplasmic peptide [50]. 

Recently, an in situ cryoelectron tomography study of 
Gluconacetobacter cells and biofilms revealed a cytoske-
letal structure, dubbed the ‘cortical belt’ [29] (Figure 3). 
The cytosolic assembly, tens of nanometers wide and 
hundreds of nanometers long, was shown to run in one to 
several stacked sheets parallel to the extracellular cel-
lulose ribbon and at a fixed distance (∼24 nm) from the 
IM [29]. In addition, cryo-EM and functional studies on 
the BcsHD tandem showed that BcsH is in fact an ∼37- 
kDa protein that assembles the BcsD octamers into 
‘beads-on-a-string’ filaments via its short C-terminal 
domain (Figure 3), whereas the N-terminal proline-rich 
region is capable of self-oligomerization, likely driving 
the BcsD filaments into three-dimensional sheets and 
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stacks [49]. Importantly, bacterial two-hybrid (BACTH) 
functional complementation assays revealed interactions 
of the crystallinity factors with the cytosolic BcsAPilZ 

domain, whereas in situ cryo-EM visualization at higher 
resolution revealed striking similarity between the cor-
tical belt profile and the BcsHD ‘beads-on-a-string’ fila-
ments [49]. These findings, together with the lack of 
secretion signals on either BcsD or BcsH, support an 
updated model of inside-out regulation, where the two 
proteins assemble into the intracellular cortical belt to 
drive longitudinal TC array formation and crystalline 
cellulose biogenesis [49] (Figure 3). 

Whether BcsD and BcsH use an as-yet uncharacterized 
export process to provide additional roles as poly-
saccharide conduits in the periplasm remains to be fur-
ther investigated. The inside-out hypothesis was 
recently further enforced by structure–function studies 
on BcsD homologs from diverse bacteria, including 
species expected to secrete acetylated (O. dioscoreae) or 
pEtN-modified (Enterobacter sp. 638) cellulose [37]. 
Cryo-EM structures of BcsD from several β- and γ-Pro-
teobacteria revealed that through a conserved additional 
N-terminal helix, BcsD can switch from D4-symmetric 
octamers to D2-symmetric tetramers [37] (Figure 3). 
The latter in turn can interact with previously un-
characterized proline-rich partners (BcsP in β- and BcsO 

in γ-Proteobacteria), as well as with the synthase-binding 
ATPase BcsQ, to form intracellular supramolecular 
scaffolds that determine the efficiency of cellulose se-
cretion and the overall biofilm strength and architecture  
[37]. Unlike the BcsHD filaments that drive the as-
sembly of longitudinal TC arrays and a crystalline cel-
lulose ribbon in Gluconacetobacter, the BcsD–BcsP 
complexes from O. dioscoreae were shown to array into 
triangular tiling modules likely determined by the tet-
rahedron-like architecture of the individual BcsD tetra-
mers [37] (Figure 3). 

How in each case these atypical cytoskeletal scaffolds 
assemble and whether they serve to recruit additional 
regulatory components remains to be further examined. 
Nevertheless, enlisting cytoskeletal elements into the 
regulation and spatial organization of cellulose synthase 
activity appears to have evolved multiple times in evo-
lution. Indeed, in plants, the mature cellulose synthase 
complexes (CSCs) are delivered from the trans-Golgi 
network to the cell membrane, where they are linked to 
cortical microtubules via CSI1 [51,52], among others, 
and activated by phosphorylation (Figure 3). Whereas in 
plants the ensuing synthesis of crystalline cellulose is 
proposed to generate forces propelling the CSC rosettes 
within the membrane and along the cortical cytoskeleton 
in a process required for cell wall biogenesis [52], in 

Figure 3  

Current Opinion in Microbiology

Cytoskeletal scaffolds for cellulose secretion. Left, cortical microtubules and plant cellulose synthase complexes (CSCs or rosettes); CSI, cellulose 
synthase-interacting protein 1; KOR, KORRIGAN β-1,4-endoglucanases; COB, COBRA cellulose-binding proteins in the apoplast, membrane- 
anchored; CesA, a eukaryotic cellulose synthase. 
(adapted from reference [52]). Right, bacterial cytoskeletal scaffolds of octameric or tetrameric BcsD and proline-rich partners. Structural data from 
references [29,37,48,49,51].   

6 Special section on Bacterial Nanomachines  

www.sciencedirect.com Current Opinion in Microbiology 2024, 79:102476 



Gluconacetobacter similar forces and cortical belt-an-
chored, static TCs are believed to convert the secreted 
cellulose ribbon in a bona fide motility organelle during 
substrate colonization [28,29]. 

Conclusions and outlook 
Secreted cellulosic polymers represent key architectural 
and functional constituents of the three-dimensional 
biofilms of many free-living and host-associated bacteria 
and are produced in both temporally and spatially 
regulated manner by dedicated multicomponent Bcs 
secretion systems [7]. Although these demonstrate 
functional similarities with other synthase-dependent 
EPS-secretory assemblies and even evolutionary distant 
eukaryotic systems for cellulose biogenesis, they also 
present important mechanistic idiosyncrasies that have 
only recently begun to emerge. Although bacterial cel-
lulose biogenesis represents the longest-studied process 
for synthase- and c-di-GMP-dependent EPS secretion  
[53], it remains to be fully understood how subsets of 
biofilm cells switch to an energetically expensive, sugar- 
consuming anabolic process in typically nutrient-limited 
conditions to provide the scaffold and ramparts of the 
mature macrocolony; how in each system activating c-di- 
GMP is relayed to and recycled by the cellulose syn-
thase; how the latter interacts with polymer-modifying 
enzymes that heterogenize the nascent chains for novel 
functionalities, and/or with cytoskeletal elements to 
form higher-order biosynthetic arrays for increased 
polymer crystallinity; how these flexible polysaccharides 
are guided through the periplasmic peptidoglycan mesh 
and to the cell surface; or how they interact with addi-
tional extracellular matrix components from the parent 
bacteria, synergistic or competing community microbes, 
or colonized eukaryotic hosts. Advancing our current 
understanding of cellulose biogenesis and modifications 
could allow us not only to design strategies for biofilm 
prevention and dispersal, but also to engineer cellulose 
superproducers and/or chemi-enzymatic systems with 
enhanced probiotic, biocontrol, or industrially relevant 
properties. 
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