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Abstract

Renewable energy-based microgrids (MGs) strongly depend on the implementation of
energy storage technologies to optimize their functionality. Traditionally, electrochemical
batteries have been the predominant means of energy storage. However, technologi-
cal advancements have led to the recognition of hydrogen as a promising solution to
address the long-term energy requirements of microgrid systems. This study conducted
a comprehensive literature review aimed at analysing and synthesizing the principal opti-
mization and control methodologies employed in hydrogen-based microgrids within the
context of building microgrid infrastructures. A comparative assessment was conducted to
evaluate the merits and disadvantages of the different approaches. The optimization tech-
niques for energy management are categorized based on their predictability, deployment
feasibility, and computational complexity. In addition, the proposed ranking system facili-
tates an understanding of its suitability for diverse applications. This review encompasses
deterministic, stochastic, and cutting-edge methodologies, such as machine learning-based
approaches, and compares and discusses their respective merits. The key outcome of this
research is the classification of various energy management strategy methodologies for
hydrogen-based MG, along with a mechanism to identify which methodologies will be
suitable under what conditions. Finally, a detailed examination of the advantages and dis-
advantages of various strategies for controlling and optimizing hybrid microgrid systems
with an emphasis on hydrogen utilization is provided.
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1 INTRODUCTION

Based on the ever-increasing demand for energy in modern
civilization, new solutions are being developed to meet grow-
ing energy consumption and decrease dependence on fossil
fuels. The decentralization of power production and distribu-
tion has been a key aspect of this approach. One example
of this decentralization is the development of building micro-
grids (BMGs) instead of large monolithic power stations. Recent
advancements in MGs and the focus on renewable energy have
led to greater penetration of renewable energy technologies
in energy systems. However, MGs often rely on intermittent
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renewable energy sources (RES), whose availability is typically
non-deterministic, posing a significant challenge for their large-
scale deployment. To ensure MGs integrate seamlessly into
existing networks and maintain high reliability, it is essential to
develop robust control mechanisms and effective energy man-
agement systems. For example, typical building-integrated MGs
use solar energy as the primary source of renewable energy
(RE).

However, energy production and demand exhibit seasonal
disparities, with abundant solar energy during summer and
heightened demand during winter when solar availability dimin-
ishes. Consequently, it is imperative to efficiently regulate energy
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production and consumption within MGs. The emerging con-
cept of BMGs is gaining traction, facilitating localized energy
production from RES which closely aligns with consump-
tion patterns. This proximity mitigates the losses incurred
during energy transmission. When it comes to energy consump-
tion, buildings represent a substantial portion of contemporary
energy demand. Buildings represent 40% of energy demand and
36% of CO2 emissions in Europe [1]. As shown in these figures,
heating constitutes a significant portion of the energy demand
of BMGs. According to the European Commission, heated
buildings constitute 6% of the total energy consumption [1].

Consequently, renewable energy is a fundamental element of
BMGs and constitutes a core component of their operational
frameworks. Moreover, energy storage systems play a crucial
role in guaranteeing uninterrupted energy availability, particu-
larly during intervals characterized by a disparity between energy
production and demand. Electrochemical batteries are among
the most common energy-storage media. Batteries are an effec-
tive solution for energy storage; however, they have several
critical limitations. Notably, batteries undergo rapid aging when
subjected to deep discharge cycles, leading to a reduced lifespan
and limiting their ability to utilize at full potential [2]. In addi-
tion, batteries experience capacity degradation over time, with
each charge and discharge cycle progressively diminishing the
storage capacity.

Lithium-ion batteries (LIBs), one of the most widely used
energy storage technologies, are manufactured using rare earth
metals. The extraction of these metals involves extensive min-
ing operations that have significant adverse socioeconomic and
environmental impacts [3]. Moreover, the scalability of lithium-
ion batteries is hindered by the limited availability of these mate-
rials. Another limitation is the phenomenon of self-discharge,
wherein batteries lose charge even when not in use [4]. This ren-
ders them unsuitable for long-term energy storage applications.
These challenges highlight the need for continued research and
development to explore alternative energy-storage solutions.

Consequently, based on the aforementioned characteristics
of conventional storage technologies, hydrogen (H2) offers a
unique alternative for energy storage in distributed MGs [5]. To
store excess energy in the form of gaseous hydrogen, a process
called electrolysis [6] is used, which involves passing electricity
through water using electrodes to break down water molecules
and capture released H2 molecules. Hydrogen can then be used
to produce energy when required. Energy storage using hydro-
gen offers advantages over battery-based storage. The main
advantage of this method is that hydrogen can be compressed to
higher pressures, thereby increasing the storage density. Another
advantage of hydrogen-based storage systems is that they do
not suffer from capacity loss over time, similar to electrochem-
ical batteries [7]. Thus, the energy stored in hydrogen can be
retrieved later without a significant loss of capacity [8]. How-
ever, hydrogen-based energy storage systems exhibit slower
response times than batteries [9]. Therefore, using a combi-
nation of these storage methods requires the development of
optimal control and energy-management strategies for BMG.
This paper presents a review of energy management strategies
used in residential BMGs based on hybrid storage technologies.

Numerous studies have been conducted to classify and
characterize [5] the utilization of energy management systems
(EMS) in BMGs. However, research that specifically addresses
hydrogen-based BMGs is limited. The primary barrier to the
widespread adoption of hydrogen in BMGs is the inefficiency
of the hydrogen lifecycle, which includes production, storage,
and reconversion. This inefficiency affects the overall energy
efficiency and economic viability of hydrogen-based systems
in BMGs, highlighting a critical area for further research and
technological advancement. A report issued by the US Depart-
ment of Energy indicated that most fuel cell technologies
achieve efficiencies in the range of 40%–60% [10]. However,
when evaluating the overall efficiency across the entire hydro-
gen lifecycle, including production, storage, and reconversion,
the figures decrease significantly. Despite this, the utilization of
surplus solar energy during the summer months presents an
opportunity to leverage seasonal storage within BMGs. This
approach can help mitigate the efficiency losses associated
with hydrogen storage and reconversion, thereby optimizing
energy management in BMGs during periods of high solar
irradiance.

Accordingly, existing studies have focused on either rule-
based or classical optimization techniques [9]. Over time, the
optimization and control methodologies for BMGs have under-
gone significant evolution. The integration of hydrogen-based
storage has increased the complexity of the required con-
trol strategies [10]. The domain of EMSs for such BMGs is
dynamically evolving and lacks a definitive consensus on the
most effective energy management and optimization approach
[11]. However, recent research trends indicate convergence
towards feedback-based methodologies, which will be fur-
ther described and justified in the following sections of this
manuscript, such as reinforcement learning (RL) [12, 13] and
model predictive control (MPC) [14], particularly in scenarios
with ample computational resources. Conversely, deterministic
methods exhibit superior performance in resource-constrained
environments because of their lower computational demands
[15]. As discussed here, classical machine learning techniques
offer enhanced predictive capabilities by retaining the histor-
ical context from training datasets [16], thus outperforming
deterministic optimization methods in certain specialized BMG
scenarios. Additionally, RL and MPC-based algorithms demon-
strate greater robustness against external disturbances owing to
their inherent adaptability [17].

Consequently, this paper focuses on presenting the latest
state-of-the-art methods for EMSs, particularly for hydrogen-
based hybrid MGs.

∙ Section 2 presents the objectives of this study and challenges
in the energy management of hydrogen-based BMGs.

∙ Section 3 defines the methodology used to classify and
categorize EMS strategies.

∙ Section 4 discusses various energy-management techniques
and their strengths and weaknesses in the context of BMGs.

∙ Section 5 presents the major findings from the review of
existing technologies.

∙ Section 6 concludes the review paper.
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SARWAR ET AL. 261

2 OBJECTIVES AND CHALLENGES
FOR ENERGY MANAGEMENT

Hydrogen-based hybrid microgrids differ from conventional
BMGs in several ways primarily because of the introduction
of hydrogen production, storage, and conversion methods.
These differences affect the design, operation, environmental
footprint, and economic considerations. The storage mecha-
nism is the primary factor that distinguishes hydrogen-based
BMGs from conventional BMGs. Excess renewable energy
from sources, such as solar and wind energy, is used to
produce hydrogen through electrolysis. The energy storage
duration in such systems is on a longer timescale, which can
last up to several months. Another factor that distinguishes
hydrogen-based BMGs is their environmental impact. When
using renewable energy for hydrogen production, these BMGs
essentially produce zero emissions because the only by-product
of hydrogen fuel cells is water. By contrast, depending on
the energy mix, conventional BMGs may produce greenhouse
gas emissions, especially if fossil fuels are part of the energy
supply.

Therefore, hydrogen-based BMGs are considered sustain-
able. They offer a more sustainable solution by integrating
renewable energy sources and creating clean energy cycles.
However, conventional BMGs have a larger environmental
footprint if they rely on fossil fuels or non-sustainable practices.
Hydrogen-based BMGs are costly to build because they require
many more components to store the excess energy. They incur
high initial capital costs owing to the addition of electrolysers,
compressors, storage units, and fuel cells. In addition, the main-
tenance of these equipments incurs additional costs. Because
hydrogen is a highly flammable substance, it is subject to various
regulatory requirements, which also increase the cost of such
BMGs.

2.1 Challenges of energy management for
hydrogen-based BMGs

Hydrogen-based BMGs contain a multitude of components
that are capable of generating, storing, and reconverting energy
stored in hydrogen. For such a complex BMG, energy manage-
ment becomes challenging. Because hydrogen is only produced
via excess renewable energy sources such as solar and wind, the
operation of electrolysers can be highly challenging owing to
the intermittent nature of these resources. These sources are
dependent on weather conditions that are difficult to predict;
thus, the operation of these devices, particularly electrolysers,
requires an approach to match renewable availability, which can
be a significant challenge. The lifetime of electrolysers is highly
affected by the number of start and stop operations [18], thus
it is imperative that an energy management system optimizes
the operation of electrolysers in such a way as to achieve a
trade-off between the production of hydrogen and the lifetime
of the equipment. Similarly, the performances and lifetimes of
fuel cells are severely affected by the number of start and stop
operations [19]. A well-optimized EMS must ensure that fuel

TABLE 1 Control layers in a hybrid BMG.

Level Timescale Equipment

Primary level Order or micro and
milliseconds

Hard real-time embedded systems
based on RTOS
(microcontroller-based)

Secondary level Order of seconds Soft real-time systems (PLCs)

Tertiary level Minutes, hours, and
days

General purpose systems (Linux,
PLCs etc.)

cells operate in a manner that ensures maximum renewable
energy consumption while balancing the life of the fuel cell.
This becomes extremely complex when there are short bursts
of high energy demand during peak periods, for example, on
winter mornings when there is a significant energy demand but
not much solar availability.

The heightened complexity arising from the intermittent
nature of DERs coupled with the hybridization of energy
sources presents novel operational challenges for BMGs.
Optimal control is essential for BMGs to achieve enhanced self-
consumption and autonomy, thereby minimizing their depen-
dence on the main grid. This review presents a comparative
analysis of the diverse optimization and control methodolo-
gies utilized in BMGs with a specific focus on hydrogen-based
hybrid storage systems. Figure 1 shows a schematic of a typical
hybrid hydrogen-based BMG.

In a BMG, various components collaborate to ensure its
functionality. Renewable energy sources (RES), typically solar
panels and occasionally wind turbines, are employed to supply
power to grids. A battery pack serves as a short-term energy
reservoir, owing to the intermittent nature of renewable energy.
Additionally, an electrolyser is used to generate H2, which can
be employed when required to retrieve energy via a fuel cell.
Control mechanisms within most systems rely on a local con-
troller, tasked with maintaining the power balance in the BMG
and ensuring continuous energy availability for end users. These
controllers are commonly embedded devices engineered to pro-
vide real-time responses and often leverage real-time operating
systems (RTOS) to satisfy stringent timing constraints. The sub-
sequent sections delve further into the various control levels
within the BMG. In the next section, an overview of various
control levels in the BMG is presented.

2.2 Control levels in a building microgrid

The EMS in a BMG acts as a supervisor and control system
and performs several important tasks. These include monitor-
ing, data and energy analytics, energy optimization, control, and
system safety. Performing these tasks requires the EMS to be
robust and flexible. The MG control can be divided into three
levels that act on different time scales, as shown in Figure 2.

As listed in Table 1, the three control levels work on three
different timescales. The fastest control response occurs on the
millisecond and microsecond time scales and is used for fre-
quency control and power sharing among devices in the BMG.
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262 SARWAR ET AL.

FIGURE 1 Overview of a hybrid hydrogen-based building microgrid (BMG).

FIGURE 2 Microgrid control levels.

In addition [20], investigated voltage sags in power systems and
proposed integrating hydrogen fuel cells with a D-STATCOM
to mitigate these fluctuations and enhance power quality. Using
simulations and a Type-3 Fuzzy system, this study demonstrates
that the proposed approach, validated using MATLAB, out-
performs conventional PI and ANFIS controllers in terms of
reliability and effectiveness. A real-time energy management
strategy for a smart home was proposed in [21], which con-
tained an electric vehicle (EV) and hydrogen production system
to achieve flexible demand-side control.

The key objective of this study is to focus on optimization
and energy management techniques that work over longer time

scales; therefore, only tertiary-level control and optimization
methods will be discussed in this case. In the next section, the
main functions of an EMS are discussed.

2.3 Key functions of the EMS

EMSs are designed to perform a variety of tasks, depending
on the systems with which they are integrated. The major-
ity of EMS functionalities can be divided into five main
categories: monitoring, analysis, forecasting, system optimiza-
tion, and real-time control (Figure 3). As the name indicates,
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SARWAR ET AL. 263

FIGURE 3 Overview of different EMS functionalities and controls.

real-time control allows BMGs to be controlled in real-time
through power balance and power-sharing mechanisms. The
EMS can determine the manner in which power can be shared
among the different components of the BMG. The core func-
tionality of an EMS within a BMG encompasses operational
optimization, enabling the BMG to function in an optimized
manner. This optimization entails strategies to minimize the
operational and maintenance costs and enhance the equipment
lifecycle, among other factors. Various optimization methodolo-
gies are elaborated subsequently. Furthermore, the forecasting
capabilities of the EMS enable the anticipation of future sys-
tem states, facilitating predictive analysis and necessary control
actions. Accordingly, the forecasting function can focus on
either the BMG load demand or the future RES production
[22]. EMSs are also capable of analysing user behaviours in the
BMG as well. In [6], a community-based analysis of energy man-
agement in a BMG. A novel power dispatch methodology is
proposed to yield minimum energy cost and integrate hydro-
gen for energy storage. In [23], bi-objective optimization was
performed using dynamic programming for energy optimiza-
tion in a hydrogen-based BMG. The results for two typical cases
indicate the proposed strategy can improve photovoltaic utiliza-
tion by 0.95% and fuel economy by nearly 50%. Moreover, the
work presented in [24] proposed a dual model predictive con-
trol and hybrid programming approach to realize the economic
operation of a BMG. Based on the ultrashort-term forecast,
the renewable power output and load demand were predicted
to optimize the economic operation of the system. The results
showed the operating cost of the BMG was reduced by 22.7%
when the prediction horizon was increased to 90 min from
60 min.

In addition to real-time control, an EMS plays a pivotal
role in optimizing the long-term operational aspects of an
MG. For instance, in [25], a methodology employing online
learning-enabled hierarchical distributionally robust model pre-
dictive control (OL-DRMPC) with day-ahead scheduling was
proposed to enhance the power dispatch efficiency within the
BMG. Precise forecasting of renewable energy is of paramount
importance for ensuring the optimal operation and energy man-
agement of renewable energy source (RES) MGs. The research
performed in [26] focused on the implementation of stochas-

tic model predictive control of a hybrid BMG. The proposed
strategy extends the lifecycle of batteries and hydrogen devices.
Managing hydrogen storage in hybrid MG is a newly researched
topic in BMGs. Both data-driven and model-based approaches
have been used to optimize hydrogen storage. In [27] a unique
control method using a data-driven modelling approach was
proposed to achieve frequency regulation in an MG.

2.4 Objectives and comparison with
existing research

Recent studies have compared the energy management strate-
gies for hydrogen-based BMGs. The work presented in [28]
summarizes the multiple energy management systems used for
BMGs. This study focuses on different optimization methods
used for energy management in BMGs. However, the research
in this study did not consider the impact of energy optimization
on BMGs. Similarly, the researchers in [29] presented a review
of EMS for residential BMGs, but their scope of work was
limited to hierarchical-based hybrid BMGs. Numerous works
have focused on summarizing the energy management strategies
utilized for conventional BMGs. One such study [30] exam-
ined forecasting methods, control methods, uncertainties, and
tariffs; however, it did not consider the aspects of hydrogen
storage or BMGs. The work done in [31] also focused on con-
ventional BMGs, with a focus on artificial intelligence (AI)
and machine learning-based management strategies. Similarly
[32], presented a state-of-the-art energy-management system
for conventional BMG. A systematic review of various energy
management strategies, optimization scheduling frameworks,
and multi-BMG voltage and frequency control strategies was
presented; however, they only focused on battery-based storage
systems and did not consider hybrid storage mechanisms. The
work published in [33] discusses energy management and con-
trol strategies for hydrogen-based systems; however, it focuses
only on electrical vehicle usage rather than in the context of a
BMG. The research in [34] also aims to present a summary of
EMS for energy usage optimization in MGs. A unique aspect
of this study is that it discusses MGs in residential, commercial,
and industrial buildings. The literature suggests that integrating
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264 SARWAR ET AL.

fuel cells (FCs) with renewable and storage systems can justify
their high investment costs by lowering the levelized cost of
energy (LCOE), reducing the loss of power supply probabil-
ity (LPSP), shortening the payback period, and increasing the
renewable energy fraction, particularly for remote or combined
loads. Reported LCOE ranged from $0.0462 to $1.0864 per
kWh, LPSP from 0% to 20%, payback periods averaged over
six years, and renewable fractions ranged from 26.77% to 100%,
depending on the case study.

The objective of this study was to provide a comprehen-
sive analysis and comparison of various energy management
strategies and methodologies used in the context of BMGs. A
detailed review of the existing methodologies was performed to
compare their predictive capabilities and computational com-
plexities. Finally, a ranking criterion was determined to establish
the applicability of the different methodologies to different
microgrid scenarios.

3 METHODOLOGY FOR EMS
CLASSIFICATION

The development of EMSs has evolved over the past few
years. The need to develop an efficient EMS is continu-
ously evolving from the simplest rule-based EMS to complex
multi-agent management systems, the need for developing
efficient EMS is continuously evolving. As the current state-
of-the-art approaches focus on hydrogen-based building MG,
the following criteria will be used to perform a comparative
analysis:

∙ Predictive capabilities
∙ Computational complexity
∙ Data dependency
∙ Model dependency
∙ Multisystem consideration
∙ Robustness and flexibility

3.1 Criteria

In the following section, a comparison criterion is discussed,
which is used to analyse the different EMS for hydrogen-based
systems. Using these criteria, each methodology was analysed
to test its suitability. A comparison was made of how different
approaches offer different trade-offs for their applicability.

3.1.1 Predictive capabilities

A primary feature of contemporary energy management
systems (EMS) lies in their robust predictive capabilities,
encompassing load forecasting, renewable energy availabil-
ity estimation, and control/optimization parameter prediction.
The accelerated integration of artificial intelligence and machine
learning techniques in EMS development and control stems
from their reduced reliance on complex models and decreased

computational burden. Machine learning offers distinct advan-
tages over conventional methods by leveraging historical data to
provide highly specific predictions, thereby enhancing accuracy.
Additionally, artificial intelligence solutions deliver robust and
expedited outcomes, fostering greater flexibility and scalability
of EMS, particularly when scaling up to larger MGs.

In terms of predictive capabilities, machine learning and
artificial intelligence are best suited for this objective. Many
studies have focused on the application of machine learning and
its different domains for the predictive control of MGs. The
work done In [35], a novel neural network-based genetic opti-
mization method for net-zero-energy buildings was proposed.
The optimization resulted in the lowest installation cost, CO2
production, and loss of power supply probability. In [36], a
cloud-based architecture was proposed for supervised machine
learning approaches applied to MG clusters for energy man-
agement. Using this machine learning-based approach, a faster
data-sampling rate was achieved to overcome the limits of net-
work congestion. This leads to significant cost reductions in the
BMG of up to 100 USD for grid consumption per week [36, 37]
performs an evaluative analysis of the performance of machine
learning strategies for the predictive control of hybrid BMGs.
It uses machine learning methods are used for the predictive
assessment of faults in energy storage.

Load forecasting is another important aspect of energy man-
agement in a BMG. Accurate load forecasting is paramount,
particularly for BMGs. Recent trends indicate that this topic
is gaining considerable attention in the research community
because of its impact on MG performance. In [38], the authors
discussed proposals for short-term load forecasting based on
deep learning models. Electrical features and environmental
data were used as inputs to forecast the day-ahead electricity
loads. The research conducted in [39] used different machine
learning algorithms such as ANN, multi-layer perception, sup-
port vector machine, and other tree-based models to predict the
heating demand in a household.

Another method used for the optimal and predictive con-
trol of a BMG is model predictive control (MPC). MPC has
been effectively used for the optimal control of MGs in various
scenarios. The work in [40] focused on the resilience-oriented
control of a BMG based on a stochastic model predictive
controller. The work done in [41] proposes a novel two-level
hierarchical model predictive controller. The two-level data-
driven design of this controller improves the accuracy of energy
storage. This study also focused on integrating hydrogen-based
energy storage. The model proposed a scheduling strategy based
on yearly self-consumption and energy storage costs for energy
storage devices. In [42], an artificial intelligence-aided model
predictive control for a grid-tied hydrogen fuel cell system
was proposed. This work combines multiple methodologies to
achieve optimal power dispatch in a BMG using MPC, particle
swarm optimization (PSO), and genetic algorithms (GA).

Forecasting the energy demand in a BMG is an impor-
tant aspect of energy management. Accurate predictions can
help properly schedule energy strategies and optimize storage
systems. Reference [43] proposes a deep learning and forecast-
ing method for renewable energy prediction. Reference [44]
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SARWAR ET AL. 265

proposed a novel deep-learning-based energy management
strategy for fuel cells although the research focused only on fuel
cells for vehicles. Most of these results are applicable to energy
management in BMGs. Artificial and recurrent neural network
models have proven to be highly effective in this domain. In
[45], the researchers proposed an ANN-based model for load
prediction in BMG. Real-time load forecasting has a significant
impact on the performance of BMG and is being developed
using data available at edge points. Deep-learning models have
been used to predict and forecast hydrogen production based on
renewable energy. One such study in [46], presents an overview
of deep learning and neural network-based schemes for pre-
dicting hydrogen production. This paper presents a summary
of numerous deep-learning-focused EMS for hydrogen storage.

Determining the amount of renewable energy available is a
core aspect of MG energy management. This feature is even
more important in hydrogen-based hybrid MGs because hydro-
gen production is directly related to excess renewable energy
production. Researchers in [47] proposed a network-pruning
technique based on feedforward neural networks to forecast
renewable energy availability. Reference [48] presents a review
of artificial intelligence-based methods used in hydrogen-
battery-based systems. This review explored the transformative
potential of artificial intelligence (AI) in the hydrogen and bat-
tery technology sectors. It emphasizes how AI techniques, such
as artificial neural networks, machine learning, support vector
regression, and fuzzy logic models, enhance hydrogen energy
production, storage, and transportation. The role of AI in smart
battery technology has been highlighted, particularly in mate-
rial discovery, battery design, manufacturing, diagnostics, and
management systems. This review underscores the significant
impact of AI on optimizing these technologies, with implica-
tions for their applications in modern robotics, electric vehicles,
aerospace, and other fields.

3.1.2 Computational complexity

The computational complexity of the control of a BMG is an
important aspect of EMS design. This depends on multiple fac-
tors, including the existing infrastructure, choice of algorithms,
and features of the EMS. Computational complexity plays a key
role in the design and selection of an MG EMS. Ideally, the aim
is to design an EMS with lower computational requirements,
while achieving the highest level of optimization and flexibil-
ity. However, these criteria usually work in opposite directions.
A higher-complexity system tends to yield better optimiza-
tion results. Deterministic-based optimizations such as linear
programming tend to have low computational complexity; how-
ever, their performance is not robust, which restricts their use
in more complicated EMS. On the other hand, advanced tech-
niques, for example, MPC, are more computationally expensive;
however, they offer superior performance [41].

Computational complexity is an important criterion for EMS
comparison because, in BMGs, it is important to have an
energy management strategy that is computationally expensive.
Because BMGs typically have low output power, the associated

computational power available is also limited. Therefore, the
selected strategy must also be computationally low to moderate.
In the case of hydrogen-based systems, managing dual-energy
storage also requires some level of computational complexity
inherent in the BMG thus, balancing the computational com-
plexity with the optimal operation and management of BMG is
extremely important.

The higher complexity of EMS means that the computational
requirements of EMS hardware are also very high. For instance,
for a BMG to use machine learning to achieve energy optimiza-
tion, the required processing power must be greater than that of
a simple rule-based method. First, the data needs to be acquired,
and stored in a database, next the data needs to be cleaned and
features need to be extracted. Depending on whether the dataset
is labelled, either supervised or unsupervised learning can be
applied. This requires high computational power for the EMS.

Consequently, the computational complexity of machine
learning algorithms is more difficult to understand. This
depends heavily on multiple factors, including the choice of the
algorithm (supervised or unsupervised). Advanced approaches,
such as deep neural networks (DNN) and ANN, depend on
various factors, such as the number of layers in a neural net-
work. Research in [49] discusses the computational limits of
deep neural networks. This study shows that the computational
limits for deep learning will soon be constrained for certain
applications and can create bottlenecks for certain applications.
Reinforcement learning has also been studied recently because
of its several advantages over traditional machine learning and
AI-based approaches [50]. It offers a suitable middle ground
because of its ability to adapt and improve over each cycle,
making it a suitable solution for systems with frequent changes.
Many optimization methodologies have an objective function,
which is defined as minimizing the production cost of energy.
This is performed while considering other constraints, such as
voltage and power generation. Cost can be composed of vari-
ous aspects such as capital costs, installation costs, maintenance
costs, cost of production, and sometimes selling costs to the
grid (which need to be maximized to obtain a financial advan-
tage). Another important factor in optimization is the objective
function related to the reliability of the network. For example, a
network should be reliable and provide the required power for
its loads. Constraints regarding different energy sources, such
as solar energy, fuel cells, and energy storage systems, must be
defined for optimal system optimization.

3.1.3 Data dependency

Data dependency refers to the requirement for data availabil-
ity for the optimal performance of an EMS. Different models
require different data. Techniques such as linear programming
(LP) and dynamic programming (DP) require only recent real-
time data. However, other approaches that depend heavily on
data availability include classical machine learning techniques
such as supervised learning. Recently, reinforcement learning
has been increasingly used in EMS development. Its advantage
is that there is no need for training data. The model learns based
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266 SARWAR ET AL.

FIGURE 4 Data dependency of distributed EMS.

on an action-and-reward approach in which a correction action
is preferred over an incorrect action. Classical machine learning
algorithms require large amounts of historical data to function
properly. The accuracy of these models is heavily dependent
on the availability of correctly labelled data, making them less
suitable for systems with lower data availability.

A lot of focus and attention is diverted towards data-based
approaches for energy management, both on the residential as
well as industrial scale. With the advent of the IoT and Big
Data, these technologies have been rapidly adapted for energy
management. For example, in [51], a data-based energy man-
agement framework was proposed to optimize data usage and
energy consumption in the industrial sector.

The accuracy and integrity of the data injected for the internal
operation of an EMS are critical for the operation and safety
of an MG. Very few studies have been conducted to address
this aspect. In [52], a deep long short-term memory (LSTM)-
based EMS resilient to data integrity attacks was proposed. It
uses decentralized controllers for load forecasting and sets set-
points for energy dispatch.

Figure 4 shows how the data from multiple sections of an
MG are aggregated and used by a centralized EMS to perform
its optimization and control functions for a BMG. In [53], a
multistage and multi-time-horizon energy management strategy
was proposed for the dual control of a hybrid BMG. In [54],
a data-driven energy optimization strategy was proposed. In
this study, a multi-energy hub that integrates renewable energy
and large-scale storage using hydrogen and ammonia as carri-
ers via the P2 × 2P and B2 × 2P pathways was developed. The
results showed that B2 × 2P is more profitable, whereas P2 × 2P

offers greater flexibility, with ammonia favouring mass produc-
tion and storage, and a modified deep Q-network framework
proved effective for scheduling optimization.

The availability of data and corresponding data-dependent
strategies for energy management are essential for optimized
operation and increasing the lifetime of the components used
in the BMG. With the availability of historical performance data
for hydrogen-based components such as electrolysers and fuel
cells, a more accurate representation of the state of health of
these components can be established, which can be incorpo-
rated into energy management strategies to ensure the longevity
of the components.

3.1.4 Model dependency

EMS development often requires an accurate system model to
work properly. The optimization methods used in the EMS
can have a very high model dependency, and their outcomes
can be skewed if an appropriate model is not used. Different
methodologies have different levels of model dependence. For
example, classical machine learning techniques are completely
independent; however, control techniques such as MPC require
an accurate model for the system to run properly. The model-
based EMS performed best when the modelled system was
accurate. Deviations from environmental conditions or changes
in model behaviour can significantly affect the performance of
the EMS strategy applied to the MG. In hydrogen-based BMGs,
the dependence of EMS strategy on the BMG model can affect
the behaviour of BMG. In this case, dynamic modelling, which
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SARWAR ET AL. 267

adjusts the system model by learning feedback, has been pro-
posed to counter this issue. One such example is presented in
[55], which presents a multi-energy BMG model to supply both
electric- and hydrogen-based loads. This work focuses on the
detailed modelling of electrolysers, compressors, and hydrogen
vehicles (HV) using conventional models, such as photovoltaic
(PV) and battery systems. The development of appropriate
BMG models is necessary for the operational design and per-
formance of hybrid BMGs, in [56], a unique model of the BMG
is proposed with a state-flow-based energy optimization strat-
egy. The results showed that the energy management strategy
provided the following advantages: (1) the power supply and
demand in the BMG were balanced, (2) the lifespans of the
electrolyser and fuel cell were extended, and (3) the state of
charge of the battery and the stored level of hydrogen were
appropriately ensured. The work in [57] addresses the coopera-
tive operation of batteries and hydrogen-based storage systems
were addressed in [57]. It considers the cycling impact of both
technologies on the economic signals for energy trade.

3.1.5 Multisystem consideration

The addition of hydrogen-based energy storage systems to small
residential buildings is a relatively new concept. The design of
EMS has been considered in the past and has only focused on
large-scale industrial or commercial applications. In the BMGs,
the energy expenditure margin was relatively small. For this rea-
son, it is of paramount importance that energy management
be performed while maintaining the overall energy expenditure
of buildings. One of the main sources of energy expenditure
in buildings is the thermal demand to provide a thermal com-
fort level for users. Various combined approaches have been
used to address this issue. In the work done in [58], a stochas-
tic optimization approach for the multi-objective optimization
of combined heating, cooling, and hybrid BMGs was discussed.
Optimization was performed using the mixed integer linear pro-
gramming (MILP) approach. Using an incentive-based demand
response, the optimization results in the reduction of system
operation costs by 15%. Thermal heat recovery from electroly-
sers and fuel cells can be utilized to meet the thermal demands
of buildings. In [59], a novel EMS with fuel cell heat recov-
ery was proposed to supply the thermal loads of the MG. The
study observes a BMG for a university campus where ther-
mal energy is recovered from the operation of the fuel cell and
applied to the heat storage system. Reference [60] proposes a
unique EMS that aims to recover the excess heat generated
by electrolysers and supply it to the BMG. The work done in
[61] focused on the implementation of hydrogen-based MGs
for residential applications and discussed both the thermal and
electrical demands of buildings. Similarly, in [62], a multiob-
jective optimization strategy was proposed for the combined
optimization of an off-grid power and heat system. A two-
stage energy management strategy was introduced to optimize
power flow and maximize solar energy utilization, minimizing
disruptions in power and hot water supply, energy waste, and
costs over 20 years using a multi-objective NSGA-II algorithm

with MATLAB and TRNSYS. Optimization reveals trade-offs
between competing objectives. Dynamic simulations indicate
that water tank temperatures fluctuate between 20 and 100◦C,
with mean values slightly decreasing in later years due to battery
degradation.

3.1.6 Robustness and flexibility

An EMS is designed to handle the fluctuations and variabil-
ity of numerous variables such as renewable energy, MG faults,
and user behaviour. Considering these variables in the operation
of an MG is a challenging task and requires the development
of control systems that can handle such scenarios. Data-driven
robust energy management strategies have been studied for
their effectiveness in energy optimization. In [63], a similar
data-driven approach was proposed to overcome the chal-
lenge of random source-load fluctuations in integrated energy
systems (IESs) in the operational scheduling problem of inte-
grated energy production units (IEPUs). In [64], a robust
energy management strategy was proposed for hydrogen stor-
age and demand response in an isolated BMG. This study
proposes a robust energy management methodology for iso-
lated BMGs using hydrogen storage and demand response
initiatives structured as a nested max-min optimization frame-
work. The methodology employs a master-slave scheme and a
constraint-and-column generation algorithm, validated through
a benchmark BMG, demonstrating that flexible demand reduces
costs by 6 % compared with hydrogen storage. Hydrogen has
great potential for flexible applications in a microgrid. A strat-
egy for testing the resource and demand flexibility for energy
management in an MG was presented in [65]. To cope with the
fluctuations in renewable energy sources (RES) and the impact
of random charging loads of electric vehicles (EV), reference
[66] proposed a hierarchical co-optimal planning framework for
flexible energy management of an MG. A novel finding is that
hydrogen, as a zero-carbon fuel supplied to hydrogen-fuelled
vehicles, provides significant flexibility values comparable to
energy storage, as demonstrated by an additional 68.52% reduc-
tion in the renewable energy curtailment ratio (RECR) than
hydrogen only used for energy storage. Similarly, in [67], a
stochastic mechanism for the optimization of MGs was pro-
posed that provides flexible services to system operators (SOs)
using uncertainties in the forecast. Consequently, the prob-
lem is addressed using stochastic model predictive control and
mixed-integer quadratic programming.

3.2 EMS control methods

As the complexity of MGs has increased, the control methods
(Figure 5) used for energy optimization and dispatch con-
trol have also become increasingly complex. In practice, there
are multiple energy management domains. Computational-
modelling-based control methodologies for hybrid MGs have
gained momentum in recent years. Multi-agent-based con-
trol has been extensively used in MG control applications.
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FIGURE 5 Energy management system’s control methods.

Accordingly, multi-agent-based control methods have been
successfully implemented for hydrogen-based hybrid BMGs.
Feedback-based methodologies have been very successful in
the robust control of hybrid BMGs; particularly, reinforcement
learning has shown good results. In [68], a multi-agent-based
deep reinforcement learning-based control methodology was
proposed for grid-connected BMGs. Physics-based models
have been extensively used for BMG control, particularly for
hybrid BMGs. This paper [69] introduces a two-level hierarchi-
cal model predictive controller combined with an autonomous
observer of hydrogen storage (AOHS) to improve BMG
flexibility. Using instantaneous data measurements, AOHS
accurately estimated hydrogen levels with an error below 2%,
outperforming fixed-parameter models in self-consumption,
noise robustness, and energy planning, as demonstrated in sim-
ulations based on a developing building BMG case study. The
work in [70] proposed a two-stage energy management strategy
with demand response and hydrogen storage. It utilizes a modi-
fied student-based-psychology-optimization (MSBPO) method
to improve issues such as slow convergence, low solution
accuracy, lack of diversity, and becoming stuck in local optima.

The computational intricacy of these control methodologies
varies considerably. The integration of model predictive control
(MPC) with real-time optimization has demonstrated notable
effectiveness in ensuring robust control in residential settings.
In [71], a hierarchical model for predictive control is presented.
This study introduces a novel energy management strategy for
a wind-hydrogen MG featuring a wind turbine and hydrogen-
based energy storage system (HESS). Utilizing a hierarchical
model predictive control (MPC) approach, it optimizes long-
term operations through high-level MPC for load forecasting
and market participation and manages short-term operations
with low-level MPC to handle real-time dynamics. The system’s
efficacy, modelled with a mixed-logic dynamic (MLD) frame-
work and simulated using wind forecasts and spot prices from
an Italian wind farm, demonstrates its potential for integrating
wind energy into the grid and optimizing energy supply. Sim-
ilarly, in [72], a decentralized multi-agent EMS was proposed
using fuzzy cognitive maps. Such a system scales well to larger
MGs because each MG acts as a single agent for the other dis-

tributed BMGs. This methodology is highly flexible because any
number of agents can be added to or removed from the system.

4 EMS CLASSIFICATION

Generally, EMSs can be categorized using multiple methods.
Numerous attempts have been made to classify and catego-
rize these energy management systems. However, most of these
classification methods focus on conventional MG systems with
DERs and battery storage, whereas a deeper classification of
BMGs and hydrogen-based MGs has not been extensively stud-
ied. There have been some attempts to classify the EMS for
example [73], tried to categorize the existing smart energy man-
agement systems for homes; however, it did not consider hybrid
storage systems incorporating hydrogen storage.

Broadly, EMSs can be categorized into the following three
categories:

∙ Deterministic optimization
∙ Stochastic and metaheuristic approaches
∙ Machine learning (ML) and artificial intelligence (AI)

4.1 Deterministic optimization

By definition, deterministic algorithms are a class of simple
optimization algorithms. In this domain, approaches such
as linear programming have been used to achieve energy
management and optimization in MGs. More recently, mixed
integer linear programming (MILP) has been extensively used
to develop EMSs for MGs. A dual optimization technique was
proposed in [74] that utilizes multi-layer optimization for the
self-scheduling of the BMG. Additionally, it contains a hydrogen
refuelling station capable of exchanging power with an MG. A
combined heat and power unit was also considered to validate
the applicability of the proposed model. In [75], a mixed integer
linear programming-based scheduling approach for the energy
management of an MG was proposed to solve the generational
dispatch problem. It transforms transmission dispatch into a
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SARWAR ET AL. 269

FIGURE 6 Deterministic optimization comparison with regard to a
predefined criterion.

quadratic mixed integer linear programming approach. The
results show that transmission losses can be reduced using
this approach. In [76], a dynamic programming-based energy
management strategy was proposed based on an integrated fuel
cell and thermal management of integrated buildings. In [77], a
unique MILP-based approach was proposed for optimization
aimed at minimizing the total life cost and loss probability of the
power supply. Similarly, in [27], an MILP-based approach was
used for the schedule planning of a hybrid MG. A combination
of MILP and MPC was used to optimize the energy storage of
the system.

Accordingly, Figure 6. shows how deterministic optimiza-
tion is compared with the criteria defined earlier. A rating of 0
indicates no capability, whereas 5 indicates the highest capability.

Based on the literature review and existing methods, the
comparison results presented in Figure 6 show that linear pro-
gramming is heavily dependent on the accuracy of the given
model, whereas dynamic programming is more computation-
ally expensive. The scale represents values from 1 to 5 with 1
representing the least dependent and 5 representing the most
dependent compared to other methods.

4.2 Stochastic and metaheuristic
approaches

A metaheuristic or stochastic approach to an optimization prob-
lem is a procedure for obtaining solutions with incomplete
knowledge of the system. These algorithms typically rely on a
search algorithm. Accordingly, metaheuristic optimization can
be classified into the following broad categories:

∙ Swarm-based optimization
∙ Biology-inspired optimization algorithms
∙ Physics-inspired algorithms

These optimization methodologies include either swarm-
based optimizations [78], such as particle swarm optimization,
or other biology-inspired algorithms, such as genetic algorithms
[79]. There are other physics-inspired algorithms such as gravi-
tational search algorithms [80]. Hybrid approaches combining
multiple optimization techniques have been reported in the
literature. An example of a hybrid genetic particle swarm opti-
mization algorithm for scheduling energy resources is presented
in [81]. In addition, in [82], a particle swarm optimization
approach was used for advanced asynchronous energy manage-
ment. The research in [82] focused on the layered architecture
between multiple components of an MG and considered very
limited data sharing of only the state variable between the
supervisor and agents in the system. This leads to flexible con-
trol and low computational complexity. A summary of various
metaheuristic approaches was presented in [83], although it
focused only on conventional BMG without hybrid storage.
This study reviews the application of metaheuristic algorithms
in MG management, focusing on highly cited articles and typ-
ical cases, and demonstrates their advantages over traditional
methods in the deployment and operation phases. Metaheuris-
tics have been shown to be superior in MG optimization, which
requires an interdisciplinary knowledge of MGs and optimiza-
tion algorithms. The insights provided will aid future research
on the integration of metaheuristic algorithms with MG
management.

Additionally, the work done in [84] proposed a stochastic
point estimate method (PEM) to capture different uncertainties
in a system caused by solar, wind, and other types of energy
sources. The optimization was performed using a teacher-
learning algorithm (TLA). The results were then compared with
PSO and GA, which showed improved algorithm performance.
Various studies have focused on the optimal scheduling of
energy resources in MG. The study in [85] focused on schedul-
ing using metaheuristic approaches. The authors presented the
day-ahead scheduling of energy resources based on genetic algo-
rithm and particle swarm optimization. The results show that
a cost reduction of up to 11% is achieved using this method
compared to the net power-based algorithm (NPBA).

Accordingly, Figure 7 presents an overview of the stochastic
approaches and their suitability for predefined criteria. Again, a
rating of 0 refers to no capability, whereas 5 refers to the highest
capability.

4.3 Machine learning (ML) and artificial
intelligence (AI)

ML and AI have recently gained popularity in various domains,
and renewable energy is no exception. Based on the litera-
ture review, ML can be broadly classified into the following
categories:

∙ Supervised learning
∙ Unsupervised learning
∙ Deep learning
∙ Reinforcement learning
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FIGURE 7 Comparison of stochastic and metaheuristic optimization methods with predefined criteria.

4.3.1 Supervised learning

Supervised learning is a subcategory of machine learning in
which a labelled dataset is already available to train the model.
This trained model can then predict the outcomes related
to an unseen data point using labelled data as the context.
These algorithms were relatively simple to implement. In [86],
an energy management strategy for a multi-objective EMS
was proposed based on random forest (RF) and support vec-
tor machine (SVM) algorithms. Supervised learning techniques
work relatively well when sufficiently labelled data are avail-
able. However, in cases where no data or unlabelled data
are present, these techniques are not applicable and tend to
rely heavily on the correctness of the dataset and the fea-
tures represented by the dataset. Machine learning algorithms
are particularly effective for forecasting given historical data,
and numerous studies have been conducted to summarize the
performance of machine learning applications for forecasting
energy demand and production for BMG applications. One
such study focused on load forecasting in MGs based on
machine learning methods [87]. This study discusses various
time horizons for prediction, including short-, medium-, and
long-term. The work done in [88] focused on the demand-
side management of an MG. Demand side management (DSM)
is crucial for optimizing loads in smart islanded MGs with
batteries and distributed photovoltaics. This study combines
the elephant herding optimization algorithm (EHOA) and sup-
port vector machine (SVM) to reduce electricity bills, achieving
an 11.2% cost reduction compared with current methods.
Although supervised learning-based models have been applied
in the past to conventional BMGs, the lack of research on
hydrogen-based BMGs indicates that owing to the complex-
ity of hybrid MGs, supervised learning may not be the best
choice. Supervised learning techniques perform best when care-
fully crafted label data are present and the data to be predicted

conform to the labelled data. If the data to be predicted are suf-
ficiently random and do not conform to the training data, the
accuracy of supervised methods decreases rapidly.

4.3.2 Unsupervised learning

Unsupervised learning is a class of machine learning that iden-
tifies patterns and similarities in a dataset without preexisting
labels. It typically works on raw data without the need for
human involvement to label a dataset properly. The work done
in [89] focuses on demand-side management using unsuper-
vised learning techniques for the clustering of demand levels.
Unsupervised learning techniques are only applicable for clus-
tering unknown data and thus are not relevant to the main aim
of this review. Unsupervised learning is generally not applicable
to energy management in MGs for several reasons. First, energy
management tasks require specific outcomes or labels, such
as cost minimization or load balancing, which unsupervised
learning does not utilize because it focuses on identifying
patterns within unlabelled data. Second, energy management
involves clear goal-oriented tasks that are better addressed
by supervised learning or optimization techniques capable
of directly targeting these objectives. Additionally, effective
energy management requires complex decision-making based
on multiple variables and constraints such as energy prices,
demand forecasts, and storage capacities. Supervised learning
and optimization frameworks can explicitly model these com-
plexities, whereas unsupervised learning lacks the mechanisms
to incorporate and act on such constraints. Finally, energy
management often relies on precise predictions of future
energy production and consumption, tasks that are well-suited
to supervised learning models trained on historical data. By
contrast, unsupervised learning is not designed for prediction
tasks, making it less suitable for accurate energy forecasting.
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Thus, the goal-oriented, predictive, and decision-making nature
of energy management in BMGs better aligns with supervised
learning and optimization techniques.

4.3.3 Deep learning

At its core, deep learning is a machine learning technique that
uses ANN to mimic the structure and function of a human
brain. A deep neural network, represented in Figure 7, con-
tains a complex network of nodes called neurons that mimic
the functioning of the human brain. Each neuron forms a net-
work with the other nodes using a link that carries a weight. This
weight determines the strength of the relationship between the
nodes. The output layer provides a prediction based on the rel-
ative strengths and weaknesses of the relationships between the
nodes. Deep learning, which uses hidden layers to abstract pat-
terns for learning higher-level features, has been effectively used
to optimize and control BMGs. In [90], a deep learning-based
embedded forecaster and optimizer were developed. Using this
approach, the EMS can minimize the power drawn from the
grid and improve the system autonomy rate. In [91], a hybrid
EMS that considered offline optimization along with a real-time
rule-based engine was proposed. Optimization is performed in
the receding horizon with load and solar generation forecast
profiles using the deep learning-based long short-term memory
(LSTM) method in the rolling horizon to reduce daily electricity
purchase costs.

In [92], a deep-learning-based EMS was proposed for the
combined heating, cooling, and energy management of a BMG.
In [93], a deep-learning-based optimization technique was pro-
posed for the joint operation of PV, hydrogen, and wind-based
systems. Based on wind energy, photovoltaic energy generation,
and load forecast information, the method uses a deep Q net-
work to simulate the energy management strategy set of the
hydrogen-electric coupling system and obtains the optimal strat-
egy through reinforcement learning to finally realize the optimal
operation of the hydrogen-electric coupling system based on the
demand response.

Figure 8 shows the operation of the neural-network-based
EMS controller. This type of EMS is typically suited for hier-
archical control, in which data are received from multiple
local controllers. These controllers aggregate data and send the
resulting dataset to a centralized controller. The centralized con-
troller then uses these data as inputs for the computational block
of the neural network. This block then computes the required
parameters such as the power dispatch for local environments.
This is performed using neural paths with weights assigned to
each path. Over time, neural networks adjust their learning paths
to determine the optimal state of the system.

4.3.4 Reinforcement learning

In reinforcement learning (RL) the model iteratively learns to
adapt. Each positive action provided positive reinforcement for
the model. Figure 8 shows the operation of the reinforcement

algorithm. In [94], a residential EMS based on reinforcement
learning techniques was proposed. It uses a dual-targeting algo-
rithm to simultaneously control energy storage and HVAC
systems. In [95], a novel reinforcement learning approach for
distributed residential buildings was proposed using an agent-
based approach. The agents control the flexibility of the EVs,
space heating, and flexible loads. Accordingly, Figure 9 shows
the operation of reinforcement learning in hybrid BMGs. The
RL agent takes the input from the environment, which in
most cases is the BMG (it can be an external factor such
as weather), with the objective of reaching the desired state
(power balance, cost minimization) takes action. Over a cycle
or episode, in RL terms, it measures the response generated
by the environment, and based on the rewards (penalties), it
can adjust its set points (dispatch power etc.) to optimally run
the MG.

In [96], optimal energy management was achieved in real-
time based on deep reinforcement learning techniques. The
results indicated that using a reinforcement-based approach
led to a more stable update rate for the parameters. This also
demonstrates that the approach is more suitable for handling
uncertainties in the system. For multiple input multiple output
(MIMO) systems, Other techniques have been used for the opti-
mization and control of multiple-input multiple-output systems.
Model predictive control is one such technique used for the pre-
dictive control of MGs. MPC uses a model of the system to
predict the system’s behaviour. In [97], an MPC was proposed
for residential BMG. The objective of this study was to optimize
and find suitable configurations for cost-effective solutions. In
[98], demand response energy scheduling was presented, which
takes advantage of combined Q-learning-based reinforcement
and MPC to ensure optimal scheduling.

4.3.5 Model predictive control

Model predictive control (MPC) is a control technique that
offers an operation similar to reinforcement learning. MPC
relies on the dynamic models of the system, as shown in
Figure 10. It contains a central controller with a predictive
model and optimizer. The MPC block applies control inputs
to the plant and measures its effects. Based on these effects,
the controller behaviour was adopted, and system disturbances
were considered. MPC techniques have been extensively used
for the operation and control of BMGs. In [99], an MPC-based
scheduling methodology was proposed for the seasonal storage
of hydrogen. The strategy utilizes data-driven predictions of an
industrial power plant’s energy production and consumption
and optimizes energy flows via a digital twin optimizer. Seasonal
operations were facilitated by incorporating storage charge costs
into the optimization target function using a hybrid control
scheme based on rule-based heuristics to mitigate prediction
inaccuracies. Achieving balanced hydrogen production and
consumption annually, the strategy meets all energy demands
with only a 6% oversizing relative to the optimal system layout.
In addition, [41] developed a two-level hierarchical model
predictive controller for the optimal scheduling of a BMG with
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FIGURE 8 Distributed EMS running a deep neural network optimizer for power dispatch.

FIGURE 9 Reinforcement learning mechanism for a hybrid microgrid.

batteries and hydrogen storage. Compared to a standard rule-
based strategy, the proposed controller reduces annual costs
by up to 5% in residential buildings and 9% in non-residential
buildings. Based on the MPC controller mechanism shown in
Figure 10, MPC typically consists of an optimizer along with
a model of the system. Using a plant model (MG), the MPC
controller can predict future plant outputs, trying to reach the
desired reference state as closely as possible.

In [100], a closed-loop MPC model was proposed for the
energy management of a hybrid system. This study evaluates
potential improvements in the operational strategy of a hybrid
battery-hydrogen energy storage system using mathematical
optimization techniques. A simulation model of the hybrid
energy storage system and a custom mixed-integer linear pro-
gramming (MILP) optimization model were employed within
a model predictive control (MPC) framework. The operational
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FIGURE 10 MPC controller for a hybrid BMG.

strategies derived from various MPC settings were compared
with those generated by a rule-based controller, demonstrat-
ing the potential advantages of MPC over traditional methods.
A comprehensive analysis was conducted to examine the fac-
tors influencing the effectiveness of MPC, including a sensitivity
analysis of different electricity demand scenarios and resource
sizes. The findings indicate that the MPC reduces energy con-
sumption by at least 3.9% and up to 17.9% compared to the
rule-based controller.

4.4 Fuzzy logic-based EMS

Fuzzy logic is an approach to variable processing that allows
multiple possible truth values to be processed using the same
variables. Fuzzy logic attempts to solve problems with an open
and imprecise spectrum of data and heuristics, which makes it
possible to obtain an array of accurate conclusions. Fuzzy-logic-
based energy management strategies are a recent trend in BMG
management. Recent studies have shown that this approach
can provide several improvements in energy management. The
application of fuzzy-logic-based controllers has shown promis-
ing results in the energy management of smart homes. In [101],
a type 2 fuzzy logic controller was proposed. The objective is to
achieve demand-side energy management. The results showed
that by using the fuzzy logic controller, the energy costs were
reduced by 71.5%.

Figure 11 shows a global overview of the EMS tech-
nologies used in different hybrid BMGs. Deterministic and
rule-based approaches to hydrogen-based BMGs, such as lin-
ear programming and MILP are suitable for simpler systems.
When hydrogen production is stable and predictable, deter-
ministic methods are sufficient for optimizing the BMG.
When either user demand or solar availability is subjected
to sufficient randomness, stochastic methods are better tools
for achieving energy optimization in a BMG. As discussed

previously, they can be broadly classified into three main
categories.

Based on the aforementioned analysis, Table 2 provides an
overall summary of the different EMS categories according to
the previously defined criteria. Three different approaches were
compared with respect to the criteria listed in the columns.
For simpler systems, deterministic approaches are sufficient
and do not require significant computational resources for
the EMS to operate. However, their simplicity implies that in
highly dynamic systems, they may not live up to the desired
performance levels. For predictive applications and BMGs
with more uncertainty, reinforcement learning- and machine
learning-based approaches are better suited because they can
handle disturbances and deviations in a much more robust man-
ner. The * in Table 2 refers to the level of dependence on a
particular criterion. For example, linear programming with 1
* for predictive capabilities means that linear programming is
not a suitable candidate if the goal is to have high predictive
capabilities. Similarly, five * signify the most correlation of that
characteristic with a given methodology.

5 MAJOR FINDINGS AND FUTURE
RECOMMENDATIONS

Over time, the optimization and control domains in BMGs have
evolved, particularly with the advent of hydrogen-based storage,
leading to an increased complexity of the control methodolo-
gies. The energy management systems (EMSs) field for such
BMGs is changing dynamically, with no definitive consensus
on the most effective energy management and optimiza-
tion approach. However, contemporary research is gravitating
towards feedback-based methods, such as reinforcement learn-
ing (RL) and model predictive control (MPC), particularly
for scenarios with ample computational resources. RL enables
agents to learn optimal behaviours through interactions with the
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FIGURE 11 EMS methodologies used for hybrid BMGs.

TABLE 2 Global comparison of EMS algorithms with predefined criteria.

EMS methodology

Predictive

capabilities

Computational

complexity Flexibility

Data

dependency

Model

dependency

Multisystem

consideration

Linear programming * * * * * * * * * * * * *

Mixed integer linear programming * * * * * * * * * * * * *

Non-linear programming * * * * * * * * * * * * * * * *

Dynamic programming * * * * * * * * * * * * * * *

Genetic algorithm * * * * * * * * * * * * *

Particle swarm optimization * * * * * * * * * * * * * * *

Reinforcement learning * * * * * * * * * * * * * * * *

Fuzzy logic * * * * * * * * * * * * * * * * * *

Q-learning * * * * * * * * * * * * * * ** **

Model predictive control * * * * * * * * * * * * * * * * * * * * *

Supervised learning * * * * * * * * * * * * * *
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environment without requiring explicit supervision or labelled
data. The agent learns from the consequences of its actions,
which fosters autonomous decision-making. RL agents can
adapt to dynamic and uncertain environments. As they learn
continuously from new experiences, they can adjust their strate-
gies to accommodate changes and unforeseen circumstances.
RL inherently balances exploration (testing new actions) and
exploitation (utilizing known actions to maximize rewards). This
balance helps discover optimal policies, even in complex and
unfamiliar environments.

In resource-constrained environments, deterministic meth-
ods tend to exhibit superior performance owing to lower
computational demands. Although RL and MPC may lack
historical data context for accurate long-term predictions, clas-
sical machine learning approaches offer better solutions by
leveraging the historical context from training datasets. Given
sufficient data, machine learning (ML) models can surpass RL
or deterministic optimization methods, which may overlook
specialized BMG scenarios. RL and MPC-based algorithms also
demonstrate heightened robustness to external disturbances
owing to their inherent adaptability. In complex systems involv-
ing various prosumers, a hybrid approach combining different
methodologies can yield superior results. This mix leverages the
strengths of each approach, thereby enhancing overall system
performance and reliability.

In the case of hydrogen-based microgrids, owing to their
particular demands regarding the interaction of multiple com-
ponents such as electrolysers, fuel cells, and batteries, RL and
MPC are well suited for such BMG because of their ability to
interact with systems in near real-time and adapt their behaviour
according to the changes faced by the BMGs. The disadvantage
of these approaches is their limited ability to make future pre-
dictions. MPC can predict the future state of a system within a
predefined time window. In the case of RL, a well-defined RL
agent must be trained with a well-crafted reward function that
incorporates the desired energy management strategy. A lim-
itation of RL-based methods is the suitability of their reward
mechanisms. The reward function must incentivize the desired
outcomes for BMG, for example, increasing the autonomy or
lifetime of components and penalizing the undesired conditions
for energy management in a BMG, for example, decreased per-
formance of lower efficiency. Thus, for hydrogen-based BMGs,
it is recommended to focus on the development of an all-
encompassing reward function for RL before an agent is trained
for energy optimization in a BMG.

6 CONCLUSION

As previously reviewed, the EMS is the backbone of the most
modern hybrid BMG. Hydrogen along with batteries has the
potential to play a transformative role in building resilient, sus-
tainable, and efficient BMGs, offering a range of benefits to
both energy consumers and broader energy systems. How-
ever, with the increasing complexity of MGs, an adapted and
optimized operation is essential.

The literature review indicates that, to date, there have been
very few attempts to classify optimization and control meth-
ods specifically for these scenarios. The novelty of the work
presented in this paper lies in its focus on EMS applications
for BMGs with combined heat and electrical demands from
a hydrogen application perspective. This study also focuses
on hydrogen applications in the context of building MGs. A
comparative study was performed on strategies for energy man-
agement for such MGs and on how some approaches, such as
RL and MPC are better for such MGs owing to their adaptability
and flexibility.

The algorithms presented in this paper were compared
according to predefined criteria, and their relative strengths
and weaknesses were assessed. The complexity of systems
with multiple indeterministic components suggests that cer-
tain approaches are better suited for achieving higher self-
consumption and autonomy levels.

A literature review revealed that the combination of MPC and
RL techniques offers an optimal strategy for managing MGs.
Considering the practical constraints and existing infrastructure,
these methods appear to be the most suitable for such systems.
However, there is a significant trade-off between the compu-
tational complexity, predictive accuracy, and robustness of the
EMS. The choice of the control method should be tailored to a
specific system size and economic considerations.

NOMENCLATURE

AI Artificial intelligence
ANN Artificial neural network
BMG Building microgrid

CNN-GRU Convolutional neural network-based gated recur-
rent unit

CoH Cost of hydrogen
DER Distributed energy resources

DG Distributed generation
DHW Domestic hot water
DNN Deep neural network

DP Dynamic programming
EMS Energy management system
ESS Energy storage system
GA Genetic algorithm
HV Hydrogen vehicle

IDA-PBC Interconnection and damping assignment
passivity-based control

IEHCCS Integrated electricity hydrogen conversion and
charging station

LP Linear programming
LSTM Long short-term memory

MG Microgrid
MILP Mixed integer linear programming

MIMO Multiple input multiple output
ML Machine learning

MPC Model predictive control
MPG Micro power grid system

NPBA Net power-based algorithm
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Pely Electrolyser power
PEM Point estimate method
PSO Particle swarm optimization

PV Photovoltaic
RES Renewable energy sources

RF Random forest
RF Reinforcement learning
RL Reinforcement learning

RTOS Real-time operating system
SO System operators

SoC State of charge
SoH State of health

STLF Short-term electricity load forecasting
SVM Support vector machines
TLA Teacher learning algorithm

Tsp Set point temperature
Vbatt Battery voltage
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