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Genome-wide association analysis provides 
insights into the molecular etiology of 
dilated cardiomyopathy

Dilated cardiomyopathy (DCM) is a leading cause of heart failure and  
cardiac transplantation. We report a genome-wide association study and 
multi-trait analysis of DCM (14,256 cases) and three left ventricular traits 
(36,203 UK Biobank participants). We identified 80 genomic risk loci and 
prioritized 62 putative effector genes, including several with rare variant 
DCM associations (MAP3K7, NEDD4L and SSPN). Using single-nucleus 
transcriptomics, we identify cellular states, biological pathways, and 
intracellular communications that drive pathogenesis. We demonstrate 
that polygenic scores predict DCM in the general population and modify 
penetrance in carriers of rare DCM variants. Our findings may inform the 
design of genetic testing strategies that incorporate polygenic background. 
They also provide insights into the molecular etiology of DCM that may 
facilitate the development of targeted therapeutics.

Dilated cardiomyopathy (DCM) describes a spectrum of heart mus-
cle diseases that are characterized by impaired left ventricular (LV) 
myocardial contractility and dilatation, in the absence of coronary 
artery disease (CAD) or abnormal loading conditions1,2. DCM affects 
approximately one in 250 individuals and is among the primary eti-
ologies of heart failure, as well as the leading cause of cardiac trans-
plantation3. Pathogenic variants in relevant genes can cause DCM 
via monogenic disease mechanisms; however, recent evidence sug-
gests important direct and indirect effects of polygenic background 
on DCM risk4. Characterization of the complex genetic architec-
ture underlying DCM provides opportunities for improved clinical 
genetic testing and the discovery of pathways and genes to inform  
therapeutic development.

Results
Genome-wide association study and multitrait analysis of 
dilated cardiomyopathy identifies novel genomic risk loci
We performed a meta-analysis of case–control genome-wide asso-
ciation studies (GWASs) comprising 14,256 DCM cases and 1,199,156 
controls, from 16 studies participating in the Heart Failure Molecu-
lar Epidemiology for Therapeutic Targets (HERMES) Consortium5 
(Fig. 1, Extended Data Fig. 1, Supplementary Tables 1 and 2, and 

Supplementary Information 1). Patients who meet guideline defini-
tions of DCM may not carry the disease label, leading to incomplete 
ascertainment of cases6. To improve DCM ascertainment in large 
research cohorts and health record-based biobanks, we developed 
a phenotyping algorithm without a requirement for data on LV 
chamber dimensions (Supplementary Information 2), which are 
frequently not available in studies. Of the 16 studies, six included 
cases recruited from specialist clinical cohorts or unequivocal DCM 
diagnostic codes (DCMNarrow: 6,001 cases (76.2% recruited from spe-
cialist clinical cohorts) and 449,382 controls), whereas 11 ascertained 
cases based on an inclusive definition of LV systolic dysfunction in 
the absence of secondary causes, without specific requirements 
for ventricular dilatation (DCMBroad: 9,299 cases and 1,157,145 con-
trols). We found complete genetic correlation between DCMNarrow and  
DCMBroad (rg = 1.00), highlighting the shared genetic architecture 
between these phenotype definitions, and all studies were therefore 
combined for meta-analysis (DCM GWAS).

Among 9,656,392 common variants (minor allele frequency 
(MAF) > 0.01) included in the meta-analysis, we identified 27 inde-
pendent variants at 26 genomic loci passing genome-wide significance 
(P < 5 × 10−8) (Fig. 2, Extended Data Fig. 2 and Supplementary Table 3). 
Eighteen of the 26 loci were associations that had not been previously 
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Fifty-eight sentinel variants at 54 loci were identified at P < 5 × 10−8 by 
DCM MTAG, including 18 loci not identified in our GWAS at FDR < 1%. 
Twenty-eight of the 54 loci were associations not previously reported 
for DCM or any of the three LV traits included in the MTAG (Supple-
mentary Tables 3 and 4).

A total of 59 genomic risk loci reached genome-wide significance in 
GWAS or GWASMTAG, 31 of which had not been previously reported to be 
associated with DCM or related cardiac traits (Supplementary Tables 3 
and 4). Among loci identified in the DCM GWAS, 25 FDR-significant loci 
were not significant in DCM MTAG; however, all uniquely significant 
loci (DCM GWAS and DCM MTAG) had directionally concordant effects 
(Extended Data Fig. 3). For subsequent locus- and gene-based analyses 
we investigated a discovery set of 80 genomic loci, identified through 
either DCM GWAS (FDR < 1%) or DCM MTAG (P < 5 × 10−8), applying a 
range of orthogonal approaches to prioritize potential effector genes.

Using functionally informed fine-mapping, we identified 100 
credible sets of likely causal variants at 63 of 80 loci. The credible sets 
consisted of 1,392 variants (60.6% intronic, 25.4% intergenic and 4.8% 
exonic). Among these, 83 variants identified at 43 loci had a posterior 
inclusion probability (PIP) > 0.5 (Extended Data Fig. 4 and Supplemen-
tary Table 6). Several fine-mapped coding variants were found within 
known DCM genes (FLNC, BAG3 and TTN) and genes with plausible 
effects on cardiac function (NEXN and MYBPC3), including deleterious 
missense variants (combined annotation-dependent depletion Phred 
score >15) in TTN, BAG3 and MYBPC3.

reported for DCM (Supplementary Tables 3 and 4). An additional 36 
variants at 36 loci met the criterion of a 1% false discovery rate (FDR) 
(equivalent to P < 2.2 × 10−6).

Next, we compared the effect estimates from DCM GWAS against 
the subset of six studies with cases carrying a clinical diagnosis  
(DCMNarrow GWAS, Extended Data Fig. 3). All 62 DCM GWAS loci identi-
fied using the 1% FDR threshold had directionally concordant effects 
in DCMNarrow GWAS. Of these, ten loci reached the genome-wide sig-
nificance threshold (P < 10−8) with most having a larger effect size in 
DCMNarrow GWAS (Supplementary Table 3 and Extended Data Fig. 3). 
Using linkage disequilibrium (LD)-adjusted kinships (LDAK) with sum-
mary statistics from GWAS7, we estimated the heritability explained 
by common single-nucleotide polymorphism (SNPs; h2

SNP) on the 
liability scale as 20% (2.1% s.d.) for DCMNarrow GWAS and 11% (1% s.d.) 
for DCM GWAS.

To explore shared genetic etiology with quantitative LV traits and 
to evaluate the potential of combining traits through multitrait analysis 
of GWAS (MTAG), we estimated the pairwise genetic correlation (rg) 
between DCM and ten cardiac magnetic resonance imaging-derived 
(CMR) traits from 36,203 participants in the UK Biobank (UKB), using 
bivariate LD score regression8,9. Three LV traits were highly correlated 
with DCM: end-systolic volume (LVESV), rg = 0.73; global circumferen-
tial strain, rg = 0.71; and ejection fraction (LVEF), rg = −0.70) (Supple-
mentary Table 5). These traits were included in a DCM-anchored MTAG 
(DCM MTAG), allowing for a joint analysis to increase statistical power10. 
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Fig. 1 | Study overview of European ancestry DCM GWAS performed in 14,256 
cases and 1,199,156 controls from 16 studies. Cases were defined as having a 
clinical diagnosis or unequivocal disease label for DCM (DCMNarrow) or a more 
inclusive definition of LV systolic dysfunction, with or without LV dilatation 
(DCMBroad), in the absence of CAD, severe valvular heart disease or congenital 
heart disease. Genetic correlation was performed to identify traits suitable for 
inclusion in meta-analysis and multitrait analysis of GWAS (MTAG). The MTAG 
analysis combined DCM GWAS with GWAS of genetically correlated quantitative 

cardiac magnetic resonance (CMR) imaging-derived traits (DCM MTAG). 
Downstream analyses included elucidating the genetic architecture of DCM, 
genomic risk loci annotation and prioritization of candidate genes, integration 
with single-cell transcriptomics to identify perturbations of candidate gene 
expression, and generation and evaluation of polygenic risk scores (PGS) for 
DCM. LVESV, LV end systolic volume; LVEF, LV ejection fraction; straincirc, global LV 
circumferential strain. Figure created with BioRender.com.
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Fig. 2 | Manhattan plot of DCM GWAS and DCM MTAG identifying novel (red) 
and previously reported (orange) genomic loci associated with DCM. Loci 
reaching genome-wide (P < 5 × 10−8, dashed blue line) in DCM GWAS and DCM 
MTAG, and FDR (αFDR < 1%, dashed light blue line) in DCM GWAS are highlighted. 

Loci are annotated with the nearest protein-coding gene(s) of all conditionally 
independent variants within the locus and ordered in ascending genomic 
location. P values were two-sided and based on an inverse-variance weighted 
fixed-effects model and not adjusted for multiple testing.
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Effector gene prioritization and pathway enrichment analysis 
identify molecular mechanisms
To prioritize effector genes for DCM, we assessed functional evidence 
for 1,970 protein-coding genes situated within or overlapping the iden-
tified genomic risk loci (Fig. 3a and Supplementary Table 7). First, using 
a combination of nearest gene, locus-based (variant-to-gene (V2G)) and 
similarity-based (polygenic priority score (PoPS)) methods, we identi-
fied 380 candidate genes for further prioritization (median 5 per locus; 
interquartile range 4–6). Second, by incorporating additional evidence 
from five complementary methods—coding variants, colocalization 
with expression quantitative trait loci (eQTL), transcriptome-wide 
association studies (TWAS), activity-by-contact (ABC) model, and 
established Mendelian cardiomyopathy- or muscle-disease-causing 
genes—along with results from the three initial methods, we identified 
a single prioritized gene at 62 of 80 loci (Fig. 3b, Extended Data Fig. 5 
and Supplementary Table 8). The highest prioritization scores were 
for MYPN (prioritized by seven of the maximum of eight predictors), 
followed by HSPB8 and ALPK3 (six predictors), and ACTN2, SPATS2L and 
BAG3 (five predictors). Highlighting the robustness of this framework, 
all ClinGen genes with definitive evidence for Mendelian cardiomyo-
pathy, except LMNA, were prioritized at their respective loci. Genes 
associated with Mendelian forms of hypertrophic cardiomyopathy 
(HCM) (MYBPC3, ALPK3 and FHOD3) were also identified at genomic 
risk loci for DCM, a finding consistent with evidence that these dis-
orders represent opposing extremes of a continuum of ventricular 
structure and systolic function9,11. We also identified PITX2, which has 
been previously shown to be strongly associated with atrial fibrilla-
tion (AF)12. To estimate the extent to which the DCM risk effects of 
PITX2, and the other identified risk loci, were related to AF, we con-
ditioned the DCM GWAS summary statistics on AF using multitrait 
conditional and joint analysis (mtCOJO). Conditioning on AF partially 
attenuated the association signal at the PITX2 locus, implying some 
genetic effects on DCM risk independent of AF. Genetic association 
estimates for all other loci were robust to conditional analysis on AF, 
suggesting that the genes identified primarily influence DCM risk  
(Extended Data Fig. 6).

Pathway analysis of prioritized genes identified enrichment of 72 
cellular components and functions, including sarcomeric and cytoskel-
etal function, cellular adhesion and junction organization, aggrephagy, 
and Wnt and TGFβ signaling (Fig. 3b,c and Supplementary Table 9). 
Novel prioritized GWAS genes MAPT13 and MYL6 (ref. 14) contributed 
to the enrichment of pathways for contractile and cytoskeletal func-
tions. The important role of cell-to-cell adhesion and cell-to-matrix 
interaction in DCM pathogenesis is underscored by the many effec-
tor genes acting at these interfaces. STRN encodes the desmosomal 
protein striatin, the canine ortholog of which has been implicated in 
dilated and arrhythmic cardiomyopathy15. SSPN encodes sarcospan, a 
key component of the dystrophin glycoprotein complex that has been 
linked to severe skeletal and cardiac muscle disorders. Other effector 
genes acting at the cell membrane identified include MTSS1 (ref. 16), 
PDLIM5 (refs. 17,18), THBS1 and TMEM182 (ref. 19).

Cell signaling components were prominently featured among 
the prioritized genes, including members of the TGFβ (BAMBI, INHBB, 
PITX2 and THBS1) and Wnt (CAMK2D, MAP3K7, NEDD4L, NFATC1, PRKCA 
and RNF207) signaling pathways. INHBB encodes a secreted factor, and 
THBS1 a transmembrane glycoprotein, both of which activate the TGFβ 
receptor, while BAMBI encodes a TGFβ-like pseudoreceptor that acts 
as a negative regulator of TGFβ signaling20. TGFβ signaling has been 
shown to be important in the development of fibrosis in cardiomyo-
pathy models21. Several genes encoding heat-shock proteins (HSPA4, 
HSPB7 and HSPB8) were also identified, expanding on the established 
role of BAG3 and the unfolded protein response and endoplasmic 
reticular stress on DCM pathogenesis. Additionally, FBXO32 encodes 
a muscle-specific ubiquitin ligase involved in protein degradation that 
has been proposed as a rare cause of DCM22.

For genomic loci where a single high-confidence gene could not 
be identified, we manually curated the locus by integrating informa-
tion from enriched biological pathways. The identified candidate 
genes were associated with cytoskeleton function (ROCK2 (ref. 23) at  
locus 13), cell adhesion (ITGA5 at locus 52), MAPK signaling (EPHB1 at 
locus 23), and the unfolded protein response (DNAJC18 at locus 31 and 
CRYAB at locus 50). Other notable genes included: the taurine trans-
porter SLC6A6 (locus 20), with existing evidence of taurine deficiency 
causing feline DCM24; the cardiac-expressed K+ channel KCNIP2, which 
has been implicated in Brugada syndrome and conduction abnor-
malities25; RRAS2, where gain of function variants are a cause of Noonan 
syndrome and accompanying hypertrophic cardiomyopathy26,27; and 
several genes implicated in myopathy, including CHCHD10 (locus 80) 
and DMPK (locus 76).

Rare variant burden association analysis of putative DCM 
effector genes
Within the identified DCM loci were seven Mendelian cardiomyopathy 
genes cataloged in ClinGen, a curated database of Mendelian-disease 
causing genes, with definitive evidence (DCM: TTN, FLNC, LMNA, BAG3; 
HCM: MYBPC3, ALPK3, FHOD3) and seven genes with moderate or lim-
ited evidence (DCM: PRDM16, LDB3; DCM or HCM: OBSCN, VCL, NEXN, 
MYPN; intrinsic cardiomyopathy: ACTN2). Emphasizing the role of gene 
dosage as a likely mechanism of action at GWAS genes28 and the con-
tinuum of disease risk, four of the seven definitive evidence Mendelian 
DCM genes, established to act through mechanisms involving reduced 
gene product29, were identified through GWAS: TTN, FLNC, LMNA and 
BAG3. We observed a tenfold enrichment of Mendelian cardiomyopathy 
genes within GWAS loci (odds ratio (OR) = 9.7, P = 1.1 × 10−6).

Next, we performed rare variant (MAF < 0.001) burden associa-
tion analysis (RVAS), focusing on protein truncating variants (PTVs). 
This analysis was applied to (1) all DCM genes with definitive or mod-
erate evidence for Mendelian DCM30, to characterize the overall 
genetic architecture of DCM; and (2) genes prioritized at the iden-
tified GWAS loci through functional genomics analysis, to identify 
potential novel causes of Mendelian DCM and cardiomyopathy. In 
453,455 participants with whole-exome sequencing from the UKB, a 
population-based cohort recruiting middle-aged and older individu-
als, the combined risk effects of rare variants in ClinGen definitive- or 
moderate-evidence DCM genes were orders of magnitude higher than 
those of GWAS sentinel variants mapping to the same genes (Fig. 4a and  
Supplementary Table 10).

To identify genes with a potential role in Mendelian DCM and 
cardiomyopathy, we investigated the effects of rare PTVs in the 62 
prioritized genes with binary disease outcomes (cardiomyopathy and 
heart failure phenotypes) and quantitative CMR traits. Analysis was 
performed using whole-genome data in 78,142 individual participants 
of Genomics England (GeL), a rare disease and cancer cohort that 
recruited probands and their relatives from clinical centers, and with 
whole-exome sequencing in the UKB (including a subset of 36,104 
with CMR). PTVs in three genes with limited or moderate evidence for 
Mendelian cardiomyopathy were nominally associated with DCM in 
GeL (MYPN: OR = 15.0, P = 0.03; PRDM16: OR = 40.3, P = 0.008) and with 
HCM in UKB (NEXN: OR = 24.1, P = 0.01) (Supplementary Tables 11 and 
12). No carriers of MYPN or PRDM16 PTVs where identified in UKB DCM 
cases, and only one case carried a NEXN PTV among HCM cases in GeL 
(OR = 1.3, P = 0.8) (Supplementary Tables 11 and 12). Rare PTVs in three 
prioritized genes, not established causes of cardiomyopathy, were 
found to be associated with binary diseases outcomes (MAP3K7 and 
NEDD4L with DCM) in at least one cohort (Fig. 4b and Supplementary 
Tables 11 and 12) and with quantitative traits (NEDD4L, MAP3K7 and 
SSPN) in UKB (Fig. 4b and Supplementary Table 13). PTVs in MAP3K7 
were associated with DCM in GeL (OR = 24.2, Benjamini–Hochberg 
adjusted P value (Padj= 0.02), and also with increased LV volumes (LV 
end-diastolic volume (LVEDV) = +54 ml, Padj = 0.01, LVESV = +38 ml, 
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Fig. 3 | Locus annotation and candidate gene scoring prioritize genes at risk 
loci and important biological pathways and processes in DCM pathogenesis. 
a, Among all genes located within genomic risk loci (1,970 genes), candidate 
genes were selected based on proximity and being among the top three genes 
predicted using PoPS or V2G (380 candidate genes). Sixty-two genes were 
prioritized at 62 loci after scoring highest among the eight predictors.  
b, Pathway enrichment analysis of prioritized genes, highlighting pathways 
related to muscle structural constituents. Enrichment of effector genes 
within Gene Ontology pathways was performed using Fisher’s one-sided 

test with Bonferroni adjustment of P values for the total number of pathways 
tested. c, Schematic overview of pathways and processes highlighted in DCM 
pathogenesis, manually curated from pathway enrichment analysis and 
published literature. Genes with existing evidence of being Mendelian causes 
of cardiomyopathy are highlighted in bold. Asterisk indicates moderate or 
definitive evidence of causing cardiomyopathy30. GO:BP, Gene Ontology: 
Biological Process; GO:MF, Gene Ontology: Molecular Function; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; REAC (Reactome Pathway Database); ER, 
endoplasmic reticulum. a and c were created with BioRender.com.
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Fig. 4 | Rare variant analysis highlights the genomic architecture of DCM and 
identifies novel disease- and trait-associated genes. a, Genomic architecture 
of DCM incorporating effects arising from individual sentinel common variants 
(MAF > 0.01) in DCM loci (light blue), upper PGS quantiles of common variants 
(dark blue) and cumulative burden testing of rare PTVs (MAF < 0.001) in genes 
with moderate or definitive evidence of causing DCM30 (red). Population 
frequency represents MAF for individual sentinel variants, the proportion of the 
population contained within the quantile for PGS, and the cumulative population 
frequency of rare variants in burden-tested genes. Outcome for burden testing 
was DCM, with presentation of all genes reaching nominal significance (P < 0.05) 
following logistic ridge regression with Firth correction implemented using 
REGENIE. The gray highlighted region indicates smoothened regression lines 

of the upper and lower bounds for each effect estimate. b, Burden analysis of 
rare PTVs (MAF < 0.001) in 58 prioritized protein-coding genes in UKB (453,455 
participants with whole-exome sequencing, and 36,104 with CMR), highlighting 
established Mendelian cardiomyopathy genes (TTN, BAG3, FHOD3, ALPK3 and 
MYBPC3) and three novel genes (NEDD4L, MAP3K7 and SSPN). Red line indicates 
statistical significance (P < 8.6 × 10−4; 0.05 of 58 genes), and orange line indicates 
nominal significance (P < 0.05). Genes are ordered by mean P value across all 
tested traits, from lowest to highest, with genes reaching nominal significance 
(P < 0.05) for at least one trait highlighted in bold. Burden testing was performed 
using logistic ridge regression with Firth correction implemented using 
REGENIE. Detailed results are available in Supplementary Tables 11–13. HF, heart 
failure; LVSV, LV stroke volume; LVWTMax, maximum LV wall thickness.
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Padj = 4.4 × 10−4) in UKB. The importance of MAP3K7 in DCM patho-
genesis was futher underscored by the prioritization of additional 
pathway genes, including RNF207 (ref. 31), a regulator of MAP3K7 
activation, which has been identified as a possible cause of canine 
DCM32. PTVs in membrane receptor regulator NEDD4L were associated 
with DCM (OR = 10.4, Padj = 0.01) P and with quantitative traits in UKB  
(PTV: LVEDV = +29.7, Padj = 0.02; LVESV = +19.8, Padj = 0.005), with rep-
lication in GeL (heart failure OR = 13.0, P = 0.01). PTVs in SSPN were 
associated with significant changes in quantitative LV traits (LVEF 
−5.9%, Padj = 0.004 and LVESV + 13.0 ml, Padj = 0.02). Within a local DCM 
cohort, three of 337 cases (0.9%) carried PTVs in SSPN, compared with 
80 of 352,564 (0.02%) among UKB controls (P = 1 × 10−5). SSPN is a criti-
cal protein located within the dystrophin glycoprotein complex of 
muscle cells, including cardiomyocytes. Its activity protects against 
impairment of cardiac contractility resulting from dystrophin defi-
ciency in Duchenne muscular dystrophy, whereas loss of function 
destabilizes muscle adhesion and force generation33,34. An explora-
tory analysis of ultrarare variants (MAF < 1 × 10−5) that did not meet-
ing the minor allele threshold in UKB for the main RVAS, identified 
additional associations with DCM, specifically with SLC38A6 and SSPN  
(Supplementary Table 14).

Identifying key cell types and cellular processes using 
single-cell transcriptomics
To identify the organs, tissues and cell types mediating genetic risk of 
DCM, we performed bulk tissue-level heritability enrichment analy-
sis. Cardiac and other muscle-related tissues (including vascular and 
gastrointestinal smooth muscle) showed the highest levels of enrich-
ment (Fig. 5a and Supplementary Table 15). Cell type heritability was 
assessed using the sc-linker framework35, integrating single-nucleus 
RNA sequencing (snRNA-seq)36 of LV tissue from 52 DCM patients with 
end-stage heart failure undergoing cardiac transplantation and 18 
controls, and genome-wide enhancer–promoter contact in the LV, 
with GWAS heritability. We identified biologically relevant cell types 
and disease-specific relationships by identifying enrichments in basal 
gene expression profiles within cardiomyocytes and DCM-specific dif-
ferentially expressed genes (DEGs) in cardiomyocytes, fibroblasts and 
mural cells (Fig. 5b and Supplementary Tables 16 and 17). When gene 
expression in control hearts was evaluated, most prioritized genes had 
the highest levels of expression in cardiomyocytes (Fig. 5c). Several of 
the prioritized DCM genes, including SSPN, MAP3K7 and NEDD4L, were 
differentially expressed in cardiomyocytes in DCM (Fig. 5d). Support-
ing the important role of noncardiomyocytes in DCM pathogenesis, 
fibroblasts and mural cells (primarily pericytes) consistently had higher 
proportions of DEGs in enriched biological pathways (Extended Data 
Fig. 7), with most prioritized genes being DEGs in noncardiomyocytes.

To explore cardiomyocyte and cardiomyocyte cell- 
nonautonomous mechanisms, as well as the role of prioritized genes 
encoding ligands or receptors, we investigated intercellular signaling 

pathways using CellChat37. This method combines cellular transcrip-
tomics, a priori knowledge of ligand–receptor–cofactor interactions 
and the law of mass action to quantify communication networks. In 
DCM, we observed an overall increase in global signaling, with notable 
reductions in cardiomyocyte–cardiomyocyte interaction strength 
(Extended Data Fig. 7). Additionally, there was an increase in interac-
tions of prioritized genes enriched in the TGFβ signaling pathway, 
along with specific changes in pathways containing specific prioritized 
genes. For example, interactions of COL4A1 and EPHB1 increased, while 
those of THBS1 decreased (Extended Data Fig. 7). Modest increases 
in overall collagen signaling were also found in DCM. Specifically, 
COL4A1 expression was increased in fibroblasts (Fig. 5d), with enhanced 
signaling to cardiomyocytes, fibroblasts and mural cells via integrins 
(Fig. 5e). EPHB1 (encoding Ephrin type-B receptor 1) expression was 
highest in cardiomyocytes, while its cognate ligand, EFNB2 (encoding 
Ephrin-B2), was expressed in endothelial cells. In DCM, the levels of the 
ligand increased, while there was a corresponding decrease in receptor 
production (Extended Data Fig. 7). Similar findings were reported in a 
single-nucleus RNA-sequencing study of pressure-overloaded human 
hearts38. BMPR1A was predominantly expressed in cardiomyocytes 
(Extended Data Fig. 7), with increased expression in mural cells and 
fibroblasts. This was associated with increased BMP6–BMPR1A signal-
ing from endocardial cells to cardiomyocytes and fibroblasts (Fig. 5f 
and Extended Data Fig. 7), as previously reported36.

Polygenic burden predicts risk and modifies penetrance in 
carriers of monogenic variants
Given the important contribution of common genetic variation to DCM 
heritability, we generated a polygenic score (PGSDCM) using 541,841 SNP 
predictors and evaluated it in 347,585 unrelated participants of White 
British ancestry from the UKB (Fig. 6a). The PGS was significantly associ-
ated with DCM (OR per PGS s.d. 1.76, 95% CI 1.64 to 1.90, P < 2 × 10−16; area 
under the receiver operating characteristic curve (AUROC) = 0.71) in the 
general population. The top centile had a fourfold increased risk com-
pared with the median (OR = 3.83, 95% CI 2.52 to 5.79, P = 2.1 × 10−10), and 
a sevenfold increased risk compared with the bottom centile (OR = 7.04, 
95% CI 2.42 to 20.52, P =3.5 × 10−4) (Fig. 6b,c). In 25,443 individuals from 
the UKB with CMR imaging, PGSDCM was associated with cardiac traits 
concordant with DCM (Supplementary Table 18). These included 
reduced contractility (LVEF: per PGS s.d. −0.7%, Padj = 8.1 × 10−78; top 
versus bottom centile 57.6 versus 60.8, Padj = 1.7 × 10−6) and increased 
volumes (LVEDV: +2.1 ml, Padj = 2.5 × 10−45; top versus bottom centile: 
158.1 versus 143.4, P = 3.1 × 10−6; LVESV: +1.9, P = 1.6 × 10−93; top versus 
bottom centile: 67.7 versus 56.6, P = 1.4 × 10−9). Given the variability 
in penetrance and expressivity of DCM in carriers of rare pathogenic 
variants39, we next evaluated whether common variants affected pen-
etrance of rare variants, as has previously been demonstrated in HCM11. 
In 1,546 carriers of pathogenic variants in DCM-causing genes in UKB 
(prevalence 0.5%), PGSDCM stratified DCM prevalence (top quintile: 7.3%, 

Fig. 5 | Integration of genomics and transcriptomics identifies genes and 
biological mechanisms in DCM. a,b, Partitioned heritability at tissue level 
(a) and at cell type level (b) from snRNA-seq data of 52 DCM cases and 18 
controls. Enrichment P values were adjusted using the Benjamini–Hochberg 
method. Dashed line indicates FDR-adjusted P value of 0.05. For cell-type-
specific heritability enrichment, cardiomyocyte marker and disease-specific 
expression in cardiomyocytes and mural cell types remained significant when 
the tau coefficient was used (Supplementary Table 16). c, Cell type expression 
of prioritized genes in single-nucleus transcriptomics from LV tissue in 18 
control donors. Mean expression is scaled from minimum to maximum, and 
the proportion of expressing nuclei within a cell type is indicated by dot size. 
Cardiomyocyte expression is indicated in the gray shaded box. d, Differential 
expression of candidate genes across the range of major cell types. Red and  
blue indicate increased and reduced gene expression in DCM compared with 
controls, respectively. Yellow dot indicates significant DEGs within a cell  

type at FDR < 0.05. Genes are ordered by highest absolute log fold-change 
difference across cell types. Cell types are ordered by abundance from greatest 
(outer) to least (inner). e, Increased COL4A1 signaling from fibroblasts to 
cardiomyocytes, fibroblasts and mural cells via integrins from DCM single-
nucleus transcriptomics. Communication probability indicates the scaled 
strength of interaction from maximum to minimum signaling interactions 
between cell types. Dot color reflects communication probabilities, and dot size 
represents P values computed by one-sided permutation test. f, Upregulation 
of BMP6 (ligand) in endocardial cells, resulting in increased signaling through 
BMPR1A in cardiomyocytes, fibroblasts and mural cells. Communication 
probability indicates the scaled strength of interaction from maximum 
to minimum signaling interactions between cell types. Dot color reflects 
communication probabilities, and dot size represents P values computed by one-
sided permutation test. NC, neuronal cell; AD, adipocyte; FC, fold change; CNS, 
central nervous system; Max., maximum; Min., minimum.
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bottom quintile: 1.7%, P 0.005), including in 1,166 carriers of rare TTN 
PTVs (Fig. 6d). DCM risk was higher in carriers of pathogenic variants 
in DCM-causing genes compared with gene-negative individuals in 
the top centile of PGS risk (OR = 6.4, 95% CI 4.0 to 10.3, P = 6 × 10−14). 

Finally, we conducted a phenome-wide association study (pheWAS) 
of PGSDCM to explore genetic relationships between common variant 
risk and other traits and diseases. We identified significant associa-
tions with heart failure and several related cardiovascular phenotypes 
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(electrophysiologic and valvular), as well as established risk factors for 
impaired cardiac function (hypertension and obesity) (Fig. 6e). We also 
found significant associations with cardiac ischemic phenotypes and 
inverse associations with HCM, as previously described9. Genetic asso-
ciation estimates for all DCM loci were robust to conditional analysis on 
CAD and systolic blood pressure (SBP) using mtCOJO, suggesting that 
the identified genes primarily affect DCM risk (Extended Data Fig. 6). 
The pheWAS associations were robust to adjustment for measured 
hypertension, while adjustment for DCM and heart failure diagnoses 
resulted in loss of associations with ischemic phenotypes and obesity 
(Extended Data Fig. 8).

Discussion
In conclusion, through GWAS meta-analysis and multitrait analysis 
with LV traits, we identified 59 genomic loci for novel DCM, 31 of which 
had not been previously reported. These loci, along with an additional 
21 loci significant at an FDR of 1% (80 loci in total), were investigated 
using a systematic approach for locus annotation and gene prioriti-
zation. We prioritized 62 effector genes for DCM, which were asso-
ciated with key biological pathways in disease pathogenesis. Using 
single-nucleus transcriptomics from explanted end-stage DCM hearts, 
we demonstrated the importance of these pathways and highlighted 
the key role of noncardiomyocyte cell types and noncell-autonomous 
effects, including Ephrin-B and BMP6 signaling. Rare variant asso-
ciation analysis of the prioritized genes also identified previously 
unrecognized potential causes of Mendelian DCM, including MAP3K7, 
NEDD4L and SSPN. Finally, we demonstrate that a DCM polygenic score 
directly affects DCM risk and modifies disease penetrance in carri-
ers of rare pathogenic variants. These findings provide mechanistic 
insights into the genetic architecture and molecular etiology of DCM 
and may inform therapeutic strategies for both DCM patients and 
at-risk individuals.
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Methods
Ethics statement
This research complied with all relevant ethical regulations. All patients 
gave written informed consent, and all studies were approved by the 
relevant regional research ethics committees and adhered to the prin-
ciples set out in the Declaration of Helsinki. Details of ethics approvals 
for individual studies are provided in the Supplementary Information.

Phenotype and study populations
DCM was defined in each participating study using a harmonized, 
rule-based, multimodal phenotyping algorithm as a guide. DCM was 
defined as LV systolic dysfunction with or without LV dilatation in 
the absence of secondary causes of heart failure (CAD, valvular heart 
disease or congenital heart disease); see Supplementary Information 1 
for full definitions. Individuals with CAD, valvular heart disease or con-
genital heart disease were excluded from the control group. Imaging 
evidence or physician adjudication was preferred, but, where this was 
unavailable, classifiers were defined as the presence of at least one rel-
evant diagnosis or procedural code from the patient’s medical records.

Discovery GWAS and multitrait analysis of GWAS
The current GWAS meta-analysis included 14,256 cases and 1,199,156 
controls of European ancestry from 16 studies in the HERMES Con-
sortium (cohorts described in Supplementary Information 2 and Sup-
plementary Table 1). Genotyping for 15 of 16 studies was performed 
locally in each participating study using high-density genotyping arrays 
imputed against reference whole-genome sequencing panels from the 
Haplotype Reference Consortium (14 studies), 1000 Genomes Project 
(ref. 40) or population-specific reference panels (Estonian Biobank 
and deCODE) (Supplementary Table 2). Genotyping for the GeL cohort 
was done using whole-genome sequencing. Genetic association tests 
were performed per study per phenotype, using a logistic regression 
model assuming additive genetic effects with adjustments for age, sex, 
genetic principal components (PCs) and study-specific covariates. Full 
details of study-level GWAS methods are available in Supplementary 
Information 3 and Supplementary Table 2. Descriptions of studies and 
participant characteristics are provided in Supplementary Table 1. 
Sensitivity analysis GWAS and meta-analysis of strictly defined DCM 
(Supplementary Information 1) were performed using the same work-
flow. To assess the effects of ascertainment of DCM using the different 
criteria, GWAS meta-analysis was performed for the studies that used 
narrow (DCMNarrow GWAS) or broad (DCMBroad GWAS) criteria (Supple-
mentary Table 1), and genetic correlations were assessed using bivariate 
LD score regression with LDSC v.1.0.1 (ref. 41).

GWAS meta-analysis was performed centrally using METAL v.2020-
05-05 (ref. 42) with an inverse-variance weighted fixed-effect model. To 
boost discovery power, we further conducted a multitrait analysis of 
GWAS (MTAG), a method for jointly analyzing summary statistics from 
multiple overlapping GWAS of genetically correlated traits. GWAS in 
the UK Biobank of ten CMR-derived LV traits (LVEF, LVESV, LVEDV, stroke 
volume, global circumferential, longitudinal and radial strains, mass, 
concentricity, and maximum wall thickness) from 36,083 unrelated 
participants of White British ancestry and without heart failure, cardio-
myopathy, previous myocardial infarction or structural heart disease8 
were tested for genetic correlation with primary GWAS using LDSC 
v.1.0.1 (refs. 43,44). MTAG of the primary GWAS was then performed 
with CMR traits with high genetic correlation (|rg| > 0.7) using mtag 
v.1.0.8 (ref. 10). The maximum FDR was estimated by mtag to be 2.7%.

SNP-based heritability estimation
The proportion of variance in heart failure risk explained by com-
mon SNPs—that is, SNP-based heritability (h2

SNP)—was estimated from 
GWAS meta-analysis summary statistics using LDAK SumHer software 
v.5.2 with the BLD-LDAK heritability model7. The h2

SNP estimates were 
calculated on a liability scale, which assumes that a binary phenotype 

has an underlying continuous liability, and that above a certain liability 
threshold, an individual becomes affected45. To model the expected 
heritability tagged by each SNP, we used precomputed tagging files 
derived from 2,000 White British individuals, and we used a correction 
for sample prevalence by calculating the effective sample size assuming 
equal numbers of cases and controls46. The conversion to liability scale 
was calculated using a population prevalence of 0.004 for DCMNarrow 
(based on an estimated prevalence of 1 in 250 individuals2,3) and 0.008 
for DCM (assuming twice the prevalence of DCMNarrow).

Locus identification
To identify genetic susceptibility loci for DCM, we first identified con-
ditionally independent genetic variants using a chromosome-wide 
stepwise conditional-joint analysis implemented in the Genome-wide 
Complex Trait Analysis software (v.1.92.4)47 at a genome-wide signifi-
cance threshold of P < 5 × 10−8 in all GWAS and additionally at FDR < 1% 
(estimated using qvalue) for DCM GWAS. To define a genomic locus, 
conditionally independent genetic variants across both DCM GWAS 
and DCM MTAG that were located within 500 kb of each other were 
aggregated, and an additional 500 kb was added to flank the variants 
at the extremes within each set. A genomic locus was considered to be 
novel if all conditionally independent variants within the locus were 
located ≥250 kb away and not in LD (R2) with any sentinel variant with 
a P < 5 × 10−8 reported in previously published GWAS of DCM for DCM 
GWAS or GWAS of any of the three traits included for MTAG in DCM 
MTAG (Supplementary Table 3).

Enrichment of Mendelian cardiomyopathy genes within  
GWAS loci
To estimate the enrichment of Mendelian cardiomyopathy genes within 
GWAS loci, we first extracted 3,404 genes that had been linked to Men-
delian disorder with at least moderate evidence as listed in the ClinGen 
and GenCC databases (accessed February 2023). We annotated whether 
each gene was located in GWAS and whether it was listed as one of the 38 
Mendelian cardiomyopathy genes (Supplementary Information 4). We 
then cross-tabulated these annotations and performed statistical tests 
with one-sided Fisher’s exact test to calculate ORs of cardiomyopathy 
genes being more likely to be situated within GWAS loci. Fisher’s exact 
test was performed using the fisher.test function in R.

Functionally informed fine-mapping of genomic loci
To prioritize likely causal variants at each genomic locus, we per-
formed functionally informed fine-mapping using PolyFun v.2020-
11-14 (ref. 48) and SuSiE v.0.11.92 (ref. 49). Using precomputed prior 
causal probabilities of 19 million imputed SNPs with MAF > 0.001 based 
on meta-analysis of 15 traits in UKB from PolyFun, we first estimated 
per-SNP heritability. These results were then passed to SuSiE to cal-
culate per-SNP posterior inclusion probabilities and to identify 95% 
credible sets of likely causal variants, assuming at most five causal 
variants per locus. To run fine-mapping, we used LD reference panels 
from 10,000 randomly selected UKB European ancestry participants. 
The procedure was performed separately for loci identified from DCM 
GWAS and DCM MTAG using the respective summary statistics. For 
each locus, variants within the identified 95% credible sets in either 
DCM GWAS or DCM MTAG were aggregated, and annotated with near-
est gene(s), genic functions, and Combined Annotation-Dependent 
Depletion Phred score50 extracted from ANNOVAR v.2020-06-07 (ref. 
51) and OpenTargets Genetics52.

Prioritization of effector genes at DCM loci. To systematically iden-
tify and prioritize effector genes at each locus, we followed a two-step 
approach. First, the nearest gene and the top three genes prioritized by 
either PoPS53 or V2G54 were selected as candidate genes. Second, the 
totality of evidence including nearest gene, PoPS, V2G and five addi-
tional approaches (coding variant, colocalization with gene expression, 
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TWAS, ABC model, and established Mendelian cardiomyopathy- and 
muscle-disease-causing genes) was summarized by identifying the 
number of individual approaches that identified each candidate gene as 
the most likely, assuming that it met each method’s minimum threshold 
for significance or relevance. Each method received equal weighting, 
with a maximum score of 8, and the candidate gene with the highest 
score at each genomic locus was determined to be the prioritized gene. 
Loci in which gene scores were tied for the highest score were deter-
mined not to have a single high-confidence candidate gene.

Transcriptome-wide association study
We estimated the associations between overall gene expression across 
tissues and DCM through a multitissue TWAS using eQTL data across 49 
human tissues from GTEx v.8 and the DCM GWAS summary statistics 
implemented in S-MulTiXcan v.0.7.3 with the MASH-R model55.

Colocalization with gene expression
To test the hypothesis that genetic associations with gene expression 
in a given tissue and with DCM are driven by the same causal variants, 
we performed a statistical colocalization analysis using R coloc v.5.2.3 
(ref. 49) allowing for multiple causal variants. The colocalization analy-
sis was performed for all genes overlapping with the identified DCM 
genetic loci using summary-level eQTL data from GTEx v.8 (ref. 56) 
in tissues with the lowest TWAS Pvalue and the DCM GWAS summary 
statistics.

Polygenic priority score
We computed the polygenic enrichment of gene features derived from 
cell-type-specific gene expression, biological pathways and protein–
protein interactions for all protein-coding genes within the human 
genome using PoPS v.0.1 (ref. 53). A higher score implies a higher prob-
ability of a gene being causal for the trait under study, given feature 
similarities to other predicted causal genes.

Variant-to-gene
The V2G model aggregates data from molecular phenotype quantita-
tive trait locus (QTL) experiments including gene expression (eQTL), 
protein abundance (pQTL) and alternative protein splicing (sQTL), 
chromatin interaction experiments, in silico functional predictions 
and genomic distance (between the variant and a gene’s canonical 
transcriptional start site) to compute a variant-level score, with a higher 
value reflecting greater functional relevance on a given gene54. To map 
variant-level V2G scores onto gene-level scores for gene prioritization, 
we extracted the V2G score using V2G v.1.1 for all variants that were in 
LD (R2 > 0.8) with conditionally independent variants or within the 
fine-mapped variant set for a given locus and took the maximum V2G 
for a given gene.

ABC model
The ABC model uses experimental estimates of enhancer activity 
(assay for transposase-accessible chromatin using sequencing, DNase I 
hypersensitive site sequencing, or histone 3 K27 acetylation chromatin 
immunoprecipitation followed by sequencing) and enhancer–pro-
moter contact frequency (high-throughput chromatin conformation 
capture) to predict enhancer–gene interactions57. Precomputed ABC 
scores generated from experimental data of cardiac left ventricles in 
ENCODE58 were identified for the genomic coordinates of fine-mapped 
and lead variants, with scores >0.02 indicating important interactions.

Conditional GWAS analysis. Conditional GWAS analysis was per-
formed using a multitrait-based conditional and joint analysis 
(mtCOJO) method59 implemented in GCTA v.1.92.4, which we used to 
estimate the genetic effects of disease conditioning on AF, CAD, and 
SBP. To perform the analysis, we used summary statistics from GWAS 
of AF in 77,690 cases and 1,167,040 controls60, CAD in 181,522 cases 

and 984,168 controls60 and SBP in 757,601 individuals61. For AF and 
CAD, we calculated the sample prevalence by dividing the number of 
cases by the number of samples reported in the GWAS, and we used a 
population prevalence of 2.2% for AF and 7.2% for CAD62,63. Given that 
the vast majority of the GWAS summary statistics used were derived 
from European ancestry samples, we used 1000G European ancestry 
to model LD between variants.

Rare variant gene-based association testing. Gene-based associa-
tion testing was performed in the UKB and 100,000 Genomes Project 
for all genes located within genomic loci, using the genome-wide 
regression test implemented in REGENIE v.3.2.4. A whole-genome 
regression model was fitted to allow handling of polygenicity, relat-
edness and ancestry, using directly genotype-arrayed variants pass-
ing quality control (MAF > 0.01, <10% missingness, Hardy–Weinberg 
equilibrium test P > 10−15) in UKB, or directly sequenced variants in 
the 100,000 Genomes Project (GeL). Next, a gene-based burden test 
was performed conditional upon the phenotype-specific predictors 
from the genome-wide regression model and adjusting for sex, age, 
age2 and first ten genetic PCs, with body surface area and SBP included 
as additional covariates for quantitative traits. The outcomes tested 
were binary case–control status (DCM (narrow and broad definition), 
heart failure and HCM) and, in the UKB, related CMR quantitative 
traits (LVESV, LVEDV, LVEF, LV stroke volume and maximum LV wall 
thickness). Firth correction was applied to account for case–con-
trol imbalance. Burden tests collapse variants into a single variable 
that can be tested for association with a phenotype or trait, thereby 
reducing computational cost and the test statistic inflation that is 
seen with other gene-based rare variant tests (for example, SKAT and 
SKAT-O). Individuals with missing phenotype data were dropped from 
analysis. For consistency across UKB and GeL, one rare variant mask 
of PTVs (start lost, stop gained, frameshift, splice acceptor or donor 
lost) with a MAF < 1 × 10−3 was tested. To minimize the false positive 
rate resulting from genes with very low allele counts, a minimum allele 
count (MAC) threshold was applied that considered the approximate 
sample size: analysis in UKB required MAC ≥ 20 for binary traits, and 
MAC ≥ 3 for quantitative traits; and analysis in GeL required MAC ≥ 3. 
A Pvalue FDR-adjusted using the Benjamini–Hochberg method was 
used for the total number of genes passing the MAC threshold that were 
tested. Validation of significant associations (Padj < 0.05) in any cohort 
required directional concordance and nominal significance (P < 0.05) 
of the same gene–trait association. Exploratory results evaluating the 
effect of ultrarare (MAF < 1 × 10−5) variants on binary outcomes in UKB 
were also tested.

To characterize the overall genetic architecture of DCM, gene- 
based burden testing of rare PTVs (MAF < 1 x 10−3) was also performed 
for 16 DCM genes with moderate or definitive evidence30 in UKB to 
generate risk estimates for carriers of rare variants with DCM and 
heart failure.

Tissue, cell type and cell state heritability enrichment
Tissue-level heritability enrichment analysis was performed using 
precalculated LD scores of gene expression data from GTEx56 and chro-
matin data from the Roadmap Epigenomics64 and ENCODE58 projects, 
with LDSC v.1.0.1 (ref. 65). For cell type and state heritability enrich-
ment, we used the sc-linker35 approach to link transcriptome-wide 
gene programs from single-nucleus datasets with GWAS summary 
statistics. Gene programs derived from snRNA-seq were used to inves-
tigate heritability enrichment in cardiac cell types and states using the 
sc-linker framework35. This approach uses snRNA-seq data to generate 
gene programs that characterize individual cell types and states. These 
programs are then linked to genomic regions and the SNPs that regulate 
them by incorporating Roadmap Enhancer-Gene Linking64,66 and ABC 
models57,67. Finally, the disease informativeness of the resulting SNP 
annotations is tested using stratified LD score regression,68 conditional 
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on broad sets of annotations from the baseline LD model,41,69 and 
enrichment statistics and τ coefficients are reported.

Cell-type-specific gene programs were generated from snRNA-seq 
data of ventricular tissue from 18 control subjects, with cell type anno-
tations made as part of a larger study of ~880,000 nuclei (samples from 
52 DCM and 18 control subjects)36. Cells that may not have represented 
true biological states (for example, technical doublets) were excluded 
from the analysis. For cell type disease-specific programs, pseudob-
ulked counts were used to compare expression levels in DCM and 
control LV samples within all annotated cell types, using edgeR v.3.32.1 
(ref. 70) and methods previously described36. Significant DEGs were 
defined as those with FDR-adjusted P < 0.05 and absolute(log2 fold 
change) > 0.5, requiring a minimum normalized log2 count of >0.0125 
per nucleus (equivalent to 1 count in a nucleus with 10,000 total counts) 
in either control or DCM samples.

Pathway enrichment analysis of effector genes, DEGs 
and intercellular communication in DCM single-nucleus 
transcriptomics
Pathway gene ontology (GO) enrichment of effector genes and DEGs 
in DCM was determined at the cell type level and driver GO terms were 
identified using a two-stage algorithm implemented with gprofiler2 
v.0.2.3 (ref. 71). Driver GO terms were determined using a two-stage 
algorithm implemented with gprofiler2 to identify enriched path-
ways among GWAS effector genes. GO terms were further exam-
ined in the DCM single-nucleus dataset by exploring enrichment 
among DCM DEGs in all cell types. Functional enrichment analysis 
was performed using a cumulative hypergeometric probability, with 
Bonferroni-adjusted P values reported.

To determine the importance of cardiomyocyte and non-
cardiomyocyte cell types in DCM and the roles of candidate genes 
and effector-gene-enriched signaling pathways, we explored 
disease-specific intercellular communication. The single-nucleus 
transcriptomes of DCM and control samples were interrogated using 
CellChat v.1.0 for manually curated ligand–receptor interactions (Cell-
ChatDB)37. In brief, this method identifies overexpressed genes within 
cell types and states, quantifies the probability of receptor–ligand 
communication between cells using the law of mass action, and infers 
statistically and biologically important cellular communications37. 
CellChat was run using default program settings, and the results were 
analyzed at the cell type level. Endocardial cells were separated from 
other endothelial cells owing to previously reported important biologi-
cal effects on ligand–receptor signaling36. All analyses were performed 
in R v.4.0.3.

Polygenic risk score generation and testing
PGS were generated using a Bayesian framework that models 
ancestry-specific LD with an external reference set and uses a con-
tinuous shrinkage prior, implemented using the PRS-CS v.1.0 pack-
age72. The phi constant was automatically selected by PRS-CS in an 
unsupervised approach (PRS-CS auto). Whole-genome PGS scores 
for all included UKB individuals were calculated using the PLINK 1.9 –
score function73. Individual SNP weighted scores were generated from 
DCM GWAS that excluded the UKB cohort, and a subsequent MTAG, 
to avoid the substantial inflation that occurs when there is overlap of 
individuals between the GWAS and testing cohorts74. The base GWAS 
summary statistics were filtered to exclude rare and uncommon 
variants (MAF < 0.01) and ambiguous SNPs that were not resolvable 
by strand-flipping. We calculated a PGS for unrelated (third degree 
or closer) White British participants in the UKB (application num-
ber 47602) using variants that passed genotyping quality control 
(MAF > 0.01, genotyping rate >0.99, Hardy–Weinberg equilibrium 
test P > 1 × 10−6). Variants overlapping the base, target and LD refer-
ence set (1000 Genomes Project phase 3 European ancestry) were 
included. PGS predictive performance was assessed on the basis of 

AUROC and association with DCM and associated CMR traits (OR per 
PGS standard deviation and comparing top quantiles with the median) 
in the UKB, and in carriers of rare variants predicted to cause DCM30 
(see Supplementary Information 5 for full details of variant curation 
and genes tested). All models included age, age2, sex and first ten 
genetic PCs as covariates. AUROC was calculated for logistic regres-
sion models using pROC v.1.18.4, randomly separating the cohort into 
70% generation and 30% evaluation. Nagelkerke’s R2 was calculated 
using fmsb v.0.7.5 with the null model only including age, age2, sex 
and first ten genetic PCs as covariates. Time-to-event analysis was 
performed using survival v.3.5.7, and cumulative incidence curves 
were generated using survminer v.0.4.9. All statistical analyses were 
performed in R v.4.0.3.

Phenome-wide association study
The pleiotropic effects of genetic risk arising from common variants 
were tested by performing a pheWAS of PGS in the UKB. ICD-9 and ICD-
10 codes from death records and hospital admission episodes were 
translated to Phecodes (Phecode Map 1.2)75. For binary phenotypes 
with at least 20 cases, PGS–phenotype association was tested using 
logistic regression adjusted for age, age2, sex and first ten genetic 
PCs as covariates. Sensitivity analyses adjusting for DCM or heart 
failure and hypertension status in the regression model were per-
formed to identify independent effects. The significance threshold 
was adjusted for the total number of phenotypes tested (P < 2.72 × 10−5), 
and data were presented using Manhattan plots, grouped by body 
system. PheWAS were performed using PheWAS v.2018-03-12 (ref. 76)  
in R v.4.0.3.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data from UKB can be requested from the UKB Access Manage-
ment System (https://www.ukbiobank.ac.uk/enable-your-research/
apply-for-access). Data from the 100,000 Genomes Project can be 
accessed following an application to join the Genomics England Clini-
cal Interpretation Partnership (https://www.genomicsengland.co.uk/
research/academic/join-research-network). The ClinGen (https://www.
clinicalgenome.org) and GenCC (https://search.thegencc.org) data-
bases can be directly accessed. GWAS summary statistics are available 
on the Cardiovascular Disease Knowledge Portal (https://cvd.hugeamp.
org/dinspector.html?dataset=Zheng2024_DCM_EU). Regional 
association plots for all 80 risk loci are available online (https://
hermes-dcm-locus.netlify.app). The PGS are available for download 
at the Polygenic Score Catalog (https://www.pgscatalog.org/) under 
accession IDs PGS004861 and PGS004862. The raw single-nucleus 
gene expression dataset is available for download from the European 
Phenome-Genome Archive (dataset ID EGAD00001009292).

Code availability
Custom analysis code to perform the main GWAS analyses is avail-
able via Zenodo at https://doi.org/10.5281/zenodo.11204854 (ref. 77). 
Additional analyses were performed using publicly available software 
as described in the Methods section.
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Extended Data Fig. 1 | Quantile-quantile plots. Quantile-quantile plots for (a) DCM GWAS, (b) DCM MTAG and (c) DCMNarrow GWAS. The shaded error bar indicates the 
95% confidence interval under the assumption of a uniform distribution of P values (red dashed line).
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Extended Data Fig. 2 | Manhattan plot of DCMNarrow GWAS. Manhattan plot 
of GWAS of 6,001 strictly defined DCM cases and 449,384 controls (DCMNarrow 
GWAS). GWAS was performed using the same methods as for DCM GWAS using 
the subset of studies that recruited participants from specialist clinical cohorts 
or using unequivocal DCM diagnostic codes (Supplementary Information 1). 
DCM diagnosis required cardiac imaging, clinical expertise and/or robustly-

defined ICD codes. The 80 loci identified from DCM GWAS and DCM MTAG  
(Fig. 2) are labelled. In total there were 10 loci reaching genome-wide significance 
(dashed blue line – P < 5 × 10−8), all of which were significant in the primary GWAS. 
P-values were two-sided and based on inverse-variance weighted fixed-effects 
model, and not adjusted for multiple testing.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Comparison of effect sizes across DCM GWAS, DCM 
MTAG, and DCMNarrow GWAS. a, Forest plot of effect size across DCM GWAS, DCM 
MTAG and DCMNarrow GWAS for all 80 genomic risk loci identified in DCM GWAS 
and DCM MTAG. Effect estimates are derived from DCM GWAS of 12,556 cases 
and 1,199,156 controls (red), DCM MTAG consisting of the DCM GWAS cohort 
and 36,203 participants with cardiac magnetic resonance derived quantitative 
cardiac traits (orange), and DCMNarrow GWAS of 6,001 cases and 449,382 controls 
(blue). All sentinel variants at the 80 genomic risk loci identified in this study  
are presented (62 from DCM GWAS using FDR threshold 1% and 54 from  
DCM MTAG at genome-wide significance). The central effect estimate is 
represented with a diamond and the tails represent the 95% confidence interval. 

b, Scatter plot comparing absolute effect sizes for conditionally independent 
variants in DCM GWAS and DCMNarrow GWAS. c, Scatter plot comparing absolute 
effect sizes for conditionally independent variants in DCM GWAS and DCM 
MTAG. Variants tended to have a greater effect in DCMNarrow GWAS than in DCM 
GWAS, particularly for variants that were genome-wide significant in DCMNarrow 
GWAS (blue) compared with those that were only FDR significant in DCM GWAS 
(red). When comparing DCM GWAS and DCM MTAG, variants that were  
FDR significant in DCM GWAS and genome-wide significant in DCM MTAG  
(dark green), and that were genome-wide significant only in DCM MTAG 
(yellow), had similar effect sizes, while variants that were only FDR significant in 
DCM GWAS (red) tended to have larger effects in DCM GWAS than in DCM MTAG.
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Extended Data Fig. 4 | Functionally-informed fine-mapped variants at 
genomic loci. a, Fine-mapped variants at genomic risk loci with variants with 
high CADD Phred scores (>20) annotated to the nearest gene. b, Total number 

and function of fine-mapped variants at each locus. c, Distribution of CADD 
Phred scores for fine-mapped variants across all genomic risk loci, stratified by 
variant function. d, Number of fine-mapped variants stratified by function.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Summary of effector gene prioritization results.  
A two-step approach was used to identify candidate genes and prioritize 
potential effector genes at each loci. First, the nearest gene along with the 
top 3 genes scored using each of PoPs and V2G were highlighted as candidate 
genes for further evaluation. Second, of these genes, 5 additional features 
and methods were used to score the overall level of evidence supporting each 
putative gene by giving one point for any gene that was identified as best from 

each feature (maximum score of 8), and the highest scoring gene(s) at each 
locus being identified as the candidate gene(s). The 8 features were: PoPs, V2G, 
nearest, activity-by-contact (ABC)-model, transcriptome-wide association study 
(TWAS), colocalization, exonic coding variant, and reported Mendelian cause of 
cardiomyopathy or muscle disorder. Highlighted in red are genes with moderate 
or definitive evidence of being Mendelian causes of cardiomyopathy from 
ClinGen curation.
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Extended Data Fig. 6 | Conditional analysis of GWAS on atrial fibrillation, coronary artery disease, and systolic blood pressure. Comparison of effect estimates 
from the original DCM GWAS (X axis) and from conditional GWAS on atrial fibrillation (AF), coronary artery disease (CAD), and systolic blood pressure (SBP) (Y-axis).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Intercellular interactions in DCM inferred from single 
nuclei transcriptomics. a, Percentage of genes within candidate gene enriched 
pathways that are differentially expressed in DCM compared with controls, 
stratified by cell type. b, Total number of interactions between cell types in DCM 
(blue) and control (orange). c, Relative information flow of curated receptor-
ligand intercellular, highlighting pathways that are significantly increased in 
DCM (orange) or control (blue). d, Heat map showing total overall differences 
in interaction number and strength between cell types (red – increased in DCM, 
blue – decreased). e, Heat map showing outgoing (green) and incoming (blue) 
signals for prioritized gene enriched pathways (TGF-beta and WNT pathways) 
and specific pathways of prioritised genes (BMP, Collagen, Ephrin B and 
thrombospondin). f, Expression levels of ephrin-B ligand and receptors across 
major cell types. Mean expression is scaled from minimum to maximum, and 
proportion of expressing nuclei within a cell type indicated by dot size.  

g, Increased expression of EFNB2 (ligand) in endothelial cells (EC) and decreased 
expression of EPHB1 (receptor) in cardiomyocytes (CM) in DCM. Dot colour 
represents change in expression compared with control, and dot size represents 
the FDR-adjusted P-value. h, Expression levels of BMP6 and BMPR1A in CM, 
endocardial, fibroblast (FB), and mural nuclei, stratified by HCM (red) and 
control (black) status. Mean expression is scaled from minimum to maximum, 
and proportion of expressing nuclei within a cell type indicated by dot size. 
i, Chord plot showing that majority of endocardial (purple) BMP6-BMPR1A 
signaling is to cardiomyocytes (blue), followed by mural (brown) and fibroblasts 
(orange). Dot colour reflects the communication probabilities and dot size 
represents P-values computed from one-sided permutation test. AD – adipocyte; 
CM – cardiomyocyte; EC – endothelial cell; Endo – endocardial cell; FB – 
fibroblast; NC – neuronal cell; PC – pericyte; and SMC – smooth muscle cell.
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Extended Data Fig. 8 | DCM-PGS pheWAS adjusted for DCM/heart failure, 
and hypertension. Manhattan plot of DCM-PGS associations after adjusting for 
DCM or heart failure (a), and hypertension (b) status in UK Biobank. Additional 
co-variates included in the linear regression model include sex, age, age2, and 
first ten principal components. ICD-9 and ICD-10 diagnostic codes are mapped 
to Phecode Map version 1.2. Mapped phenotypes exceeding phenome-wide 

significance threshold (P 2.7 × 10−5, red line, adjusted for the total number 
of tested phenotypes) are labelled. Blue line indicates nominal significance 
(P < 0.05). Direction of triangle indicates the direction of effect of the PGS 
association. P-values are two-sided and calculated from linear regression model, 
and not adjusted for multiple testing.
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