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Abstract 
There is a rising interest in animating realistic virtual agents for 
multiple purposes in diferent domains. Such a task requires systems 
capable of generating complex mental states on par with human 
emotional complexity. Considering the high representational capac-
ity of Generative Adversarial Networks (GANs), it is only natural to 
consider them in such applications. In this work, we propose a con-
ditional GAN model for generating sequences of facial expressions 
of categorical complex emotions. Trained on a scarce and highly 
imbalanced dataset, the proposed model is able to generate realistic 
variable-length sequences in a single inference step. These expres-
sions of emotional states, of which there are 24 in total, follow the 
Facial Actions Coding System (FACS) formatting. In the absence 
of meaningful objective evaluation methods, we propose a deep-
learning-based metric to assess the realism of generated Action 
Unit (AU) sequences: the Action Unit Fréchet Inception Distance 
(AUFID). Objective and subjective results validate the realism of 
our generated samples. 
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1 Introduction 
Virtual agents can be used in multiple domains, be it medical or 
even digital entertainment. Building realistic virtual agents is a feld 
of growing interest. An important factor to consider to improve 
the realism of virtual agents is their afective capabilities, that is, 
the ability to manifest emotional states that are on par with human 
emotion complexity. Several applications of socially interactive 
agents require complex mental states that go beyond the six basic 
emotional states (sad, happy, angry, afraid, surprised, disgusted) 
[22]. For this reason, there is a rising interest in generating facial ex-
pressions of complex mental states. Several works and experimental 
studies showed the advantage of generating such data for afective 
interaction with virtual agents [9, 26]. However, the main difculty 
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lies in the complex dynamics that characterize facial expressions of 
emotions. Generating them requires a system capable of reproduc-
ing the high level of complexity present in natural human mental 
states. Simplistic methods, like linear interpolation across all areas 
of the face between static facial expressions, lead to non-realistic 
animations [1, 29]. Therefore, Deep Learning models appear as a 
compelling solution to the aforementioned challenge. In particular, 
Generative Adversarial Networks (GANs) [15] are a good candidate 
for such generative tasks. 

On the one hand, existing works [11, 12] that used GAN to gener-
ate sequences of facial expressions are conditioned on speech, and 
therefore cannot produce distinct categorical complex emotional 
expressions, which is a diferent application from co-speech gener-
ation. Additionally, such applications of generative models sufer 
from a signifcant challenge: the absence of meaningful objective 
evaluation metrics. The metrics used in relevant previous works 
do not capture meaningful salient characteristics of sequential AU 
data [12]. Having access to a reliable objective metric would make 
the process of developing and fne-tuning generative models for 
such applications cheaper and considerably faster. On the other 
hand, the existing literature for generating facial expressions of 
emotional states [18, 28] is limited to the 6 basic emotions and 
their proposed methods can only generate static outputs, i.e., single 
frames or images with no time component. 

An additional important challenge in this domain is the scarcity 
of datasets of labeled sequences of facial expressions of complex 
emotions [27]. This hinders the adoption of deep-learning-based 
methods in applications like ours since Deep Learning models re-
quire large numbers of training samples. 

In this context, the present work answers the aforementioned 
limitations by proposing the following: 

(1) A new GAN-based pipeline for generating realistic AU se-
quences of facial expressions representing complex emo-
tional states in the FACS format [14], trained on a highly 
imbalanced and scarce dataset. 

(2) Our GAN model generates variable-length sequences in one 
inference step, in contrast to the commonly used method of 
generating samples at multiple regular intervals [12], where 
each sample is generated with multiple inference steps. 

(3) A deep-learning-based objective method is proposed to evalu-
ate the realism of generated sequences of Action Units (AUs), 
which we call the Action Unit Fréchet Inception Distance 
(AUFID). 

Additionally, objective and subjective evaluations of our results 
show that our model successfully generates realistic AU sequences. 

2 Related Work 
Most of the existing literature is limited to single frame/image gen-
eration. [30] proposed GANimation for conditioning faces on AUs. 
While their generated samples were realistic, fne-grained changes 
to facial expressions were challenging to perform. This was allevi-
ated by two works: [20] proposed LAC-GAN, characterized with a 
local attention mechanism, it could change an AU without afecting 
others. Similarly, [19] proposed a method for fne-grained facial 
expression editing using relative AUs. Similar to [30], [31] propose 
PattGAN, which is based on StarGAN [8], to condition images on 

AUs. Other works have adopted 3D intermediary representations 
to generate single-frame facial expressions. [21] trained their GAN 
model on 3D Morphable Models (3DMM) representations extracted 
from images and conditioned on AUs. Similarly, [27] trained their 
GAN model on rasterized 3D meshes (single 2D frames). None of 
the aforementioned works generated sequences of facial expres-
sions, they all generate single frames. The problem of generating 
sequences is a more challenging one, as it requires the model to 
learn not only AU representations but also their dynamics across 
the temporal axis. 

As for generating facial expressions of categorical emotions, the 
existing works use only basic emotions. [18] builds on GANimation 
by adding another conditional GAN to condition the generated im-
ages on discrete categorical emotions that are: anger, neutral, fear, 
happiness, sadness and surprise. Also, this work belongs to the pre-
viously described category that only generates single frames. [28] 
proposed generating motions of six basic emotions, given a neutral 
face image. The generation, however, is done using facial landmarks 
and not AUs. Here lies another contribution of the present work: 
our model generates 24 facial expressions of complex emotions, 
instead of the basic 6. 

While few existing works generate facial expression sequences, 
none of them apply it in a complex emotion context. [7] used a GAN 
with a Recurrent Neural Network (RNN) architecture to generate 
facial expressions, but they are only limited to lip animation for 
static face images. The AUs involved are speech-related ones. Most 
relevant to our work are [12] and [11], where GAN architectures 
are proposed to generate head and gaze movements with facial ex-
pressions. The two main diferences between those works and the 
present work are the following: (1) their application is co-speech fa-
cial movements generation, in contrast to ours, which is generating 
facial expressions of complex emotions, and (2) the architectures are 
diferent in that our model generates variable-length AU sequences, 
while theirs can only generate segments of 4 seconds. This implies 
that their model does not learn the continuity of features in the 
input speech sequence beyond 4 seconds. 

3 Methodology 

3.1 Dataset and Preprocessing 
The model is trained on two merged datasets: MindReading [4], 
which contains 2471 videos of 24 categorical emotional states, 
and Padova Emotional Dataset of Facial Expressions (PEDFE) [24], 
which contains 1734 videos of 6 categorical emotional states (see 
Figure 2). The 6 emotional states in PEDFE are also present in 
MindReading, allowing the merging of the two datasets. The re-
sulting dataset consists of 4205 samples with a median length of 
5 seconds, of which we keep 3659 after removing sequences with 
less than 40 frames and more than 300 frames, which are outliers. 
These sequences consist of frames captured every 0.04 seconds. The 
dataset is not only scarce but also sufers from severe data imbal-
ance, which makes training a Deep Learning model challenging. 
However, succeeding in training a GAN in this setting would be a 
strong indicator of the efectiveness of GAN for generating facial 
expressions for afective interaction purposes, where data is often 
lacking. 
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Figure 1: The pipeline for extracting and visualizing sequences of emotional states. Videos are processed by OpenFACE to 
extract AUs, which can then be visualized on OpenFACS. 

Figure 2: The distributions of the 24 categorical emotional 
states in the dataset. The number of samples from the Min-
dReading dataset is represented in orange, and the number 
of samples from the PEDFE dataset is represented in blue. 

The pipeline, presented in Figure 1, is as follows: videos from 
the merged datasets are processed by OpenFACE [3] to extract 
sequences of 17 Action Unit (AU) intensities. Since the videos are 
of diferent lengths, the sequences extracted by OpenFACE vary in 
size. This is problematic since the inputs of our model must be of 
the same size. To remedy this, we set a maximum length size of 300 
for sequences and add zero padding to samples of length smaller 
than 300. This results in samples of shape (300 × 17). For the fnal 
visualization of emotional states, we use OpenFACS [10]. 

Note that the AU intensities of the sequences generated by Open-
FACE range from 0 to 5, but we scale them to the range [−1, 1]. The 
reason behind this is that the output of our GAN is in the range 
[−1, 1] as well, since the output activation is Tanh (see Section 3.3). 

3.2 Sample Format and Visualisation 
We use a qualitative visualization method to monitor the quality of 
generated samples during and after training, as it is not convenient 
to visualize them on OpenFACS at every epoch. Also, as explained 
in Section 4.1, there are intricate features that cannot be seen when 
samples are visualized on the avatar. 

Data samples are matrices of size (300 × 17), where 300 is the 
maximum number of frames and 17 is the number of AU categories. 
Every element in the matrix corresponds to an AU intensity at a 
specifc frame. Therefore, visualizing them as heat maps makes 

sense, where one axis would correspond to the AU category and 
the second to the frame number. Additionally, in order to have 
an overall visual of the variations of AU intensities across time, 
one can visualize the mean AU intensity along the AU category 
axis. Compared to the heat map, the curve of mean AU intensities 
shows more fne-grained details of the sequence across time. Figure 
3 shows a real sequence visualized using the described method. 

Visualizing samples in this manner allows one to capture the fol-
lowing three characteristics of real facial expression AU sequences: 

(1) The blue curve of the mean AU intensities exhibits subtle 
variations over the temporal axis, in contrast to samples 
generated by an untrained GAN, which are characterized by 
a smooth curve (see Figures 6b and 6c). 

(2) The AU intensities are all zero after a certain number of 
frames, due to the zero padding. The number of frames after 
which a sequence becomes zero should vary in the generated 
samples since the original sequences vary in length as well. 

(3) The activations of AU intensities tend to form continuous 
lines across time in the heat map. This is due to the nature of 
facial movements, which are fnite and continuous in time. 

The presence of these three aspects is an indicator of successful 
GAN training, although they do not capture the semantic aspect 
of samples. This, however, is compensated by the use of Principle 
Component Analysis (PCA) presented in Section 4.1, where the clus-
ters formed of real and generated data points for every emotional 
state are compared. 

3.3 GAN Architecture 
GAN consists of two models: a Generator and a Discriminator, 
denoted � and � , respectively [15]. Both models train in an adver-
sarial manner, wherein the Generator is trained to generate samples 
resembling the training data to trick the Discriminator into classi-
fying them as real data samples, and the Discriminator is trained 
to correctly classify real and generated samples. The original loss 
function is as follows 

min max E�∼����� (� ) [log � (�)]+E�∼�� (� ) [log(1−� (� (�)))], (1)
� � 

where ����� (�) and �� (�) denote the real data probability distribu-
tion and a prior from which random noise is sampled, respectively. 
As the equation suggests, the Generator generates samples from a 
random input noise from �� (�): it learns a mapping from a prior 
to a probability distribution approximating the real data distribu-
tion ����� (�). In this work, the Least Squares GAN (LSGAN) loss 
function [23] is adopted instead of the vanilla one, as the LSGAN 
loss ensures a more stable training and leads to higher quality sam-
ples [23]. Additionally, the proposed model is a conditional GAN 

363



ICMI ’24, November 04–08, 2024, San Jose, Costa Rica Belmekki, et al. 

Figure 3: AU sequence visualization. The lower fgure is a heat map of a transposed sequence of size (300 × 17) and the upper 
blue curve is that of the mean AU intensities along the AU category dimension. 

[25] since the output is conditioned on an input variable � that 
determines the category of the emotional state to be generated 
(amongst the previously introduced 24 categories). Therefore, the 
loss function is as follows 

1 1
min 

2 
E� ∼����� (� ) [(� (� |�) − 1)2] + 

2 
E�∼�� (� ) [(� (� (� |�)))2]

� 
(2) 

1
min 

2 
E�∼�� (� ) [(� (� (� |�)) − 1)2] . (3)

� 

Despite the training data being time-series, considering the pres-
ence of a temporal axis, a CNN-based GAN model is adopted. GANs 
are already known for being hard to train, and thus, using an RNN 
architecture would make training even harder due to their instabil-
ities [11]. While the data samples are multivariate time-series, we 
use 2D convolutions due to the existence of relationships between 
AUs for each emotion (any given emotion can be characterized 
with the activation of a set of AUs to variant degrees), hence the 
existence of local relationships between AUs. This choice is further 
motivated by an interest in exploring 2D convolutional architec-
tures in the context of generating variable-length multivariate time 
series. In this case, the frst convolutional layers learn local depen-
dencies between AUs across time, while the deeper layers learn 
global dependencies. The architectures of the Generator and the 
Discriminator are presented in Tables 1. In the Generator, we use 
the GELU [16] activation function to ensure a better fow of gradi-
ents. It was not used in the Discriminator to increase balance during 
training: the Discriminator, in our setting, tends to learn quicker 
than the Generator, which leads to weak gradient updates for the 
Generator after a certain number of epochs. Generally, optimal GAN 
training requires both models to learn in a sort of balance where 
no model signifcantly outperforms the other. It must be noted that 
our architecture, in contrast to relevant existing works [11, 12], can 
generate variable-length sequences in one inference step, instead 
of generating a sequence over multiple regular intervals. 

3.4 Quantitative Evaluation: Action Unit 
Fréchet Inception Distance (AUFID) 

We propose the AUFID method to evaluate the realism of the gener-
ated samples. It is based on the existing Fréchet Inception Distance 
(FID) [17]. The latter uses the InceptionV3 model to extract fea-
tures from both real and synthetic data samples and compare them 
using the Fréchet Distance. For two gaussian distributions with 

Table 1: The architectures of the Generator and the Discrimi-
nator, with ConvTranspose2d(input channels, output chan-
nels, kernel size, padding), Conv2d(input channels, output 
channels, kernel size, padding), BatchNorm2d(output chan-
nels), BilinearUpsampling(output width size, output height 
size) and AvgPool2d(kernel size) 

Generator 
ConvTranspose2d(88, 64, (4, 2), (0, 0)) 

BatchNorm2d(64) 
LeakyReLU(0.2) 

Conv2d(64, 128, (5, 3), (4, 2)) 
BatchNorm2d(128) DiscriminatorGELU() Conv2d(25, 512, (5, 3), (4, 2)) BilinearUpsampling(16, 6) BatchNorm2d(512)Conv2d(128, 256, (5, 3), (4, 2)) LeakyReLU(0.2)BatchNorm2d(256) AvgPool2d(2) GELU() Conv2d(512, 256, (5, 3), (4, 2)) BilinearUpsampling(32, 8) BatchNorm2d(256)Conv2d(256, 384, (5, 3), (4, 2)) LeakyReLU(0.2)BatchNorm2d(384) AvgPool2d(2) GELU() Conv2d(256, 128, (5, 3), (4, 2)) BilinearUpsampling(64, 10) BatchNorm2d(128)Conv2d(384, 512, (5, 3), (4, 2)) LeakyReLU(0.2)BatchNorm2d(512) AvgPool2d(2) GELU() Conv2d(128, 64, (5, 3), (4, 2)) BilinearUpsampling(128, 12) BatchNorm2d(64)Conv2d(512, 640, (5, 3), (4, 2)) LeakyReLU(0.2)BatchNorm2d(640) AvgPool2d(2) GELU() Linear(2816, 1) BilinearUpsampling(256, 14) Sigmoid()Conv2d(640, 640, (5, 3), (4, 2)) 
BatchNorm2d(640) 

GELU() 
BilinearUpsampling(300, 17) 
Conv2d(640, 1, (1, 1), (0, 0)) 

Tanh() 

means and covariances (�1, Σ1) and (�2, Σ2), the Fréchet Distance 
is defned by: 

2 1 
∥�1 − �2 ∥  2 + �� (Σ1 + Σ2 − 2(Σ1Σ2) 2 )    (4) 

However, applying the FID in our setting is impossible for two 
reasons: 

(1) The InceptionV3 model was trained on the ImageNet [13] 
dataset, and is therefore only capable of detecting features 
belonging to the categories of objects present in ImageNet, 
and not facial expressions in the form of AUs. 
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(a) (b) 

(c) (d) 

Figure 4: Two real samples ((a) and (b)) and two synthetic samples ((c) and (d)). All the samples belong to the emotional state of 
"surprise". The mean AU intensities curve shows the same level of variation across time and the heatmaps show relatively 
similar AU activations. 

(2) The InceptionV3 model cannot process AU intensity se-
quences of size (300 × 17). It was made for RGB images 
of a diferent size. 

In order to adapt the FID to our context, one has to build a model 
adapted to the format of data at hand and train it to recognize 
its features. Therefore, we build a new classifer inspired by the 
InceptionV3 model, adapted to process (300×17) data. Additionally, 
to be able to extract features from the AU intensity sequences, 
the classifer had to be trained on our dataset. It must be noted 
that, since AUFID is a distance, the lower its value is, the more 
realistic the input samples are. 

3.5 Subjective Evaluation 
With the help of human participants, the objective of this protocol 
is to verify if the Generator can successfully learn a probability 
distribution that approximates ����� (�). More practically, denot-
ing ����� the probability that real samples are classifed as real 
by human participants and �����ℎ���� the probability that syn-
thetic samples are classifed as real by human participants, 
the protocol checks how close ����� and �����ℎ���� are. Closer val-
ues indicate smaller diferences in human participants’ perceptions 
of real and generated samples. 

From the 24 emotional states, we select 5 that are the most 
visually recognizable by the naked eye when visualized on the 
OpenFACS avatar, which is also refected by their higher mean 
total AU intensity. We also picked emotional states that are seman-
tically diferent to avoid confusing the participants (e.g., "happy" 
and "excited" can be expressed with similar facial expressions, and, 
therefore, it is not ideal to use them in the test). The selected mental 
states with their corresponding mean total AU intensity are "dis-
gusted" (8.01), "happy" (10.32), "romantic" (7.13), "touched" (8.04), 
and "unsure" (5.56). 

Participants were shown 3 sequences of facial expressions visu-
alized on OpenFACS for each emotional state. Two sequences are 
real and one is fake. The frst real sequence is shown as a reference 

so that the participants have an idea of what a real sequence would 
look like on OpenFACS. Naturally, the participants are told that the 
reference video is a real sequence. The remaining two sequences 
(one is real and the other is fake) are shown to the participants, 
who are then asked to tell if the sequences are real or synthetic. 
Thus, each participant is shown 15 sequences, among which they 
are asked to classify 10. Considering there are 11 participants, there 
were 55 attempts at classifying real sequences (11 participants × 5 
real sequences) and 55 attempts at classifying synthetic sequences 
(11 participants × 5 synthetic sequences). 

The videos of facial expressions ranged from 5 to 19 seconds. 
Note that, with 300 frames, the maximum length of the videos 
should be 12 seconds. However, OpenFACS comes with a control-
lable speed parameter and a delay between frames was added to 
make sure the expressions of the avatar fow as naturally as possible. 
Additionally, the recording of the videos was done manually, which 
led to the addition of some seconds that correspond to the delay 
between pressing the record button and the start of the expression. 

4 Experiments and Results 
The model is trained for 1500 epochs using the Adam optimizer 
with a learning rate of 0.0002 and momentums �1 = 0.5, �2 = 0.999 
for both the Generator and the Discriminator. Every 10 epochs, the 
model is saved. This allows us to pick the best-performing model 
out of all the checkpoints. The best Generator in this setting, which 
was saved at epoch 570, has an AUFID score of 10.48. The results 
show that our model could generate realistic samples with variable 
lengths. Using the visualization method presented in Section 3.2, 
we show 2 real and 2 synthetic samples for the emotional state 
"surprise" in Figure 4. 

4.1 Objective Validation 
The AUFID proved useful in providing a meaningful quantitative 
measure of GANs’ performance, which could be used for model 
selection and fne-tuning. The AUFID curve is presented in Figure 
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5. In the fnal epochs, the AUFID values increased, indicating a 
certain level of instability. This phenomenon does not fall out of 
the norm, as GANs are known for their instability [2, 6]. This can 
be alleviated in a simple way: by saving the model with the best 
AUFID, similar to how early stopping works. 

Figure 5: AUFID curve during GAN model training. The val-
ues were recorded every 10 epochs. The metric decreases 
throughout training, indicating ongoing successful training. 

Additionally, the AUFID metric refected well the aspects of 
realism presented in Section 3.2. Figure 6 shows the evolution of 
generated samples from the start of training (epoch 0) to the best-
recorded stage of training (epoch 570, characterized with the lowest 
AUFID). Figure 6a is shown for reference. The sample shown in 
Figure 6b, generated at epoch 0, shows no resemblance to real 
samples (none of the 3 characteristics described in Section 3.2 are 
present). Naturally, it corresponds to the highest AUFID. At epoch 
10, the sample 6c started exhibiting the real data characteristics 
to some degree: the right tail of the blue curve of the mean AU 
intensities started tilting toward zero. One can also observe that 
AU intensities in the heat map start forming subtle continuous 
lines along the temporal axis. At epoch 50, presented in Figure 
6d, the characteristics of real samples are present to a stronger 
degree. However, there is some noise in the right tail of the mean 
AU intensities curve, where it is supposed to be constantly zero 
after a certain number of frames. Additionally, while the mean AU 
intensities blue curve shows some level of variation across time, 
it is still smoother than the typical real sequence (see Figure 6a 
for reference). Finally, at epoch 570, presented in Figure 6e, the 
generated sample is indistinguishable from the real sample on the 
three aspects considered in Section 3.2. 

Note that the diference in realism between the sequences from 
Figures 6d and 6e is not clear when both samples are visualized 
on OpenFACS, as they are not very distinguishable. However, both 
the visualization method used in this section and the AUFID refect 
well the diference in realism between the two. AUFID in particular 
ofers an objective way of capturing the diference, assigning a 
lower value to the more realistic one. 

While the AUFID is a good indicator of the overall sample quality, 
it does not ofer a direct way of evaluating GANs’ conditioning per-
formance, i.e., the ability to faithfully produce samples belonging to 

(a) Real sample for reference. 

(b) Generated sample at epoch 0. AUFID=2476.35 

(c) Generated sample at epoch 10. AUFID=244.86 

(d) Generated sample at epoch 50. AUFID=45.51 

(e) Generated sample at epoch 570. AUFID=10.48 

Figure 6: Synthetic samples generated at epochs 0, 10, 50, and 
570 with their corresponding AUFID scores. As AUFID de-
creases, sample realism increases. AU intensities were scaled 
to the original range of [0, 5]. 

a given emotional state category. To evaluate the conditioning per-
formance of the model, PCA is used to visualize real and synthetic 
samples as two-dimensional data points for each emotional state. 
The benefts of using this method are twofold: (1) by visualizing the 
synthetic and real data points as clusters, one can visually verify if 
the synthetic samples are close to the real ones for each class and 
(2) check if the GAN model overfts the data, i.e., produces the exact 
same samples present in the training dataset. For all 24 categories, 
the PCA test shows that the clusters of synthetic samples and real 
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samples are close and overlap, thus validating the conditioning 
capabilities of the model. We show the PCA results for 2 categories 
in Figure 7. The PCA results for the remaining classes are presented 
in Appendix A. 

(a) "unfriendly" 

(b) "sure" 

Figure 7: PCA results for two emotional states: (a) "un-
friendly" and (b) "sure". The synthetic clusters of points are 
close to and overlap with the clusters of the real data points. 

4.2 Subjective Validation 
The protocol described in Section 3.5 was conducted with 11 par-
ticipants. The mean age is 32.36 with a standard deviation of 8.80. 
72% of the participants were male and 28% were female. 

After collecting the results of the participants, we fnd that 
����� = 0.63 and �����ℎ���� = 0.52. We note that out of the 55 
attempts at classifying real samples by participants, 35 were clas-
sifed as real, and out of the 55 attempts at classifying synthetic 

samples by participants, 29 were classifed as real. Since the difer-
ence between the values is not very signifcant, one can conclude 
that the probability that a synthetic sample would be classifed as 
real by human participants is not very diferent from the probability 
that a real sample would be classifed as real by human participants. 
This suggests that our GAN model learned a probability distribution 
that approximates the real data probability distribution ����� (�). 

It must be noted that the subjective test was met with some dif-
fculties, partly the lack of realism of the OpenFACS avatar, which 
introduces some subtle repeated movements to the lips. Addition-
ally, many participants did not fnd the sequences very representa-
tive of the emotional states. This is due to the lack of information 
introduced by the absence of gaze and head movement information. 

5 Limitations and Future Work 
While this work provides a compelling case for using GANs to 
generate complex mental states for virtual agents, it is still lacking 
in certain aspects. Despite the realism of the generated synthetic 
samples, some of them exhibit some artifacts in areas where AU 
intensities are supposed to be null (see Figure 8a). A simple way of 
removing these artifacts is to use a running window that nullifes 
the intensities under a certain threshold. Using this method, the 
synthetic sample 8a could be corrected to 8b. 

(a) 

(b) 

Figure 8: (a) shows a synthetic sample with artifact intensi-
ties in areas where it is supposed to be null. After applying a 
nullifying running window over the sequence, (a) was cor-
rected to (b). Samples are scaled to the original [0, 5] range. 

Another limitation of this work is the subjective validation, 
which would have been more accurate if the facial expressions 
contained gaze and head movement information. Upon inspection 
of some emotional state videos, like "sad", we observed that much 
of the cues that indicate the state of sadness lie in the gaze and head 
movements. This was further validated by the participants who 
pointed out that some mental states were not very recognizable by 
the naked eye. Therefore, a good expansion of the current work 
would be to add gaze and head movement information for richer 
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and more realistic synthetic mental states. Additionally, a good fu-
ture direction would be validating the realism of synthetic samples 
with a more extensive protocol with more participants, using more 
elaborate questionnaires like the Godspeed questionnaire [5], using 
a more realistic avatar for visualization. 

6 Conclusion 
In this work, we propose a conditional GAN model for generating 
realistic sequences of complex mental states. Despite the technical 
challenges that mainly lie in the scarcity of data, severe class im-
balance and the variable-length nature of data samples, our model 
was successful in attaining good levels of realism, as confrmed by 
the proposed objective evaluation metric, the AUFID, the PCA test 
and the subjective validation. This work suggests that GANs show 
promise for animating virtual agents in a more realistic manner. 
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A PCA Results for the 24 Categories 

(a) "sad" (b) "happy" 

(c) "angry" (d) "afraid" 

(e) "kind" (f) "excited" 

Figure 9: PCA results for all the 24 categories of emotional states. 
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(g) "interesting" (h) "unsure" 

(i) "surprise" (j) "hurt" 

(k) "fond" (l) "romantic" 

Figure 9: PCA results for all the 24 categories of emotional states. 
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(m) "thinking" (n) "bored" 

(o) "sneaky" (p) "bothered" 

(q) "wanting" (r) "sorry" 

Figure 9: PCA results for all the 24 categories of emotional states. 
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(s) "disbelieving" (t) "disgusted" 

(u) "touched" (v) "liked" 

Figure 9: PCA results for all the 24 categories of emotional states. 
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