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 1 General Introduction

The  carbon fiber  parts  are  taking  more  and more

importance  in  the  aeronautical  field  as  aircraft

makers are chasing the weight to comply with some

of  the  environmental  constraints.  Due  to

certifications,  composite  parts,  like  metallic  ones,

need to be quality controlled. To reduce production

cost, composite parts must be controlled during the

machining process [1], and nowadays industrial have

a growing interest  in  this process  automation  with

robotic  systems  [2][3]. But  this  implies  specific

constraints:  for example,  the shape of  a body panel

without  its  stiffeners  differs  from  CAD  model

however geometric parameters have to be verified.

We will present in this article the methodology used

for the automation of the Non Destructive Testing

(NDT) focusing on 3 main topics:

• Misalignment  between  CAD  based  robot

trajectories and product to be tested,

• Local 3D surface approximation and sensor

based robot control,

• Hybrid force-position robot control.

 2 Industrial context

 2.1  Description of the current usage

The NDT system consists of a 6 axes manipulator

robot  and  a  NDT  head sensor.  The  tool  path  is

generated on the basis of the CAD data of part. The

process uses some control-skill constraints regarding

the position/orientation of the tool vs the composite

surface to be controlled.

The  tool  needs  to  be  in  contact  with  the  surface,

must be normal to it  (sensor surface  parallel to the

surface to be  analyzed), and velocity also needs to

be  controlled  as  well  as  its  position  monitoring

depending on the process step. 

In a first step the control is made using a predefined

set  of  path  and  speed  profiles that  allows  first

detection of structure defaults. Then, based on this

first grid, a position control allows finest analysis on

specific areas. Thus during a first phase a multibeam

sensor is used to detect on a given path the location

of possible defaults (doubts), then in a second step a

more  precise  detection  is  made  using  a  directive

sensor  around  the  suspicious areas.  This  last  step

requires the possibility to control the rotation of the

sensor head to explore the composite stacking.

The  NDT  control  task  is  described  using  sensor

frame  shown  in  figure  1.  The  industrial

implementation is  made  using the assumption  that

the part shape is identical to the CAD one and the

workshop  robot  cell  is  also  identical  to  the  CAD

model used for the off-line programming.

Unfortunately  manufactured  parts,  and  especially

composite  parts,  can  be  subject  to  distortions.

Indeed,  even  if  simulation  are  used  to  anticipate

spring back,  if the  mold is adapted in consequence

and  if  the  process  of  curing  is  adapted  to  reduce

possible  occurrences of  distortion during  the resin

vitrification,  the  composite  material  is  subject  to

distortion.

Thus,  in  the  best  case,  the  resulting  structure  is

slightly  different  from  the  initial  CAD  model

(meaning 0.2mm/m). But majority of part presents  a

form  tolerance  of  0.5-1mm/m.  Of  course  when

talking about large structure,  that are not stiffened,

this  value  can  reach  higher  values  becoming

centimetric or decimetric. 

If  sub-millimetric  default  could be  managed  by

specific procedure  or  components,  higher  default

imply  the  use  of  specific  mounting  structure and

consequently the complexity and cost of the control

process.
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Fig. 1: NDT Task in sensor frame
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 2.2 Observations

Because  of  the  implementation,  some  problems

appear during the automated control like overloaded

forces  between  the  tool  and  the  composite  part,

loosing  tool-part  contact  during  the  process,

inaccurate  orientation,  leading  to  wrong  data  and

errors. 

 3 Force Control for NDT

We firstly describe the NDT using the force-position

duality,  then  the  robot  modeling to  achieve  the

hybrid control and finally the control loop.

 3.1 Modeling NDT task

The  NDT  task  needs  a  dual  approach  between

force/position and between torque/orientation.  This

dual approach is described in several robotics papers

[4].

In  the  sensor  frame,  the  directions  controlled  in

displacement are the translations along the x and y

axis and the rotation around the z axis. Around these

axes  the  torque  generated  by  displacement  and

surface  distortions must  allow  the  sensor  to  be

normal  to  the  surface,  keeping  the  sensor  surface

parallel to the material surface.

This can be achieved by using a compliant system or

using a force/torque controlled system.

The use of a  compliant  system  and its  degrees  of

freedom (Fig. 2) is efficient to avoid torque or force

to  be  applied  as  constraints  on  the  system.  The

inconvenient is that there is no possibility to manage

the  orientation/torque and  position/force of

compliant directions.

Using a force/torque controlled system offers a more

suitable solution because it allows a coupled control

of force  and position  as well as coupled control of

torque and orientation.

By  using  these coupled  control  modes  it  is  then

possible  to  avoid  loosing  tool-part  contact and  also

to  limit  the  inaccurate  angular  positioning of  the

sensor head. In the meantime, whereas constraint on

the sensor head are  limited,  this one is kept  normal

to  the  surface  with  a  controlled  (or  known)

orientation and position.

If the NDT sensor has no privileged direction then

the NDT task is  a  5  DOF one  (one free rotation)

otherwise the NDT task is a 6 DOF one.

 3.2 Modeling robot

The classical dynamic model of a robot manipulator

can be written in the Lagrangian form [5] but  we

need  to  add  the  external  forces  due  to  the  robot-

environment  interaction.  So  robot  model  will  be

represented by equation 1.

Γ=M (q) q̈+C (q , q̈ ) q̇+G (q)+J TF e x t (1)

q  representing the  joint variable n-vector,  Γ  the

vector  of  generalized  forces  acting  on  the  robot

manipulator, M (q )  the  inertia  matrix,  C (q , q̇ )

represents Coriolis/centripetal forces and  G (q) the

gravity vector.  The  external  forces F e x t represents

the interaction forces and J  is the Jacobian matrix

of the effector in the world frame.

Industrial  robot  controllers  consider  only  the

equation  without  external  forces.  So,  we  have  to

implement  equation  1 with  a  hybrid  command  to

control position and force [6].

 3.3 Sensor-based control

 3.3.1 Force sensor

To fulfill  the  testing  contact  constraints,  the force

F z and  the  torque T x and T y have  to  be

controlled.  Consequently,  we  use  a  6  DOF

force/torque sensor. This sensor is mounted on the

robot  wrist  between  the  sensor  head  and  the

manipulator.

 3.3.2 External hybrid control

On industrial robot, because of warranty limitations,

torques/forces must  be  controlled  through  an

Fig. 3: Force-Torque /Position-orientation control.

Fig. 2: Standard compliant system and

its degrees of freedom.



external loop (green area on Fig. 4). In this way, the

tool-path can be followed (industrial position control

loop)  while applying a controlled torque/force  on a

chosen  tool  axis (external  force  control  loop) [4].

These  two synchronized control  loops  make  the

hybrid control (force/position).

 4 Robot trajectory from 3D surface

We  describe  here  the  process  for  generating  the

robot  trajectory  from  control  points  based  on  the

surface.

 4.1 Robot trajectory

The robot  trajectory for the NDT testing is splitted

into several elementary movements. Each movement

is defined using a target point P target (5 or 6 DOF

definition)  and a  displacement  nature:  joint  space,

Cartesian space (linear, circular...).

From the  surface  definition,  we  can  compute  the

target  point P target .  For  our  example  the  NDT

rules say that:

• sensor should be at a distance d NDT from

a surface point ( PSurface ),

• sensor should be  normal (perpendicular) to

the surface ( N Surface ),

then P target is computed as follow (eq. 2):

[X P Target

Y PTarget

Z PTarget

]
RSensor

= [ X PSurface

Y P Surface

Z P Surface

]
RSensor

+d NDT⋅[X N Surface

Y N Surface

Z N Surface

]
RSensor

(2)

Thus,  the  robot  program  can  be  automatically

generated from the robot trajectory control points.

 4.2 Local 3D-Surface approximation

As the real part shape  could  differ  from the CAD

when  attempting  to  match  them because  of  the

acquisition  process (measurement  accuracy,

noise...), a surface approximation procedure must be

used to customize the  off line computed  theoretical

trajectory. We use a sensor providing us a set of 3D

colored points.  If a background is present then the

points cloud  is  partitioned  into  two  subsets:  the

object  and  the  background  using  a  classical

computer vision approach (Fig. 5).

Because of the acquisition process, the data cloud is

not dense and some holes need to be filled to have a

exploitable view of the surface (Fig.  6).  With this

constraints, it's difficult to reconstruct a surface with

classical  methods  needing control  points  like  the

NURBS or others. So, we propose a neural network

approximation  [7] which  allows  also  surface

characterization (like surface normal calculation).

Fig. 5: Original shape to approximate

Fig. 4: External hybrid force control (green area).

Fig. 6: 3D points cloud.



The  neural  network  architecture  is  linked  to  the

shape of the surface to be approximated (this type of

problem is  called “regression”).  In  our  testing  on

large parts, the surface curvatures are usually large

(i.e. radius above 1m). The neural net inputs are the

x and y coordinates of the 3D points  in the sensor

frame  and  the  output  is  the  z  coordinate. The

coordinate  system  can  be  changed  to any  other

frame like the robotic cell one.

Due  to our  problematic,  we  chose  a  feed  forward

(FF) neural network type, i.e. neurons are connected

in  the  sense  oriented  from  inputs  to  outputs  (the

neural  architecture  is  shown  in  figure  7).  Such  a

structure  have  a  stable  behavior  and  a  good  fault

tolerance. It exists other powerful neural networks as

RBF  (Radial  Basis  Function  [8])  or  ANFIS

(Adaptive-Network-based Fuzzy Inference Systems

[9]), but they are computationally slow.

For  our  feed  forward  network,  the  architecture

chosen is:

• 2  hidden  layers  with  10  neurons  and  tan-

sigmoïd transfer function,

• 1 output layer with 1 neuron and pure linear

transfer function.

In order to make the neural more independent from

the  training  data  set,  we  chose  to  scale  the  input

[ X Net Y Net ] and output Z Net to -1 to +1 range

(eq.  3)  where Max and Min means the range of the

real value [X Real Y Real Z Real ] .

X net=2
˙X Real−X min

X Max−X Min

−1

Y net=2
˙Y Real−Y min

Y Max−Y Min

−1

Z net=2
˙Z Real−Z min

Z Max−Z Min

−1

(3)

The  neural  network  is  trained  using  Levenberg-

Marquardt method  (LM)  and  Mean  Square  Error

(MSE)  function  as  cost  function  to  be  optimized.

This training method has been chosen because of its

performances in our context.

The depth image size is 640×480 pixels but we

only use the data from a Region Of Interest (sub-

image) where the part is located. Even in the ROI,

we do a sub-sampling in order to extract our date

training set.

The figure 8 shows the evolution of the cost function

with respect to the training epochs with 1400 points

data set. The MSE goal is generally achieved in less

than 30 training  (epoch). Due to a fast processing,

this  approach  can  be  used  in  an  on-line  robot

trajectory generation.

 4.3 Local Normal calculation

To compute the robot trajectory control points, we

need to obtain the surface normal to fulfill the NDT

task constraints. The surface normal at a given point

can  be  calculated  using  the  neighborhood  of  the

point  and  a  fitting  plane  method  based  on  the

maximum of likelihood for example (Fig. 9).

The fitting plane function calculates a least squares

fit to the normal N to a plane through a set of points

with coordinates [ x y z ] in the form equation 4.

N x⋅x+N y⋅y+N z⋅z=D (4)

Fig. 7: Neural Feed Forward Network architecture.

Input layer Output layerHidden layer

x
z

y

Fig. 9: 3D surface approximation

with normal vectors.

Fig. 8: Fast Neural network Training (goal met in

less than 30 epochs).
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Normally N is normalized so that D = 1 unless it is

close to zero (a plane goes near coordinate system

origin).  The neighborhood can be limited to the 8

nearest points ( 3×3 patch centered on P i ) or

extended to 5×5 patch (24 neighbors).

 5 Experimental setup and results

In this paragraph, we firstly present the elementary

steps from the data acquisition to the robot trajectory

generation.  Secondly,  we  show the  results  on  our

robotics equipments.

 5.1 Elementary procedures

In  this  experiment,  we  use  a  stereo  camera

(bumblebee camera from Point Grey)  or the kinect

(from  Microsoft)  to  capture  the  3D  points.  To

demonstrate the  surface  approximation

reconstruction  with  the  network,  we  chose  a  non

favorable case study:  big curvature and presence of

specular reflexion (Fig. 10).

The figure 11 shows the depth image computed from

the  sensor  information.  The  distances  are

represented  as  gray  level  pixels and  black  pixels

correspond to unknown distance.

We show the data processing and the neural network

approximation. Several surface profiles are used in

order to cope with the panel shapes.

The 3D points cloud  (Fig.  12) is used to train the

neural network and after learning an approximation

cloud can be computed even for inputs not included

in the training set (Fig. 13).

The  network  allows  the  calculation  of  the  Z

coordinate  for  a  2D  point [X Y ] even  if the

network has not been trained on this point.

Using  the  point  neighborhood,  the  surface  normal

can be computed (Fig. 14).

Using the NDT rules and the Neural net results, the

robot position and tool orientation can be calculated.

Thus,  the  robot  trajectory  control  points  and

Z tool axis  are  obtained.  Positions  (respectively

Z tool ) are  shown  as red circles (respectively as

red line) on figure 15.

The  figure  16 shows  a  zoom-in  of  the  trajectory

control points.

Fig. 10: Carbon part.
Fig. 11: Depth Image

from sensor data.

Fig. 12: 3D view of the 3D colored points

cloud and sensor frame.
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Fig. 14: Normal computation from NNet surface

approximation.
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Fig. 15: Robot trajectory control points (in

red) with tool Z axis.
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 5.2 Experiments on the robot cell

The  robotic  cell  of  ESTIA  is  used  for  testing.  It

consists  of  a  KUKA  KR6  robot,  a  NDT  sensor

support  and  molds  with  different  curvatures.  RSI

module  allows  communication between Sensor-PC

and the robot (Fig. 17).

In this test,  the ND task is implemented using the

force-position  approach.  The  additional  external

loop is based on modeling the behavior of a spring.

The  data  logging  is  done  to  check  if  the  NDT

constraints are respected.

We  firstly  present  the  results  on  the  3D  surface

approximation  and  how  this  approach  suits  the

industrial cases when the part flexibility is high (part

deformation)  or  when  the surface is  unfoldable  or

even unknown.

Secondly, we show how the hybrid-control scheme

allows us to achieve the constraints of the NDT and

is helpful to carry on automated testing.

 5.2.1 Aeronautical part approximation

For  our  experiment,  we  use  a  landing  gear  door

panel.  We have in our workshop the mold (Fig.18

and 19) and a test panel made using our robotic fiber

placement machine.

Due  to  part  dimensions  and  the  3D  device,  the

acquisition device could not make the measurement

in one shot.

The  point-clouds  are  merged  using  a  dedicated

software for 3D measurement (Fig. 20).

Using  these  3D  points  as  entry  for  our  network

learning, we manage to meet the precision goal. The

figure  21 presents the  evolution  of  the  MSE cost

function during the training.

Fig. 16: Zoom in on robot control points

(in red).

2 0 0

3 0 0

Fig. 19: Automated Fiber

placement.

Fig. 17: Robot cell for NDT.

Fig. 20: 3D points cloud from merged acquisitions.

Fig. 18: Robot and

landing gear door mold.



The trained neural network can now be used as an

approximation black box for the trajectory module.

The  following  figure  (Fig.  22) shows  the

approximated surface of the door panel (the step size

on X or Y can be changed).

The holes in the original data sample are not present

because of the approximation of the Z component by

neural network for a given [ X Y ] .

The (Fig.  23) shows this approximate surface over

the holed surface.

We are now able to chose a NDT direction  (for a

given X and an Y range) by computing  the robot

trajectory control  points  and  the  tool  Z axis  (Fig.

24).

 5.2.2 Hybrid control

In  order  to  do  the  robotic  experiment,  we  have

scaled down the part size to suit the ESTIA robotic

cell.  We  use  a  fiber  glass  plate  where  we  have

include  known  and  visible  default  (blue  patch  on

figure  25).  In  this  experiment  the  position  on  the

plate  is  known (using  the  teaching  facility  of  the

robotics  environment)  but  the  orientation  is  not

calibrated.

Fig. 21: MSE cost function evolution during

learning phase (only 9 epochs to reach the goal).
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Fig. 22: Neural network surface approximation.
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We compute the cardinal spline based on the control

points [10] and this path (Fig. 26 and 27) is split into

three  phases  (sampled  into  elementary  segments

according to the desired  maximal  velocity and the

RSI loop frequency):

1. approach in position control,

2. NDT task in force control,

3. departure in position control.

The  robot  movement  on  each  segment  is  a  linear

approximation. During this displacement, the force

and  torque  linked  to  the  contact  constraints  are

controlled by the external hybrid-control. 

On  our  experimental  setup,  we  have  logged  the

contact  force (Fz) during the three phases.  During

the NDT phase, the contact force follows our desired

value of 3N. The result is presented on figure 26.

 6 Conclusions and future works

To  complete  NDT  task,  we  need  to  control  the

contact  forces  and  torques  and  we  are  facing  the

industrial  constraints  (the  use  of  industrial  robot

controller  and  components).  We  propose  to

implement an external hybrid command. The robot

trajectory  is  locally  generated by  a surface

approximation using a neural network.

We have presented the computer sciences approach

from 3D points acquisition to surface approximation

on  a test part and an industrial one. We have  also

presented the robot trajectory computation based on

geometrical data (position on the surface and  being

normal  to  the surface)  and  the  robot  path  passing

through the control  points.  All  this  processing has

been tested on our robotics facility on a simple case

(plate).

Fig. 25: ESTIA robotic cell and panel.

Fig. 26: Monitored contact force vs robot trajectory.

Fig. 27: Robot trajectory based on Cardinal spline.
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As future work, the surface approximation need to

be  ported  to  “real  time”  computing  system  and

robot-environment  model  improved  to  be  more

realistic.

As  we  bought  a  new robotic  cell  for  cutting  and

edging  composites  material  panels (based  on  the

KR240  KUKA robot  and a  KRC4 controller),  we

have planed to  migrate  the experiment  as the RSI

loop period is 4ms on this new device compared to

12ms  on  the current  one.  This  is  an easy 3 times

factor gain  which will permit a better force-control

and  a  velocity  improvement.  We  also  need  to

perform the coupling of the NDT equipment  on the

external PC to be able to store synchronized data and

being able to display NDT 3D maps.
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