

Quantitative T1D assessment in lipid membranes: Jeener-Broekaert NMR vs. ihMT MRI

A. Hertanu, Lucas Soustelle, Ludovic de Rochefort, Axelle Grélard, Erick J. Dufourc, David C Alsop, Guillaume Duhamel, Olivier M. Girard

▶ To cite this version:

A. Hertanu, Lucas Soustelle, Ludovic de Rochefort, Axelle Grélard, Erick J. Dufourc, et al.. Quantitative T1D assessment in lipid membranes: Jeener-Broekaert NMR vs. ihMT MRI. Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting, May 2022, London, United Kingdom. pp.1422. hal-03859914

HAL Id: hal-03859914 https://hal.science/hal-03859914v1

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Quantitative T 1D assessment in lipid membranes: Jeener-Broekaert NMR vs. ihMT MRI

Andreea Hertanu^{1,2}, Lucas Soustelle^{1,2}, Ludovic de Rochefort^{1,2}, Axelle Grélard³, Antoine Loquet³, Erick J. Dufourc³, Gopal Varma⁴, David C. Alsop⁴, Guillaume Duhamel^{1,2}, and Olivier M. Girard^{1,2} ¹Aix Marseille Univ, CNRS, CRMBM, Marseille, France, ²APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France, ³CBMN UMR 5248, CNRS, University of Bordeaux, Bordeaux INP, Pessac, France, ⁴Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States

Synopsis

The dipolar order relaxation time (T_{1D}) is a probe of membrane dynamics and microstructure and could serve to further understand the relationship between the myelin membrane integrity and its biological function. In this work, the ability of quantitative inhomogeneous Magnetization Transfer (qihMT) to estimate the several T_{1D} components of a synthetic lipid membrane system, a surrogate for the myelin membrane, was evaluated by comparison with the gold standard method for T_{1D} quantification, the NMR Jeener-Broekaert (JB) sequence.

Introduction

Slow collective membrane motional processes (1 to 10^7 Hz) are the main driving mechanisms of dipolar relaxation¹. The dipolar relaxation time (T_{1D}) could thus serve as a probe to further understand the myelin membrane dynamics and the relationship with its biological function. Inhomogeneous Magnetization Transfer (ihMT)² data are amenable to quantitative analyses (qihMT) and provide access to various parameters of interest^{3–5}. In particular, variations of the switching time (Δt) between the application of RF pulses at positive and negative offset frequencies in the dual saturation were previously used to estimate T_{1D} in clinical⁴ and preclinical studies⁶ in healthy Central Nervous System tissues. However, T_{1D} values derived from ihMT have yet to be validated. In this study, we propose to compare the T_{1D} values estimated with qihMT and the gold-standard NMR Jeener-Broekaert (JB) sequence⁷ on a synthetic model of lipid membrane mimicking myelin.

Methods

<u>Synthetic membrane</u>: Three types of lipids were weighted to obtain a molar ratio of 40%/40%/20% (POPC/Cholesterol/Cerebrosides) for a total mass of 25 mg. The powder blend was dissolved in an organic solvent to assure a homogeneous mixture. After removal of the solvent, the resultant dry lipid film was hydrated in 100 μ L of D₂O for the NMR experiments or in 100 μ L of H₂O for the MRI experiments. After three liposome formation cycles (vortex/freeze/thaw) the multilamellar vesicle suspension was transferred into test tubes for experimentation.

<u>Data acquisition and processing</u>: All experiments were carried out at 500 MHz (NMR: Bruker Avance III spectrometer equipped with a ¹*H*-X CP/MAS probe for 4-mm rotors; MRI: Bruker Avance, 89-mm wide bore vertical imager) with a sample's temperature maintained at 298 K.

<u>*NMR*</u>: Jeener-Broekaert experiments were performed at various mixing time values (t_m ; Table 1). The signal decay, normalized to that of the first t_m , follows a multi-exponential decay:

$$S_{
m JB}(t_m) = \sum_{i=1}^N lpha_i e^{-t_m/T_{
m 1D,i}}$$

A Non-Negative Least-Square algorithm was used to decompose the decay curve into multiple T_{1D} s from a distribution of 1280 logarithmically spaced T_{1D} values ranging from 1.0 µs to 40.0 s. For each detected lobe within the estimated distribution, the associated geometric mean and weight (area under the curve) are reported.

<u>MRI</u>: IhMT experiments were performed using an ihMT-prepared RARE sequence⁸. The experimental design included the variation of saturation parameters across three experimental dimensions: frequency offset Δf , pulse power B_{1rms}, and switching time Δt (Table 1), for a total of 170 experimental data points. A quantitative multi-T_{1D} ihMT model⁶ was used for the estimation of qihMT parameters. All macromolecular pools associated with various T_{1D}s were assumed to share the same exchange rate (R) and transverse relaxation time (T_{2b}). R_{1b}, the longitudinal relaxation rate of the Zeeman macromolecular pools was fixed to 1 s⁻¹ and T_{2f}, the transverse relaxation time of the water pool, was fixed to 100 ms.

<u>Processing</u>: To evaluate the feasibility of estimating multiple T_{1D} components with ihMT, Cramér-Rao Lower Bounds (CRLB)⁹ for a multi-compartment qihMT framework were estimated from the experimental design (Table 1), using the T_{1D} values and associated weights from the JB spectrum.

Results

Figure 1 presents the T_{1D} spectrum estimated from the JB experiments. A total of seven components were estimated (T_{1D} values of 40.0 µs, 208.0 µs, 1.2 ms, 8.4 ms, 678.3 ms for weights>8%). Figure 2 shows representative ihMT ratio images along the Δt and Δf dimensions at B_{1rms} =20 µT. The qihMT fitting curves for a bi- T_{1D} model applied to experimental data points are illustrated in Figure 3. The estimated T_{1D} s were 500.6±102.0 µs and 13.3±0.8 ms (associated M_{0b} s 14.7±8.3% and 10.3±5.3%, respectively). Including more T_{1D} components in the qihMT model failed to estimate parameters with reasonable standard errors (not shown). As such, a CRLB analysis was performed in our experimental framework, using the seven T_{1D} s and associated weights estimated from the JB analysis and assuming RM_{0b}/R_{1f} =1.5, T_{2b} =9.5 µs (Figure 3). Figure 4 shows the normalized CRLB standard deviation of each T_{1D} component as a function of the signal-to-noise ratio (SNR). These results demonstrate that the experimental design does not allow to resolve more than two T_{1D} components (T_{1D} of 1.2 ms and 8.4 ms from the JB spectrum) with a suitable error (<10%) given our experimental SNR of 2000.

Discussion and Conclusions

Of the seven components revealed by JB and putatively characterizing the synthetic membrane, qihMT and the proposed experimental design

revealed up to two $T_{1D}s$ in the range of the expected ones. The SNR is one identified cause of not being able to quantify the remaining components given the current acquisition protocol. A one-to-one comparison between $T_{1D}s$ estimated by JB and qihMT is not straightforward. While JB experiments directly interrogate the semisolid pool, the ihMT signal relies on the exchange between the semisolid and the free water pools which may not occur for all components. As such, some of the components estimated by JB might not exchange and the estimated spectrum using MRI would contain less $T_{1D}s$. Exchange can also impact the underlying $T_{1D}s$, thus comparing $T_{1D}s$ measured in D_2O by JB to those with ihMT in H_2O may be an error source. These interesting results call for a more optimized experimental design, which will be performed in future investigations using CRLB.

Acknowledgements

This work was supported by the French National Research Agency, ANR [ANR-17-CE18-0030] and ARSEP 2020.

References

1. Dufourc, E. J.; Mayer, C.; Stohrer, J.; Althoff, G.; Kothe, G. Dynamics of Phosphate Head Groups in Biomembranes. Comprehensive Analysis Using Phosphorus-31 Nuclear Magnetic Resonance Lineshape and Relaxation Time Measurements. *Biophys. J.* 1992, *61* (1), 42–57. https://doi.org/10.1016 /S0006-3495(92)81814-3.

2. Varma, G.; Duhamel, G.; de Bazelaire, C.; Alsop, D. C. Magnetization Transfer from Inhomogeneously Broadened Lines: A Potential Marker for Myelin: Magnetization Transfer from Inhomogeneously Broadened Lines. *Magn. Reson. Med.* 2015, 73 (2), 614–622. https://doi.org/10.1002 /mrm.25174.

3. Varma, G.; Girard, O. M.; Prevost, V. H.; Grant, A. K.; Duhamel, G.; Alsop, D. C. Interpretation of Magnetization Transfer from Inhomogeneously Broadened Lines (IhMT) in Tissues as a Dipolar Order Effect within Motion Restricted Molecules. *J. Magn. Reson.* 2015, *260*, 67–76. https://doi.org /10.1016/j.jmr.2015.08.024.

4. Varma, G.; Girard, O. M.; Prevost, V. H.; Grant, A. K.; Duhamel, G.; Alsop, D. C. In Vivo Measurement of a New Source of Contrast, the Dipolar Relaxation Time, *T*_{1D}, Using a Modified Inhomogeneous Magnetization Transfer (IhMT) Sequence: In Vivo Measurement of T_{1D} Using IhMT. *Magn. Reson. Med.* 2017, *78* (4), 1362–1372. https://doi.org/10.1002/mrm.26523.

5. Varma, G.; Girard, O. M.; Mchinda, S.; Prevost, V. H.; Grant, A. K.; Duhamel, G.; Alsop, D. C. Low Duty-Cycle Pulsed Irradiation Reduces Magnetization Transfer and Increases the Inhomogeneous Magnetization Transfer Effect. *J. Magn. Reson.* 2018, *296*, 60–71. https://doi.org/10.1016 /j.jmr.2018.08.004.

6. Carvalho, V. N. D.; Hertanu, A.; Grélard, A.; Mchinda, S.; Soustelle, L.; Loquet, A.; Varma, G.; Alsop, D. C.; Thureau, P.; Girard, O. M.; Duhamel, G. MRI Assessment of Multiple Dipolar Relaxation Time (T 1 D) Components in Biological Tissues Interpreted with a Generalized Inhomogeneous Magnetization Transfer (IhMT) Model. J. Magn. Reson. 2019, 106668. https://doi.org/10.1016/j.jmr.2019.106668.

7. Jeener, J.; Broekaert, P. Nuclear Magnetic Resonance in Solids: Thermodynamic Effects of a Pair of Rf Pulses. *Phys. Rev.* 1967, *157* (2), 232–240. https://doi.org/10.1103/PhysRev.157.232.

8. Prevost, V. H.; Girard, O. M.; Varma, G.; Alsop, D. C.; Duhamel, G. Minimizing the Effects of Magnetization Transfer Asymmetry on Inhomogeneous Magnetization Transfer (IhMT) at Ultra-High Magnetic Field (11.75 T). *Magn. Reson. Mater. Phys. Biol. Med.* 2016, *29* (4), 699–709. https://doi.org /10.1007/s10334-015-0523-2.

9. Bouhrara, M.; Spencer, R. G. Fisher Information and Cramér-Rao Lower Bound for Experimental Design in Parallel Imaging. *Magn. Reson. Med.* 2018, 79 (6), 3249–3255. https://doi.org/10.1002/mrm.26984.

Figures

(a) MRI - ihMT	Off-resonance saturation parameters					
	рм	Ν,	Tal	Δí	Biene	Δ1
	0.5 ms	3200	2720 m	8; 10; 12; 15; 20 kHz	$10;20\ \mu\mathrm{T}$	0.85; 1.7; 3.4; 4.25; 6.8; 8.5; 13.6; 21.25; 27.2; 34; 68; 85; 136; 170; 340; 680; 1360 m
	Readout parameters					
	TR	TE	TA	Resolution	FOV	Slice thickness
	23 s	2.4 ms	4 min 36 s	156x156 µm ²	20x20 mm	8 mm
(b) NMR - JB	ten					
	64 mixing times spanning from 1.0 µs to 10.0 s					

Table 1: (a) Off-resonance saturation and readout parameters for the MRI-ihMT protocols: a total of N_p Hann-shaped pulses of a duration of pw were played at different root-mean-square powers (B_{1rms}) calculated over the saturation time (τ_{sat}), frequency offsets (Δf) and switching times for the dual-frequency saturation offset (Δt). (b) The interval of mixing times (τ_m) for the Jeener-Broekaert acquisitions.

Figure 1: (a) Jeener-Broekaert decay curve along with the corresponding fitting residuals and (b) the estimated regularized T_{1D} spectrum. The geometric mean on each

lobe (T_{1D}) is reported along with the weight of each T_{1D} component corresponding to the area under the lobe (w).

Figure 2: Example of ihMT ratio (ihMTR) maps of the synthetic lipid membrane system for various offset frequencies (Δf) and switching time (Δt) values. Images correspond to a B_{1rms} value of 20 μ T. Experimental SNR evaluated in the ihMT image corresponding to Δf = 10 kHz and Δt = 0.85 ms was higher than 2000.

Figure 3: Bi-T_{1D} model fit of ihMTR on all the experimental data points ($r^2 = 0.99$). Fit curves and residuals for (a) B_{1rms} of 10 μ T and (b) B_{1rms} of 20 μ T. (c) The estimated qihMT model parameters and the associated errors.

Figure 4: (a) Cramér-Rao lower bound analysis on the seven T_{1D} components estimated by JB as a function of SNR. (b) zoom on the 0% to 100% interval of the Y-axis.