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ABSTRACT
Centralized statistical monitoring (CSM) detects clinical trial centers in which the distribution of a variable
is atypical compared to its distribution in other centers. Most proposed CSM methods concern quantitative
variables. Here we propose a new hierarchical Bayesian beta-binomial (HBBB) method for categorical
variables and report the results of a simulation study assessing the performance of the method and of an
application study using a real database to assess its usefulness. In the simulation study, sensitivity exceeded
90% when the sample size in the atypical center (Na) was ≥20 and the difference in the proportion of events
between the atypical center and the other centers (δ) was ≥0.4; when Na was ≥40 and δ ≥0.3; and when
Na was ≥150 and δ ≥0.2. Specificity exceeded 90% when Na was ≥150 in all scenarios, and remained
between 75% and 90% when Na was lower. In the application study, the method detected two centers
in which Na was 50 and 200, and δ was 0.12 and 0.04, respectively. The performance of the HBBB method
was similar to that proposed by competing approach. The modeling is easy and specificity is good in many
scenarios with a limited sample size.
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1. Introduction

Data monitoring is essential to both ensure patient safety and
high-quality scientific evidence. This is an essential but poten-
tially burdensome task, leading International drug regulatory
bodies, including the Food and Drug Administration (FDA)
and the European Medicines Agency (EMA), to recommend
a risk-based approach to monitoring multicenter clinical trial
data (Agency 2013; Center for Drug Evaluation and Research
2022). This approach involves centralized monitoring of data
using new information and communication technologies, which
include centralized statistical monitoring (CSM). CSM uses sta-
tistical tests or procedures to identify whether the distribution of
a variable in one center differs from its distribution in other cen-
ters (Buyse et al. 1999). When an atypical pattern is detected, it
can trigger further investigation, including on-site monitoring.

Most CSM methods proposed in the literature concern quan-
titative variables (Pogue et al. 2013; Desmet et al. 2014; de Viron
et al. 2022). Few methods have been specifically developed to
deal with categorical variables. Desmet et al. (2017) proposed a
method based on beta-binomial distribution for the detection
of an atypical center in terms of the distribution of a categorical
variable, and reported that the method performed well (Desmet
et al. 2017). Their modeling was inspired by the work of Chuang-
Stein (1993) and Kleinman (1975) on the use of a beta-binomial
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model to summarize medical information in different observed
groups.

In this article, a new hierarchical Bayesian beta-binomial
(HBBB) method is proposed to detect an atypical center in terms
of the distribution of a categorical variable. The approach is a
combination of the Desmet approach, using the beta-binomial
distribution, and the approach of Hatayama and Yasui (2020),
who used a hierarchical Bayesian method for finite Gaussian
mixture models.

The Bayesian approach we propose is hierarchical in the
sense that we use hyperpiors on the parameters of the beta dis-
tribution, assigning them a distribution that takes into account
the heterogeneity and complexity of the data (Kruschke and
Vanpaemel 2015).

Examples of binary categorical variables on which this mod-
eling can relate concern the incidence of cardiac toxicity of any
grade in 15 clinical studies on an anticancer agent (Chuang-
Stein 1993), or the proportion by center of missing data on the
CD4 count collected in the clinical trial (Desmet et al. 2017).

We first describe the HBBB method. We then present the
results of a simulation study to evaluate the performance of
the method in terms of sensibility and specificity. We finally
present the results of an application study using a real database
to illustrate the practical use of the method.
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2. Material and Method

2.1. Description of the HBBB Method

2.1.1. Beta-Binomial Distribution
We consider a multicenter clinical trial with M centers of size
Ni(i = 1, 2, . . . , M) in which an event is recorded using a binary
variable. Yi is the discrete random variable corresponding to the
number of events in center i, with a binomial distribution, that is
Yi ∼ Bin(Ni, pi), where pi is the probability of occurrence of the
event. In the context of multicenter clinical studies, a binomial
distribution cannot adequately describe the additional variation
when pi varies, thus, we consider a beta-binomial model as
proposed by Desmet et al. (2017).

Frequently used in Bayesian inference, the beta-binomial
distribution is a discrete probability distribution with finite
support, corresponding to a process of Bernoulli draws where
the probability of occurrence of an event is random (following a
beta distribution) (Lee and Sabavala 1987; Everson and Bradlow
2002). More precisely, Yi ∼ Bin(Ni, pi), where pi is a random
variable with a beta distribution:.

π
(
pi|α, β

) = Beta (α, β) = p(α−1)
i (1 − pi)(β−1)

B(α, β)
(1)

where B (α, β) = ∫ 1
0 t(α−1)(1 − t)(β−1)dt and α > 0, β > 0 are

two shape parameters that govern how the underlying probabil-
ities of events pi are distributed. If we assume that the variable

Yi is in a beta-binomial distribution BB(Ni, α, β), this approx-
imates the binomial distribution when parameters αandβ are
arbitrarily large. Another parameterization BB(Ni, μ, ρ) is pos-
sible for the beta-binomial distribution (as in the simulation
study section below). While parameters α, β are the natural
parameters for beta distribution, the usual parameters for beta-
binomial distribution are the location (mean) parameter

μ = α

α + β
(0 < μ < 1)

considered as a proportion, and the overdispersion parameter

ρ = 1
α + β + 1

(0 < ρ < 1).

When ρ tends to 0, the beta-binomial distribution approxi-
mates the binomial distribution.

2.1.2. The Hierarchical Bayesian Beta-Binomial (HBBB)
Model

In this article a hierarchical Bayesian approach is proposed for
estimating the beta-binomial BB (Ni, α, β) model parameters
α, β from the whole data (Ni, yi) observed in the M centers,
where yi is the observed number of events recorded in center
i, and Ni is the number of participants in center i. The proposed
Bayesian approach consists of three hierarchical levels:

⎧⎪⎨
⎪⎩

Level1: yi|pi ∼ Bin(Ni, pi)Samplingmodel
Level2: pi|μ, ρ ∼ Beta

(
α =

(
1
ρ

− 1
)

μ, β =
(

1
ρ

− 1
)

(1 − μ)
)

Definitionofpriors
Level3: μ ∼ Beta(a, b)andρ ∼ Beta(c, d)Definitionofhyperpriors

(2)

where a, b, c, and d are fixed values for the beta distribution
bounds.

The advantage of this parameterization using μ and ρ instead
of α and β , is that in the Bayesian approach, we can introduce
a prior information on μ that is easily interpretable in terms of
proportion of events, but also on ρ in terms of overdispersion.
Note that for non-informative priors, we will consider.

μ ∼ Beta (1, 1)

ρ ∼ Beta (1, 1)

the choice of beta distribution parameters for μ and ρ for infor-
mative priors should reflect the external or expert information
we have on the proportion of events in the centers and the level
of overdispersion.

Compared to a frequentist estimation of the beta-binomial
model, one of the advantages of our Bayesian approach is the
potential incorporation of prior information into our model
through defining the prior distributions of the model parame-
ters. This information about parameter values can come from
expert knowledge (e.g., the expected proportion in centers
should be 10%) or historical data. To facilitate understanding
and explicit incorporation of this information, we redefined
the prior distributions of the beta distribution parameters in
terms of location (mean) and overdispersion parameters rather
than the natural parameters of the distribution. For inference

on model parameters, and for the sake of simplicity, it is more
practical to return to the natural parameters α and β of the beta
distribution for the expression of the likelihood.

The sampling model likelihood of the data can be expressed
as

L
(
y|p) =

M∏
i=1

f (yi|pi) =
M∏

i=1

(
Ni
yi

)
pyi

i
(
1 − pi

)Ni−yi (3)

where the structure of the model is hierarchical and is defined
in (2).

In the Bayesian approach, the statistical inference or pre-
diction is based on the posterior distribution of parameters
given data. According to Bayes’ rule, the posterior distribution
is defined as

π(p|y) = f (y|p)π(p)

f (y)
where f

(
y
) = ∫

f (y|p)π(p)dp is the marginal distribution of
the data.

Since f (y|p) =
(

N
y

)
py(1 − p)N−y and π(p) =

pα−1(1−p)β−1

B(α,β)
, the marginal distribution can be expressed as

f
(
y
) =

(
N
y

)
B(α + y, β + N − y)

B(α, β)
,
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and the posterior probability distribution as

π
(
p|y) = pα+y−1 (

1 − p
)β+N−y−1

B
(
α + y, β + N − y

) .

As a result, the posterior distribution is also
Beta

(
α + y, β + N − y

)
. That is,

pi|yi ∼ Beta
(
α + yi, β + Ni − yi

)
(4)

This result is a classic example of conjugate prior, since the
prior in the beta-binomial model is a Beta, and the posterior
is also a Beta. To estimate α and β , methods for sampling
Monte Carlo simulations by Markov chains (MCMC) were used.
MCMC sampling methods use a combination of the Gibbs
sampler (for updates) and the Metropolis-Hastings (M-H) algo-
rithm to construct samples of parameters α and β from their
posterior distribution. From the posterior sample of the α and
β , the median values were retained, leading to a distribution of
the posterior probabilities of the beta distribution.

2.2. Procedure for Detecting Atypical Center Using the
HBBB Approach

Using the HBBB model, the distribution of the number of
expected events was calculated from the posterior probability
distribution for each clinical center. A Bayesian inference was
then used to decide whether a center i was atypical or not,
by estimating the credibility interval at the 100 × (

1 − q
)

%
threshold associated with the number of predicted events[

ỹ[q/2]
i ; ỹ[1−q/2]

i

]
, that is the region of higher posterior density

events in the center (Robert 2007; Hespanhol et al. 2019). The
credibility interval was such that:

P
(

yi ∈
[

ỹ[q/2]
i ; ỹ[1−q/2]

i

])
=

∫ ỹ[1−q/2]
i

ỹ[q/2]
i

(
Ni
yi

)

×�(α + yi)�(β + Ni − yi)

�(α + β + Ni

�(α + β)

�(α)�(β)
dyi = 1 − q. (5)

Where ỹ[q/2]
i and ỹ[1−q/2]

i are respectively the lower and
upper limits of the credibility interval for the difference between
observed and predicted values by the posterior distribution
applied to each center i. Thus, we used the quantiles of order q/2
and (1 − q/2) in order to obtain the (1 − q)% of higher posterior
density (HPD) value of the observation in the investigative
center.

The procedure for detecting an atypical center using the
HBBB approach can be summarized as follows:

• Step 1: Estimation of HBBB model defined in (2) using
Bayesian approach.

• Step 2: Get estimated parameter values (α̂, β̂) of (α, β) from
their posterior sample.

• Step 3: Assuming a common distribution p for all centers,
generate the L-sample p=(p(1), p(2), . . . , p(L)) . . .) such as

p(l) ∼ Beta(α̂, β̂).

• Step 4: For each center i (i=1,…,M), generate the L-sample
Ŷi = (ỹ(1)

i , ỹ(2)
i , . . . , ỹ(L)

i ), of Yi such as Y(l)
i ∼ Bin

(
Ni, p(l)

)
for l = 1, . . . , L.

• Step 5: Conclude that center i is an atypical center if the
observation yi, /∈

[
ỹ[q/2]

i ; ỹ[1−q/2]
i

]
, otherwise the center i is

considered as non-atypical,

where ỹ[q/2]
i is the quantile of order q ? ]0,1[ of sample Ŷi =

(ỹ(1)
i , . . . , ỹ(L)

i ) and the number L is defined by the numbers of
Markov chains and the iterations.

3. Simulation Study to Test HBBB Method
Performance

3.1. Overview

A multicenter clinical trial was simulated, with M centers of the
same size Ni(i = 1, 2, . . . , M), to observe the occurrence of an
event characterized by a binary variable for each participant in
the trial. The outcome of interest Y was the number of events
observed in each center.

The simulated distribution of Y was Yi ∼ BB(Ni, μ0, ρ)

in every center except one, and YM ∼ BB(Ni, μ1, ρ) in one
atypical center, where μ1 = μ0 ± δ.

It was assumed that: (i) all trial centers had the same number
ni of participants; (ii) only one center had an atypical Y distribu-
tion. The HBBB method was applied for each dataset generated.

Each scenario was replicated 1000 times to evaluate the sensi-
tivity and specificity of the method in detecting the atypical cen-
ter. The sensitivity and specificity were calculated by counting
the number of true positives (#TP), true negatives (#TN), false
positives (#FP), and false negatives (#FN) for each simulation.
Sensitivity and specificity were calculated as follows:

sensitivity = #TP
#TP + #FN

specificity = #TN
#FP + #TN

.

3.2. Scenarios

The parameters used in the simulations are summarized in
Table 1.

In the base case scenario, a set of trials was simulated with
the following parameters: total number of trial centers M =
10; number of participants in the atypical center Na = 50
(therefore: overall number of participants in the study N =
10 × 50 = 500 and ratio Na/N = 10); proportion of events

Table 1. Simulation study: fixed and variable parameters.

Number of study centers M 4–10

Sample size in the atypical center Na 10–300
Sample size in non-atypical centers Nna = Na
Sample size in the overall study N = Na∗M
Binary categorical variable Y
Proportion* in the atypical center μ1 0–1.0
Proportion* in non-atypical centers μ0 0.1–0.5
Difference in proportion δ |μ1 − μ0|
Overdispersion (all centers) ρ 0–0.1

*The proportion is that of the first category of the binary variable. When the
proportion is 0.1, 0.2, 0.3, 0.4, and 0.5 in the first category, it is 0.9, 0.8; 0.7; 0.6,
and 0.5 in the second category.
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in non-atypical centers μ0 = 0.1 to 0.5; proportion of events in
the atypical center μ1 = 0 to 1.0.

Following this first set of analyses, the number Na of par-
ticipants in the atypical center was varied between 10 and 300,
keeping the number of centers M at 10 (and therefore the ratio
Na/N at 1/10), and the proportion in the non-atypical center at
0.5. The number M of centers was then varied between 4 and 20,
keeping the number of participants Na in the atypical center at
50 (thus, varying the ratio Na/N from 1/4 to 1/20) and keeping
the proportion μ0 in non-atypical center at 0.5. Finally, Na and
Na/N were varied simultaneously.

Centralized statistical monitoring is intended to be carried
out several times during the course of a multicenter clinical
trial, during recruitment and accumulation of data. This con-
figuration of progressive accumulation of data is taken into
account in the simulations through the variation of the number
of subjects in the atypical good center and also the variation of
the number of centers in the trial. Thus, on the one hand, we
successively increase the sample size in the atypical center from
10 subjects per center (corresponding to the situation at the start
of the clinical trial) to 300 subjects per center. On the other
hand, we are increasing the number of investigative centers in
the trial, going from 4 (corresponding to the situation at the
start of a clinical trial where all the centers are not yet open)
to 20 investigative centers. In all these situations of variations
in the sample size parameters of the investigating center and
the number of centers in the trial, the performance in terms of
sensitivity and specificity of our application is evaluated.

All programs and functions were carried out using the R
software (version 4.2.1) and the simulations were carried out
on the computing clusters of the Aquitain Intensive Computing
Mesocenter (MCIA).

In Step 1, the JAGS software through the R-package jagsUI
was used to draw posterior sample of parameters (Plummer
2003; Clark and Altwegg 2019). A vague prior distribution was
assumed for both hyperparameters μ and ρ using a = b=c
= d = 1. In the MCMC procedure, 2 chains, 2000 iterations
and a burning phase of 1000 iterations was considered. The
convergence of chains was checked by using the ratio of inter-
chain to intra-chain variances for all sampled parameters, which
had to be close to 1.

In step 2, we considered the posterior median as the esti-
mated value of parameters.

In Step 3, we assumed that all centers had the same distri-
bution with a common p. For this, we considered the common
pattern for all centers reflecting by μ andρ hyperparameters to
generate a sample of the probability p. For Step 3 and 4, we
considered L = 2000.

In this article, we choose to set the threshold at q = 0.05 for
both simulation studies and application.

4. Application Study to Illustrate the Significance of
the HBBB Method

The HBBB method was used, with data collected in the Tem-
prano ANRS 12136 trial (TEMPRANO ANRS 12136 Study
Group 2015), to assess its potential for use in real multicenter
trials.

Temprano was a randomized controlled trial carried out
in Abidjan, Côte d’Ivoire, to study the benefits and risks of
early antiretroviral treatment and early isoniazid prophylaxis in
HIV-infected adults. The study took place from March 2008
to July 2012 at nine health centers. Data were recorded using
standardized forms. The enrollment process included a pre-
inclusion phase. In this phase, participants who met a number
of pre-inclusion criteria were given information about the trial
and those who agreed to continue were formally pre-included.
They then underwent a number of pre-inclusion tests (mainly
biological) and were asked to return a week later, when it was
decided whether they could be included in the trial or not. The
decision to include them depended on the results of the tests and
on the individuals giving their final informed consent, having
had time to consider the information they had been given by
the trial staff and with the support of their relatives. For pre-
included individuals who returned for the inclusion visit and
were subsequently not included, the reason for non-inclusion
was recorded on a specific “non-inclusion form.” The non-
inclusion reason variable was multiple choice, one of the choices
being “unwillingness to participate.” For this application study,
non-included individuals whose only reason for non-inclusion
was “unwillingness to participate” were considered as “refusing
to participate as the only non-inclusion criterion, ” and non-
included individuals who had at least one other reason for non-
inclusion were considered as “any other non-inclusion criteria
profile.” In this example, the event of interest was therefore
refusal to participate. The HBBB method was applied to detect
the centers in which the proportion of individuals refusing to
participate as the only reason for non-inclusion seemed atypical
compared to the others. The method was applied sequentially,
and the analysis was carried out each time any of the nine trial
centers reached 10, 20, 30, 40, 50, 100, 150, 200, 300, 400, and
500 pre-included participants.

For these applications, we used non-informative priors for
μ, and also informative priors for both the average μ using
the average proportion of the previous round, and for the
overdispersionρ using an informative beta distribution.

5. Results

5.1. Simulation Study

Figure 1 shows the sensitivity and specificity of the HBBB
method in detecting an atypical center with three different
values for the overdispersion parameter ρ (0, 0.01, 0.1), across a
wide distribution range for the variable in the atypical center,
and in non-atypical centers. When the delta δ = |μ1 − μ0|
between the proportion in the atypical center and the non-
atypical centers is increased, the sensitivity increases irrespec-
tive of the value of μ0 in the non-atypical centers, but when the
value of μ0 in the non-atypical centers is reduced, it reduces the
value of δ where sensitivity exceeds 90%. When ρ is increased to
0.1, the minimum values of sensitivity increases and specificity
decreases. When ρ is 0, specificity exceeds 95% in a wide range
of μ0, μ1 and δ values. When ρ is 0.01, specificity exceeds 95%
whatever the values of μ0 and δ.

Figure 2 shows the sensitivity and specificity across a wide
range of participant numbers in the atypical center (keeping
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Figure 1. Simulation study: Sensitivity and specificity of the HBBB method to detect the atypical center under base case scenario, according to different figures of
overdispersion, and different proportions of events in the atypical center (μ1) and in the other ones (μ0). This figure explores the sensitivity (A1, B1, C1) and specificity
(A2, B2, C2) of the HBBB method to detect an atypical center for the distribution of a categorical variable, across the range of distribution of the categorical variable in the
atypical center (0–1.0) (horizontal axis) and in the non-atypical centers (0.1–0.5) (colored lines), according to three overdispersion parameter values (0 in Figures A1 and
A2; 0.01 in Figures B1 and B2; 0.1 in Figures C1 and C2). The analysis is performed when the number of participants in the atypical center is 50, in a study in which the total
number of participants is ten times higher.

Figure 2. Simulation study: Sensitivity and specificity of the HBBB method to detect the atypical center according to the sample size and the proportions of events in the
atypical center. This figure explores the sensitivity (A1, B1, C1) and specificity (A2, B2, C2) of the HBBB method to detect an atypical center for the distribution of a categorical
variable, across the range of distribution of the categorical variable in the atypical center (0–1.0) (horizontal axis) and according to different number of participants in the
atypical center (10–300) (colored curves). The Bayesian model estimation in Figures A1 and A2 uses non-informative priors; while Figures B1 and B2 use an informative
prior on the mean (Mod1), and Figures C1 and C2 use an informative prior on the overdispersion (Mod2). The analysis is performed assuming that the total number of
participants is 10 times the number of participants in the atypical number. The proportion of events in the non-atypical centers is 0.5.

Na/N at 1/10) and a wide range of μ1 proportions in the atypical
center (keeping the proportion μ0 in the non-atypical centers at

0.50), according the possible influences of the choices of priors
on the performance of the proposed method.
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Figure 3. Simulation study: Sensitivity and specificity of the HBBB method to detect the atypical center according to the ratio “sample size in the atypical center/sample
size in the overall study” and the proportions of events in the atypical center. This figure explores the sensitivity (A) and specificity (B) of the HBBB method to detect that a
center is atypical for the distribution of a categorical variable, across all the range of distribution of the categorical variable in the atypical center (0–1.0) (horizontal axis)
and according to different ratio Na/N (1/4–1/20, colored curves). The proportion of events in the non-atypical centers is 0.5. The analysis is performed assuming that the
number of participants is 50 in the atypical center (therefore, the total number of participants in the study varies from 200 to 1000).

Despite the simulations carried out using non-informative
priors, a sensitivity analysis is performed using informative
priors. Thus, the Mod1 model uses an informative prior on the
mean (μ) while maintaining a non-informative prior on the
overdispersion (ρ). This prior leads to putting more weight on
the expectation of p around 0.5 while considering no informa-
tion on the overdispersion of typical proportion p. Then, the
Mod2 model uses an informative prior on both the mean (μ)
and the overdispersion (ρ). In this second informative scenario,
we consider the expected proportion of an atypical center to be
around 0.5 (prior on mu) with greater certainty (i.e., a tighter
distribution of p around 0.5 in Mod2 than in Mod1). For Mod1
and Mod2 models, the considered prior distributions are respec-
tively:

Mod1 : μ ∼ Beta (3, 3) and ρ ∼ Beta(1, 1)

Mod2 : μ ∼ Beta(3, 3)and ρ ∼ Beta(0.3, 1).

Whatever the choice of prior distribution, we have noted
that when the number of participants in the atypical center is
increased, sensitivity increases in all scenarios, and specificity
increases when δ increases but decreases when δ decreases.

Figure 3 shows the sensitivity and specificity across a wide
range of Na/N ratios (keeping Na at 50) and a wide range of
μ1 proportions in the atypical center (keeping the proportion
μ0 in the non-atypical centers at 0.50, and therefore varying δ).
When Na/N is increased, sensitivity in all scenarios decreases,
and specificity increases when δ decreases but decreases when δ

increases.
Figure 4 shows the sensitivity and specificity across a wide

range of Na and Na/N, keeping the μ0 proportion in the non-
atypical centers at 0.50 where μ1 in the atypical center is 0.1
(and therefore δ = 0.4), 0.2 (δ = 0.3), and 0.3 (δ = 0.2). In
this figure, Na and δ appear to be more significant determinants

of good sensitivity than Na/N. Sensitivities in this figure show
two different evolutions: one increasing according to the size of
the center and the other decreasing according to the size of the
center. For participant ratios varying from 1/8 to 1/20, sensitivity
increases from 50% to approximately 100% depending on the
increase in the number of subjects per center for δ = 0.4,
then from 25% to 100% for δ = 0.3 and 5% to around 80%
for δ = 0.2. Furthermore, for ratios from 1/7 to 1/4, we note
that the sensitivity decreases with the increase in the number
of participants until reaching zero regardless δ. On the other
hand, in all scenarios the specificity is conservative and remains
above 90%.

5.2. Application Study

At the enrollment phase for the Temprano trial, 2962 individuals
agreed to be pre-included and 2651 of these returned for the
inclusion visits. Of the 2651, 2076 were eventually included and
575 excluded, including 105 for whom the only reason for non-
inclusion was unwillingness to participate (TEMPRANO ANRS
12136 Study Group 2015).

In all the sequential analyses described in the methods
section, no center is detected as atypical when we use non-
informative priors, and two study centers were considered atypi-
cal at least once in terms of this variable when we use informative
prior. Figure 5 shows the results of the analysis concerning
these all centers including the two that were detected (see
Appendix). The HBBB method flagged center B as atypical when
it reached 50 participants, at which point the overall number
of participants in the study was 242, the proportion μ1 in
center B was 22%, and the proportion μ0 in the overall study
was 9.5%. The HBBB method also flagged center C as atypical
when it reached 200 participants, at which point the overall
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Figure 4. Simulation study: Sensitivity and specificity of the HBBB method to detect the atypical center according to the sample size in the atypical center, the ratio “sample
size in the atypical center/sample size in the overall study,”and the proportions of events in the atypical center. This figure explores the sensitivity (A1, B1, C1) and specificity
(A2, B2, C2) of the HBBB method to detect that a center is atypical for the distribution of a categorical variable, according to different number of participants in the atypical
center (10–300) (horizontal axis) and different ratio Na/N (from 1/4 to 1/20) (colored lines). The proportion of events in the non-atypical centers is 0.5. The analysis is
performed assuming that the proportion of events in the atypical center is 0.1 (A1 and A2), 0.2 (B1 and B2), and 0.3 (C1 and C2), and therefore the value of δ is 0.4, 0.3,
and 0.2

Figure 5. Application study: Results of the sequential HBBB analyses in the Temprano trial centers. This figure explores for each center investigated and for each round of
CSM the proportion of events in the center (colored dots), that is the proportion of “refusal to participate as the only criterion for non-inclusion” (vertical axis) among the
total number of pre-included patients (horizontal axis). The black line in the figure is the event proportion in the overall study. The small dots in the figure indicate cases
where the center analyzed in the CSM round is not detected by the CSM method, while the large dots indicate cases where the analyzed center is detected as “atypical”.

number of participants in the study was 787, the proportion
μ1 in center C was 2%, and the proportion μ0 in the overall
study was 5.6%. The results of the sequential analyses for the
7 other Temprano trial centers as well as for the two centers
detected are also reported in the table in the supplemental
appendix.

6. Discussion

This article presents a new CSM method for categorical variables
to detect atypical centers in multicenter clinical trials. The theo-
retical conceptualization of the method is based on the principle
of mixing binomial models in each center with the probability of
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success in mixing data from all centers with a beta distribution
(Lee and Sabavala 1987). The HBBB method can be used for
categorical data with more than two modalities by regrouping
categories to single out the category of interest.

The simulation study suggests that the performance of the
HBBB method is similar to the one previously described by
Desmet et al. (2017) with regard to the sensitivities and specifici-
ties of these two methods. The added value of the HBBB method
is that it uses MCMC methods to draw samples from posterior
distribution of the parameters of the hierarchical beta-binomial
model, using all data already available as a learning sample.
This enables the determination of credibility intervals for event
occurrences in the form of regions of highest a posteriori density
for each center in the multicenter trial. The method is also user-
friendly and the results are easy to interpret. It is less complex
in theoretical conceptualization because the method is based
on beta-binomial modeling and uses a Bayesian approach for
parameter estimates, and the software programming is easier as
it uses existing packages.

The practical interest of CSM in the field deserves two com-
ments.

First, the sensitivity and specificity of any CSM method
should not be considered in the same way as for a diagnostic
tool, where the development of close to 100% sensitivity and
specificity are generally sought. CSM is not intended to replace
other traditional monitoring procedures but is a useful com-
plementary tool that allows other procedures to be optimized
by focusing on the potential risks identified. With CSM, poor
sensitivity and failure to detect an atypical center can be toler-
ated while poor specificity cannot, as it generates unnecessary
additional control work.

Second, many multicenter trials do not involve hundreds of
participants per center. Where they do, it makes less sense to
detect potential problems when the sample size is large and/or
the trial is nearing completion. It is important, therefore, that
the CSM method is capable of detecting atypical centers with
sample sizes as low as possible (Niangoran et al. 2023).

Indeed, a CSM method which has very high specificity makes
it possible to reduce the number of false positive results to an
acceptable level, that is considerably reduce the detection of
falsely atypical investigative centers (Power, Fell, and Wright
2013). Thus, it would not generate more field investigation work
by data monitors in the centers. However, from a perspective
of combining several applications, our HBBB CSM method,
although having less good sensitivity, but excellent specificity,
could prove very useful in reducing false positives among cen-
ters identified as atypical. Also, the judicious choice of the prior
distribution for the overdispersion parameter makes it possible
to increase sensitivity, while controlling a respectable reduction
in specificity. Likewise, increasing the detection threshold of the
atypical center (q-parameter) could improve the sensitivity of
our CSM application.

The practical application of CSM therefore requires knowl-
edge of how to interpret the results of analyses carried out with
various sample sizes and event frequencies, and how to arrive at
a compromise between detecting potential problems early and
triggering time-consuming control procedures.

In the application study, two atypical centers were convinc-
ingly detected, in which Na was 50 and 200, δ was 0.12 and

0.04, and Na/N was 21% and 25%, respectively. This application
detected center B as atypical a little earlier in the implementation
of the CSM rounds (fifth round), while center C was detected
a little later (i.e., in the eighth round). It was noted that the
HBBB method that we propose detects both atypical centers
with proportions higher than the overall trend, as well as atypical
centers with proportions lower than the overall trend. To con-
clude on the lessons of this application, we note that at relatively
small sample sizes, centers with larger differences in proportions
compared to that of the whole are more likely to be reported as
atypical. On the other hand, we note that for larger sample sizes,
even centers presenting proportions not very far from that of the
whole are more likely to be reported as atypical by our method.

The CSM study was done retrospectively when the database
was closed, but it can reasonably be argued that the use of the
HBBB method while the trial was in progress could have led to
important practical measures. Prospective studies are nonethe-
less needed to better assess the benefits and disadvantages of
CSM in multicenter trials, for the purposes of comparing all
the proposed methods and identifying the strengths and weak-
nesses of each in different scenarios.

There are several reasons to explain the advantages of the
HBBB CSM method that we propose. Among these, there is
the advantage of using our method based on Bayesian modeling
when few data are available in the multicenter trial and frequen-
tist methods do not make it possible to obtain default results
of convergence of the estimates. Likewise, when we have strong
a priori knowledge on the distributions of priors in the inves-
tigating centers, and which it is possible to integrate into the
modeling. Finally, we can consider that the HBBB method that
we propose is much simpler in its implementation compared to
that proposed by Desmet et al. (2017).

Furthermore, simulation results show that the proposed
method controls excellent sensitivity when priors are uninfor-
mative. When informative priors are used on mean (μ) and the
overdispersion (ρ), this improves sensitivity at the expense of
specificity. These results are also consistent with those previ-
ously obtained by Morita, Thall, and Müller (2010) who con-
sidered that well-chosen prior distributions were important to
ensure good properties of diagnostic tools, in particular for
CSM methods. It is then necessary to take care that the prior
information used leads to a reasonable average proportion dis-
tribution of typical proportion according to expert knowledge
or historical data.

In conclusion, very few CSM methods have been proposed
for categorical variables. The performance of this new HBBB
method is similar to that previously proposed by Desmet et al.
(2017). It is easy to model and shows good specificity in many
scenarios where the sample size is limited. We illustrated its
potential interest using an historical database. Its practical inter-
est should now be assessed prospectively in future multicenter
trials.

Abbreviations
ANRS French National Agency for Research on AIDS

and Viral Hepatitis
CSM Centralized statistical monitoring
HBBB Hierarchical Bayesian beta-binomial
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MCIA Aquitain intensive computing mesocenter
MCMC Markov chain Monte Carlo
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Sequential analyses with the HBBB method using the Temprano trial data
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inclusion.

Authors’ Contributions

Serge Niangoran designed and interpreted the analyses and drafted the
first version of the manuscript. Amadou Alioum and Xavier Anglaret
contributed to the design and interpretation of the analyses, and substan-
tially revised the manuscript. Antoine Barbieri helped with the Bayesian
modeling and theoretical design of the HBBB method. Anani Badjé and
Gerard Kouamé contributed in the work on the Temprano database in the
application study. Valérie Journot and Olivier Marcy critically revised the
article. All authors read and approved the final version of the article.

Disclosure Statement

All authors declared no competing interests.

Data Availability Statement

The dataset generated and analyzed during the current study is available
from the corresponding author on reasonable request.

Funding

Serge Niangoran received a scholarship from the French Institut de
Recherche pour le Développement (IRD) from January 2020 to December
2022.

ORCID

Serge Niangoran http://orcid.org/0000-0003-1747-1995

References

Agency, E. M. (2013), “Reflection Paper on Risk Based Quality Management
in Clinical Trials,” Compliance Inspector, 44, 1–15. [1]

Buyse, M., George, S. L., Evans, S., Geller, N. L., Ranstam, J., Scher-
rer, B., Lesaffre, E., Murray, G., Edler, L., Hutton, J., Colton, T.,
Lachenbruch, P., and Verma, B. L. (1999), “The Role of Biostatis-
tics in the Prevention, Detection and Treatment of Fraud in Clinical
Trials,” Statistics in Medicine, 18, 3435–3451. DOI:10.1002/(sici)1097-
0258(19991230)18:24<3435::aid-sim365>3.0.co;2-o. [1]

Center for Drug Evaluation and Research. (2022), “Oversight of Clinical
Investigations—A Risk-Based Approach to Monitoring,” U.S. Food
and Drug Administration, FDA, Available at https://www.fda.gov/
regulatory-information/search-fda-guidance-documents/oversight-
clinical-investigations-risk-based-approach-monitoring. [1]

Chuang-Stein, C. (1993), “An Application of the Beta-Binomial Model to
Combine and Monitor Medical Event Rates in Clinical Trials,” Drug

Information Journal, 27, 515–523. DOI:10.1177/009286159302700242.
[1]

Clark, A. E., and Altwegg, R. (2019), “Efficient Bayesian Analysis of Occu-
pancy Models with Logit Link Functions,” Ecology and Evolution, 9, 756–
768. DOI:10.1002/ece3.4850. [4]

de Viron, S., Trotta, L., Schumacher, H., Lomp, H.-J., Höppner, S., Young,
S., and Buyse, M. (2022), “Detection of Fraud in a Clinical Trial Using
Unsupervised Statistical Monitoring,” Therapeutic Innovation & Regula-
tory Science, 56, 130–136. DOI:10.1007/s43441-021-00341-5. [1]

Desmet, L., Venet, D., Doffagne, E., Timmermans, C., Burzykowski, T.,
Legrand, C., and Buyse, M. (2014), “Linear Mixed-Effects Models for
Central Statistical Monitoring of Multicenter Clinical Trials,” Statistics
in Medicine, 33, 5265–5279. DOI:10.1002/sim.6294. [1]

Desmet, L., Venet, D., Doffagne, E., Timmermans, C., Legrand,
C., Burzykowski, T., and Buyse, M. (2017), “Use of the Beta-
Binomial Model for Central Statistical Monitoring of Multicenter
Clinical Trials,” Statistics in Biopharmaceutical Research, 9, 1–11.
DOI:10.1080/19466315.2016.1164751. [1,2,8]

Everson, P. J., and Bradlow, E. T. (2002), “Bayesian Inference for the Beta-
Binomial Distribution via Polynomial Expansions,” Journal of Computa-
tional and Graphical Statistics], 11, 202–207. [2]

Hatayama, T., and Yasui, S. (2020), “Bayesian Central Statistical
Monitoring Using Finite Mixture Models in Multicenter Clinical
Trials,” Contemporary Clinical Trials Communications, 19, 100566.
DOI:10.1016/j.conctc.2020.100566. [1]

Hespanhol, L., Vallio, C. S., Costa, L. M., and Saragiotto, B. T. (2019),
“Understanding and Interpreting Confidence and Credible Intervals
around Effect Estimates,” Brazilian Journal of Physical Therapy, 23, 290–
301. https://doi.org/10.1016/j.bjpt.2018.12.006. [3]

Kleinman, J. C. (1975), “Proportions with Extraneous Variance: two Depen-
dent Samples,” Biometrics, 31, 737–743. [1]

Kruschke, J. K., and Vanpaemel, W. (2015), “Bayesian Estimation in
Hierarchical Models,” in The Oxford Handbook of Computational
and Mathematical Psychology, eds. J. R. Busemeyer, Z. Wang, J. T.
Townsend, and A. Eidels, pp. 279–299. Oxford: Oxford University Press.
DOI:10.1093/oxfordhb/9780199957996.013.13. [1]

Lee, J. C., and Sabavala, D. J. (1987), “Bayesian Estimation and Prediction
for the Beta-Binomial Model,” Journal of Business & Economic Statistics,
5, 357–367. DOI:10.1080/07350015.1987.10509600. [2,8]

Morita, S., Thall, P. F., and Müller, P. (2010), “Evaluating the Impact of Prior
Assumptions in Bayesian Biostatistics,” Statistics in Biosciences, 2, 1–17.
DOI:10.1007/s12561-010-9018-x. [8]

Niangoran, S., Journot, V., Marcy, O., Anglaret, X., and Alioum, A.
(2023), “Performance of Four Centralized Statistical Monitoring Meth-
ods for Early Detection of an Atypical Center in a Multicenter
Study,” Contemporary Clinical Trials Communications, 34, 101168.
DOI:10.1016/j.conctc.2023.101168. [8]

Plummer, M. (2003), “JAGS: A Program for Analysis of Bayesian Graph-
ical Models Using Gibbs Sampling,” in 3rd International Workshop on
Distributed Statistical Computing (DSC 2003), Vienna, Austria, 124. [4]

Pogue, J. M., Devereaux, P. J., Thorlund, K., and Yusuf, S. (2013), “Central
Statistical Monitoring: detecting Fraud in Clinical Trials,” Clinical Trials
(London, England), 10, 225–235. DOI:10.1177/1740774512469312. [1]

Power, M., Fell, G., and Wright, M. (2013), “Principles for High-
Quality, High-Value Testing,” Evidence-Based Medicine, 18, 5–10.
DOI:10.1136/eb-2012-100645. [8]

Robert, C. (2007), The Bayesian Choice, Springer Texts in Statistics, New
York, NY: Springer. DOI:10.1007/0-387-71599-1. [3]

TEMPRANO ANRS 12136 Study Group. (2015), “A Trial of
Early Antiretrovirals and Isoniazid Preventive Therapy in
Africa,” The New England Journal of Medicine, 373, 808–822.
DOI:10.1056/NEJMoa1507198. [4,6]

http://orcid.org/0000-0003-1747-1995
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/oversight-clinical-investigations-risk-based-approach-monitoring
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/oversight-clinical-investigations-risk-based-approach-monitoring
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/oversight-clinical-investigations-risk-based-approach-monitoring
https://doi.org/10.1016/j.bjpt.2018.12.006

	Abstract
	1.  Introduction
	2.  Material and Method
	2.1.  Description of the HBBB Method
	2.1.1.  Beta-Binomial Distribution
	2.1.2.  The Hierarchical Bayesian Beta-Binomial (HBBB) Model

	2.2.  Procedure for Detecting Atypical Center Using the HBBB Approach

	3.  Simulation Study to Test HBBB Method Performance
	3.1.  Overview
	3.2.  Scenarios

	4.  Application Study to Illustrate the Significance of the HBBB Method
	5.  Results
	5.1.  Simulation Study
	5.2.  Application Study

	6.  Discussion
	Abbreviations
	Supplementary Materials
	Authors' Contributions
	Disclosure Statement
	Data Availability Statement
	Funding
	ORCID
	References


