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Satellite‑derived sandy shoreline 
trends and interannual variability 
along the Atlantic coast of Europe
Bruno Castelle 1*, Etiënne Kras 2, Gerd Masselink 3, Tim Scott 3, Aikaterini Konstantinou 3 & 
Arjen Luijendijk 2,4

Monitoring sandy shoreline evolution from years to decades is critical to understand the past and 
predict the future of our coasts. Optical satellite imagery can now infer such datasets globally, but 
sometimes with large uncertainties, poor spatial resolution, and thus debatable outcomes. Here we 
validate and analyse satellite‑derived‑shoreline positions (1984–2021) along the Atlantic coast of 
Europe using a moving‑averaged approach based on coastline characteristics, indicating conservative 
uncertainties of long‑term trends around 0.4 m/year and a potential bias towards accretion. We show 
that west‑facing open coasts are more prone to long‑term erosion, whereas relatively closed coasts 
favor accretion, although most of computed trends fall within the range of uncertainty. Interannual 
shoreline variability is influenced by regionally dominant atmospheric climate indices. Quasi‑straight 
open coastlines typically show the strongest and more alongshore‑uniform links, while embayed 
coastlines, especially those not exposed to the dominant wave climate, show weaker and more 
variable correlation with the indices. Our results provide a spatial continuum between previous local‑
scale studies, while emphasizing the necessity to further reduce satellite‑derived shoreline trend 
uncertainties. They also call for applications based on a relevant averaging approach and the inclusion 
of coastal setting parameters to unravel the forcing‑response spectrum of sandy shorelines globally.

Keywords Sandy coast, Climate indices, Satellite-derived shoreline, Long-term erosion, Interannual 
variability, Coastal settings

Sandy shorelines, which cover approximately one third of the Earth’s ice-free  coastline1, provide important 
 natural2 and socio-economical3 resources. They are also amongst the world’s most energetic and dynamic 
 environments4 and in the long term they are threatened by climate change and declining sediment  supply5. 
It is thus critical to improve our understanding and predictive capacity of shoreline evolution over a broad 
range of timescales spanning days-to-century, to support the development and sustainability of sandy coastal 
 environments6. Past multidecadal shoreline trends can be extrapolated to provide insight into future shoreline 
positions at the 2100 horizon (e.g.7,8), while interannual shoreline variability will typically dominate the shoreline 
signal and its uncertainties during the next few decades before sea level rise takes over (e.g.9). Such interannual 
shoreline variability is often primarily enforced by large-scale climate patterns of atmospheric or coupled ocean-
atmospheric variability (e.g. El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO)10,11). 
The seasonal to decadal predictability of these climate patterns recently showed increasing  skill12,13, which may 
allow a reduction in shoreline evolution uncertainties in the next decades. Understanding shoreline evolution 
on inter-annual to decadal timescales, and at local to regional spatial scales is therefore critical to understand 
the past and predict the future of our coasts.

Until recently, observation of coastal change on decadal/multi-decadal timescales at a sufficient temporal 
resolution (e.g. days, month) was only available at a small number of well-monitored sites using Global Naviga-
tion Satellite Systems (GNSS) surveys and/or video monitoring  techniques14–20. Within only a few years satellite 
remote sensing has transformed decadal timescale coastal science from a data-poor into a data-rich field (see 
literature review  in21). In particular, free-of-charge publicly-available optical satellite imagery can now be used to 
derive shoreline positions on large spatial ( O(1000) m to global) and temporal ( O(10) years) scales at relatively 
high frequency ( O(1–10) days) using a wealth of techniques (e.g.22–25). Luijendijk et al.1 first provided a high 
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spatial (transect spacing ranging approximately 200–500 m) and temporal (yearly) resolution Satellite-Derived 
Shoreline (SDS) dataset at global scale, focusing on long-term shoreline trends, offering fresh perspectives of 
increased understanding of shoreline change  globally26. However, although SDS uncertainties are typically around 
10–15 m on many beaches (e.g.22), SDS accuracy dramatically worsens on high-energy and/or low-gradient and/
or meso-macrotidal  beaches27,28. Water-level (including wave action)  correction27,28 can be applied to reduce 
uncertainties. However, it cannot be applied globally because the type of water-level correction depends on the 
beach  state28 and breaking wave conditions, which are not available along the global coastline. Spatial and tem-
poral averaging of uncertain SDS datasets can be performed to filter out some of the SDS noise and to further 
provide fair insight into the spatial and temporal modes of shoreline  variability29,30. Although such an approach 
can work on relatively straight stretches of coast, it is challenging in other environments such as embayed beaches, 
sandspits or estuary mouths where the time and space patterns of shoreline change can strongly vary alongshore. 
Because of some of these limitations, there has been a growing number of concerns raised by the coastal science 
community (e.g.5,31–33) on global applications where satellite-derived data, including SDS, are used to provide 
debatable conclusions on the past or future of our coasts globally. A recent example emphasized  by34 is the use 
of coarse shoreline transect spacing of up to 0.5◦ to address shoreline change globally, which does not sample the 
great diversity of coastal settings, behaviors, and geomorphic changes. Another limitation of previous SDS stud-
ies at regional to global scales is that shoreline change characteristics are typically averaged geographically (i.e. 
latitude, longitude, country,  continent1,35), even with very coarse resolution  transects36. A large body of literature 
based on field data shows that coastal settings, such as coastline orientation with respect to the dominant wave 
climate (e.g.37) and/or wave sheltering from major headlands or offshore  islands38,39 is crucial to the spatial and 
temporal modes of shoreline response.

It is unclear if, and to what extent, a global SDS dataset can be used to provide a robust estimation of long-
term trends, to identify the primary climate modes of atmospheric variability affecting interannual shoreline 
change, and to provide new insights into the spatial variability of these controls depending on some basic coastal 
settings. Here we focus along the Atlantic coast of Europe because: (1) the large  waves40 and  tides41 challenge 
SDS  accuracy27,28 and thus provide a conservative assessment for global SDS applications; (2) it comprises a large 
variability of coastal settings with long sandy barriers, embayed beaches, estuary mouths and tidal inlets, with 
also a large variability in terms of coastline orientation; (3) it contains some of the most monitored and studied 
stretches of coast in the  world18–20,37. The Atlantic coast of Europe is exposed to high-energy ocean waves gener-
ated in the North Atlantic Ocean with trends and climate controls which have been identified locally already 
(e.g.29,33,37,42–44), and with such previous work providing critical information to interpret and validate our findings 
derived from optical satellite imagery.

In this contribution, we validate and consult an improved state-of-the-art global SDS dataset to address the 
spatial distribution of long-term trends and interannual variability of sandy shores along the Atlantic coast 
of Europe, and to further identify the primary drivers and coastal settings affecting this spatial variability. By 
applying a moving-average approach based on distance and coastline orientation, we show that west-facing 
fully-exposed coasts are more affected by long-term erosion, with interannual shoreline variability controlled 
by the North Atlantic Oscillation  (NAO10) at the most northern � 50 ◦ N and southern � 40 ◦ N extents, and in 
between by the West Europe Pressure Anomaly  (WEPA42), which is a climate index developed specifically to 
address wave climate variability along the Atlantic coast of Europe. In contrast, relatively closed sandy coastlines 
tend to be more prone to long-term accretion on average, and coastlines not fully exposed to the dominant ocean 
waves show complex and variable correlations with the dominant climate indices, providing a spatial continuum 
between previous local-scale studies. While recognizing the uncertainties associated with satellite-derived shore-
line analysis, we advocate that geographically-averaged SDS analyses, especially based on coarse transect spacing 
( O(1–10) km), can miss crucial information on the drivers and coastal settings affecting shoreline variability and 
trend, and that future global SDS analysis will benefit from including such information at high spatial resolution 
to robustly cluster forcing-response shoreline modes.

Results
Study site characteristics
The study area covers the west coast of Europe (Fig. 1a,b) which is exposed to high-energy waves generated in 
the North Atlantic Ocean. We used the global Shoreline Monitor (SM) yearly SDS dataset made of approximately 
200- to 500-m spaced  transects1. This dataset was extended to 2021 (1984–2021 coverage) and used an improved 
sandy (including gravel) shoreline classification (see “Methods”45). In total, the study area covers approximately 
11,000 km of coastline, including approximately 2840 km of sandy shores ( ≈ 25.8% ). Such distribution largely 
varies latitudinally (Fig. 1c) with, overall, a larger proportion of sandy coastlines in the south ( < 50 ◦ N, ≈ 46.6 % 
of sandy shores), than in the north (exposed coast of UK at > 50 ◦ N, ≈ 10.7 % of sandy shores), highlighting the 
difference of overall coastal typology between the British Isles and the continental beaches. Average tide range 
TR at the coast computed (from Copernicus Climate Change Service (C3S)46), which is critical to SDS uncer-
tainties, also shows large spatial variability ranging from 0.96 m along the southwest Scottish coast, to 10.73 
m inside the Bristol Channel, with a mean of 3.49 m (Fig. 1d) highlighting the large tidal amplitude along the 
study area. Winter-wave climate is highly energetic with, based on C3S ERA5  reanalysis47, winter wave height 
increasing northwards and winter-mean significant wave height exceeding 4 m offshore the Irish and Scottish 
coasts (Fig. 1a). Hereafter, only the sandy coast part of the study area is analysed. West-facing sandy coasts are 
dominant ( ≈ 1380 km, 48.5%), followed by south-facing ( ≈ 760 km, 26.7%), north-facing ( ≈ 460 km, 16.1%) 
and east-facing ( ≈ 250 km, 8.7%). West-facing open coastlines are particularly represented in southwest France 
and western coast of Portugal (Fig. 1d). A substantial proportion of sandy shores ( ≈ 750 km, 26.5%) are relatively 
closed ( D < 50 km, where D is the orthogonal distance to the closest coast, see “Methods”), and are primarily 
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located in northwest Spain, west-northwest France and UK (Fig. 1e). Important to the SDS analysis is the amount 
of satellite images used to generate the yearly composite and further compute shoreline position. The number of 
individual images used in a yearly composite image and the number of locally missing yearly composite decrease 
and increase northwards, respectively, due mostly to increased cloud  cover48, indicating that the accuracy of SDS 
time series decreases at the highest latitudes.

Long‑term shoreline trends
Figure 2a,b shows, averaged over study area sandy coastline, the time series of yearly shoreline deviation around 
the long-term (1984–2021) mean S̃ , together with the evolution of the yearly-mean SM SDS spatial coverage Ny 
and of the number of images used per yearly composite Nc (Fig. 2c). Accounting for all the sandy shorelines, and 
despite interannual shoreline variability of O (1 m), a statistically-significant (p-value < 0.05) accreting trend of 
+ 0.21(±0.4) m/year is found (see section “SDS post-processing” for the long-term trend uncertainty estimation). 
This accreting trend is more than doubled if only significantly closed shorelines ( D < 10 km) are considered 
(+ 0.50(±0.4) m/year, blue line in Fig. 2a), and is almost halved, but still statistically significant (p-value < 0.05), 
considering relatively open coasts (+ 0.13(±0.4) m/year for D > 50 km, red line in Fig. 2a). Note that despite 
different long-term trends, the relatively open and closed shorelines show coherent response (correlation R 
= 0.65 between the blue and red lines in Fig. 2b). Given the long-term trend uncertainties and potential bias 
towards accretion (see section “Shoreline Monitor (SM) dataset”), these unexpected and controversial results 
that satellite-derived shorelines along sandy coasts may tend to accrete on average are discussed and tempered 
later in the Discussion Section.

On average, east-facing (dS/dt = + 0.33(±0.4) m/year), south-facing (dS/dt = + 0.29(±0.4) m/year) and north-
facing (dS/dt = + 0.26(±0.4) m/year) coastal stretches are more prone to long-term accretion, although still within 
the range of uncertainty. A slight overall accretive trend is found (dS/dt = + 0.13(±0.4) m/year) for west-facing 
coasts, i.e. an average rate smaller than for all the other coastline orientations. Figure 3 further shows that there 
is a large latitudinal variability of shoreline trends. The weaker long-term accreting trend of the west-facing 
coastlines is largely due to the eroding, fully exposed, sandy coasts of southwest France around the Gironde 
estuary and Maumusson inlet at 45◦ < latitude < 46◦ , the west coast of Portugal and, to a lesser extent, the 
southwest coast of the UK (Fig. 3b–e). Importantly, the mean long-term trends are very small compared to the 
regional variability as indicated by the large standard deviation of shoreline trends (horizontal bars in Fig. 3b–e). 
Despite this large variability, the shoreline change rates are relatively well normally distributed for all coastline 
orientations and latitudes (Fig. 3f–i).

Interannual shoreline variability and climates modes of atmospheric variability
Figure 4 shows the spatial correlation R of the winter-mean significant wave height Hs and yearly shoreline change 
dS against the primary (December to March) winter-averaged climate indices in the region over the entire time 
series 1984–2021. Noteworthy, because yearly composites include subsequent spring, summer and early autumn 
recovery, correlations are expected to be much lower than with post-winter shoreline position as demonstrated 
 by33 using in situ shoreline time series. The Scandinavian pattern (SCAND) shows relatively poor correlation with 
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Figure 1.  Latitudinal distribution of satellite-derived sandy coastline characteristics. (a) Winter (DJFM)-
mean significant wave height Hs from ERA5 global reanalysis and coastline of interest (thick black line) 
which is zoomed onto in (b). (c) Latitudinal distribution (binned at 1 ◦ interval) of the length of total (black 
dots) and sandy only (blue dots) coastline and its corresponding percentage (grey bars). (d,e) Sandy coastline 
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winter wave activity, except at the most northern latitudes along the northern Ireland and Scottish coasts where 
R can exceed 0.7 (Fig. 4a). In contrast, the NAO shows larger positive and negative correlation with winter-mean 
wave height at the most northern and southern latitudes, respectively, with weak correlation in the transition 
area. In this transition area (approximately between 38◦ N and 51◦N), WEPA (Fig. 4d), and to a lesser extent the 
East Atlantic pattern (EA, Fig. 4b) show a strong positive correlation. The same analysis was performed for yearly 
shoreline change dS. In order to reduce shoreline change uncertainties and be able to robustly address complex 
coastline shapes without introducing errors, dS was averaged using a 5-km moving-average window (L) and a 
coastline orientation δθ = 45◦ relative to each transect (see “Methods”). Shoreline response shows weaker correla-
tion with primary winter-averaged climate indices and more complex patterns than for winter wave conditions. 
For instance, a consistent positive correlation with WEPA (meaning that a positive WEPA results in increased 
erosion) is found along the open sandy coast of southwest France, whereas along more complex shorelines posi-
tive and negative correlations typically alternate in space and local scale patterns are mostly difficult to pick up.

To provide a broader insight into the correlations between the climate indices and shoreline response, Fig. 5 
shows the average correlation binned at 2.5◦ intervals for different coastline orientations. While SCAND does 
not show any correlation pattern, a clear latitudinal gradient is found with the NAO for the west-facing coasts 
(Fig. 5g), which is more subtle for the other coastline orientations. Also in line with the wave climate, WEPA, 
and to a lesser extent EA, shows positive correlation in the NAO-transition zone (Fig. 5f,h). Similar WEPA pat-
terns are found for the south-facing coastlines (Fig. 5d), which are more subtle for the east- and north-facing 
coastlines. Importantly, except for the west-facing southwest coast of France, bin-averaged correlations are weak 
(< 0.5), which will be discussed in the next section.
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around the mean S̃ for the entire sandy coast (thick grey), and focusing on significantly closed ( D < 10 km, 
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(dashed lines) and quantified using the same color scheme. (c) Corresponding time series of SM SDS spatial 
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Discussion
Our results suggest that, on average, sandy SDS may have been accreting (+ 0.21(±0.4) m/year) over the last 
nearly 40 years along the exposed Atlantic coast of Europe (Fig. 2). This finding goes against the many local 
observations showing eroding sandy shorelines along the Atlantic coast of Europe. However, many of these 
works investigated the Portuguese sandy coast (e.g.49,50) or the southwest Coast of  France51,52, which were also 
found to mostly erode in our dataset (Fig. 4). There is also evidence that many embayed beaches in e.g. France 
and the UK, are dominated by shoreline rotation and/or show no significant long-term eroding  trend19,20. Some 
accreting sectors found here have also been identified in the field (e.g.53). The SDS dataset used herein approxi-
mately corresponds to the Mean Sea Level (MSL) shoreline proxy which behaviour can contrast with the dune 
foot shoreline proxy, a relevant shoreline proxy along sandy coasts, due sediment exchanges and redistribution 
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between the dune and the intertidal beach. This is particularly true on meso-macrotidal beaches, which are 
ubiquitous along the Atlantic coast of Europe (Fig. 1d). This was evidenced  by54 on a beach in French Britany 
showing MSL and dune foot shorelines showing opposite behaviour, i.e. eroding dune versus accreting MSL 
shoreline. Moreover, the SM SDS long-term trend uncertainties were estimated using high-frequency SDS from 
other  approaches22 and field data (see Figs. 8 and 10 and section “Methods”), as well as trends computed along 
rocky shorelines (see section “Methods”). It shows that the computed trends mostly fall within the uncertainty 
range, with a potential bias towards accretion. Therefore, more work is required to provide more detailed and 
validated satellite-derived insights into the spatial distribution of long-term eroding and accreting sandy coasts. 
Such work should involve more validation with field data to better estimate long-term trend uncertainties at a 
wide range of environments. In addition, progressively improving image composite  quality55 and modification of 
certain optical index thresholds between the different satellite missions (e.g.56) may explain the long-term trend 
bias towards accretion. Such bias was identified with Sentinel images (see “Methods”), which were thus removed 
from the yearly composites used herein. Such impact of evolving satellite missions needs to be explored further 
for SDS data, especially as such long-term trends can be extrapolated to predict the future of our coast (e.g.7).

While previous work essentially geographically averaged shoreline  response1,35,36, here we investigated the 
influence of some coastline characteristics, namely the orthogonal distance to the closest coastline D and coastline 
orientation θ , on shoreline trend and response. This allowed us to demonstrate that west-facing, i.e. fully exposed 
to the dominant incidence of ocean waves, and relatively open ( D > 50 km) sandy coasts are more prone to long-
term coastal erosion, with stronger relations between interannual shoreline change and winter climate indices. 
This is in agreement with local studies showing that enclosed/embayed beaches are less prone to erosion than 
open  beaches53. Noteworthy, generalising such finding globally is misleading, as some long open coast sectors 
are known to accrete at a substantially large rate (e.g. Northern  California30). Instead, we advocate that such 
averaging approach through e.g. coastline orientation and/or orthogonal distance to the closest  coastline57, but 
also potentially other shoreline characteristics, should help to better understand shoreline response at regional 
to global scale. We also anticipate that the absence of relatively strong long-term erosion trend of the Atlantic 
sandy coast of Europe is because west-facing open ( D > 50 km) sandy coasts, which are more prone to erosion, 
occupy less than half (39.5%, with a long-term trend of + 0.03(±0.4) m/year) of the total coastline and because of 
the absence of deltaic coastlines, many of which erode  globally58,59, and which may contribute disproportionally 
to global averages. Finally, it must be acknowledged that the extension and revision of the SM SDS dataset used 
herein (see “Methods”) largely reduced the proportion of classified sandy  shores1,7, and also reduced the aver-
age accretion trends along the Atlantic coast of Europe compared  to1. Future global shoreline long-term trend 
analyses and extrapolation in the future will need to be updated with such improved shoreline classification and 
using more robust past long-term trend computations.

Contrary to some previous work (e.g.36), we addressed the correlation between different climate indices 
against the yearly change in shoreline position dS29,60, not against the yearly-mean shoreline position S. Indeed, 
addressing correlation between shoreline position S and a climate index assumes a linear response of the shore-
line position to incident wave conditions, which is against fundamental understanding of beach and shoreline 
 response4,61, and against field evidence on many  coasts33,62. Another relevant approach could have been to com-
pute the anomalies in shoreline position during the prolonged positive and negative phases of the different climate 
indices, similar  to35 for prolonged positive and negative ENSO phase for the Pacific Ocean coast. However, given 
the complex interplay between the different dominant climate indices for the Atlantic coast and their lack of 
multi-annual periodicity and persistence, a systematic comparison between the yearly shoreline change dS and 
the winter climate indices was preferred. Finally, only winter (December to March) climate indices were used 
here, which is based on field evidence that winter wave conditions control interannual shoreline variability at 
many sandy coast environments along the Atlantic coast of  Europe43.

The latitudinal distribution of correlations between shoreline and the climate indices (Fig. 5) are in line 
with the spatial correlation maps of the winter-mean significant wave height (Fig. 4). Correlation maps with 
winter-mean significant wave height are essentially in line with previous  work42,62. However, the details around 
some sheltered and protected areas, which are typically characterised by multi-directional wave climates, are 
not reproduced as they require high-resolution wave  modelling63. We found that, particularly along west-facing 
coastlines, shoreline response is positively (negatively) correlated against NAO at the highest (lowest) latitudes, 
meaning that positive (negative) NAO results in increased (decreased) winter erosion. This is in line with local 
observation in Northern  Ireland40 and south  Spain64. In between, WEPA and to a lesser extent EA, is positively 
correlated with shoreline response, which is also in line with a wealth of observations (e.g.29,37,43,44,51,65,66). The 
impact of the outstanding winter of 2013/201440 is also relatively well captured in the time series of the mean 
shoreline position (Fig. 2), with sediment redistribution between the dune and the intertidal  beach54 assumed 
to smooth the signature of this winter on the MSL shoreline.

Latitudinally-binned average correlations are mostly weak (Fig. 5), but show clear latitudinal distribution 
for WEPA and NAO, especially for the west-facing beaches. Correlations were also computed for different time 
periods (not shown here), showing similar patterns and thus providing confidence in the overall patterns. Only 
quasi-straight open coast beaches show relatively alongshore-uniform statistically significant correlation. This 
is illustrated in Fig. 6a for the period 2008–2021 for the southwest coast of France, with a positive correlation 
against WEPA except close to the tidal inlet of Arcachon, and in Fig. 6b for the south coast of Spain with a 
negative correlation against NAO, except once again close to inlets and structures. Such weak correlation is also 
observed with field data, primarily because of the influence of the antecedent morphology (memory effects) on 
winter  erosion33. Another reason why correlations are weak is that, in line with previous work (e.g.27,36), cor-
relations were computed here for each individual climate index, i.e. without exploring the interactions between 
these large-scale climate patterns. However, interactions of these teleconnections can play an important role in 
storminess, and thus winter wave conditions and shoreline response, as for instance evidenced with NAO, EA and 
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SCAN for wind speed with  Europe67. More advance analysis accounting for the interaction of overlapping phases 
of the different large-scale climate patterns should be considered in future work. In contrast with the relatively 
alongshore-uniform statistically significant correlation found along quasi-straight open coast beaches, along a 
substantial amount of small coastal embayments, correlations are weak (Fig. 6c,d) and sometimes not fully in 
line with previous work based on high-resolution  data66. Along such embayed coastlines, shoreline response can 
result from the complex response of multiple atmospheric  indices33,44, which can explain the weaker correlation. 
Future work should explore the links between interannual shoreline response and different combinations of 
multiple atmospheric indices. In addition, anthropogenic impacts, such as implementation of coastal structures, 
beach nourishments and coastal land reclamation can locally largely impact interannual shoreline response and 
long-term trends, but were disregarded here. Given that image composites were used here, water level corrections 
to reduce shoreline uncertainties were not applied. However, as shown  by35 waterlines have temporal biases at a 
range of scales for transects across the globe. Image yearly composites made of tens of images (see e.g. Fig. 2c) 
can reduce such biases. Further, as shown along the southwest coast of France and Pacific coast of the US spatial 
averaging can reduce shoreline uncertainties and provide reliable shoreline long-term trends and interannual 
variability even along high-energy tidal  coasts29,30. We think that such time- and space-averaging, pending a large 
number of individual images in the composites and reasonably dense transects (spacing of O(100 m)), can be an 
interesting, yet less accurate, alternative to the tidal-level correction of individual  images25,35.

The present SDS analysis focused on some of the most energetic environments and with large tide range, thus 
challenging the SDS accuracy. However, based on a detailed analysis including exposure to the dominant ocean 
wave direction and discrimination of relatively open and closed coastlines, this work provides new insight into 
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shoreline change from local to regional scale. It also provides a valuable spatial continuum between previous 
local-scale studies aiming at linking coastal response with large-scale climate patterns of atmospheric variability.

Methods
Shoreline Monitor (SM) dataset
The Shoreline Monitor (SM; http:// shore linem onitor. delta res. nl/) SDS dataset (1984–2016  in1) is based on Land-
sat (5 to 8) and Sentinel-2 (only 2016) yearly composite images and comprises over 2.2 million transects distrib-
uted globally (see Fig. 7 for a schematic visualization). It is derived by leveraging the petabyte image catalogue 
and parallel computing facilities of the Google Earth Engine (GEE)68. A thresholding  method69 was used on 
yearly Top-Of-Atmosphere (TOA) reflectance composites to remove the effects of noise (clouds and shadows). 
For each composite image the Normalised Difference Water Index (NDWI) was computed which, combined 
with the Otsu thresholding  method70 and a region growing  algorithm71, provided the most probable threshold to 
classify water and land on the image. The water line was then smoothed using a 1D Gaussian smoothing operation 
to obtain shoreline vectors at sub-pixel resolution without the need of supplementing field  data72. The resulting 
shoreline approximately matches the MSL contour as the composite image analysis decreases the influence of 
the tidal stage on the detected shoreline positions.

An updated version of the SM SDS dataset is used in this study. The updated version only contains Landsat 
(5 to 8) images as a preliminary investigations indicated that inclusion of Sentinel images resulted in a landward 
shift of shoreline position by approximately 10 m averaged across the entire Atlantic coast of Europe from 2015 
onwards. Sentinel images were thus removed from the yearly composites. Furthermore, the dataset is extended 
up to December 2021 and hence adds another five years of data. The total length of the dataset now equals 38 
years. Previously, the years 1990–2000 contained a very low number of usable composite images. Recent updates 
to the image catalogs of Landsat (and therefore also the updated SDS dataset) increased the available composite 
images in this period significantly. Besides, the cloud cover threshold is adjusted. This increased the number of 
available composite images even more. Finally, a new classification of sandy, muddy, and cliff  coasts45 is added 
to allow for a better distinction between sandy and other environments. This decreased by approximately 38% 
the amount of muddy and rocky coastline previously classified as sandy in our study area. Noteworthy, such cor-
rection was critical in the UK where 58% of the coasts previously classified as sandy are now correctly identified 
as rocky using the new  classification45.
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Figure 7.  Shoreline Monitor dataset schematics. (a) Representation of SM SDS dataset and some variables 
further used in the analysis: coastline orientation θ , orthogonal distance to the closest coastline D, and moving 
averaged distance L considering neighbouring transects with a coastline orientation θ within ±δθ with (b–d) 
example zoomed onto French Brittany with (b) shoreline type (blue: sandy, white: other) and sandy (c) coastline 
orientation θ and (d) orthogonal distance to the closest coastline D.
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In the present work, only the SM SDS dataset along the western part of Europe was used, from Gibraltar in 
the South to the northern tip of the Scottish coast. In order to focus on regions which are primarily affected by 
ocean waves generated in the North Atlantic  Ocean63, we also disregarded the Irish Sea coastline, the French 
and UK coastline east of the Cotentin peninsula in the English Channel, and some sheltered and/or east-facing 
Scottish coastline (see Fig. 1b). This resulted in a total of 34,874 transects, comprising 8281 sandy transects 
( ≈ 24% ), which were analysed in the present work. Transects spacing varies as the latitude cosine, ranging for 
the sandy sectors from 254.8 m in the north to 407.1 m in the south with a mean of 315.5 m. The SM SDS dataset 
was further processed to compute some other shoreline characteristics (Fig. 7). First, shoreline orientation θ was 
computed using the start and end points of each transect. Secondly, for each transect we computed the orthogonal 
distance D to the closest coast. Overall, W and N (E and S) facing coastlines are considered relatively exposed 
to (sheltered from) incident ocean waves, while D > 50 km and D < 50 km typically refer to relatively open 
and closed sandy coasts, respectively. Because spatial averaging can help to smooth out uncertain, noisy, SDS 
 datasets29,30, we also defined a moving average distance L considering neighbouring transects with a coastline 
orientation θ within ±δθ (Fig. 7).

Validation
Luijendijk et al.1 already provided a validation of the SM SDS dataset at multiple sites in the world where ground-
truth field data are available. However, validation was restricted to sandy coasts with large shoreline variability 
(amplitude of O(100 m)) and/or a small tidal range. In addition, validation was only performed on long-term 
trends and interannual variability, which is typically O(1–10 m) on most of sandy coasts, was not addressed. 
Below, validation is performed along the southwest coast of France, which is a high-energy meso-macrotidal 
(average tide range of approximately 3 m) environment. This coast is characterised by alongshore-variable shore-
line  trends29 and interannual shoreline variability of O(1–10 m), which is in most locations enforced by climate 
modes of atmospheric variability (e.g.29,33,43). Below, a state-of-the-art SDS dataset is used to validate SM SDS 
trends along different sectors, before interannual variability is locally validated against field data at a single site 
(Truc Vert).

Long‑term shoreline trends and uncertainties
The  CoastSat22,73 SDS dataset used here for validation is described  in29 and was averaged yearly for comparison 
with the SM SDS yearly composites. The period selected was 2000–2020, because prior to 2000 there was a lot of 
missing years in the CoastSat dataset generated  in29 before recent updates to the image catalogs of Landsat. Fig-
ure 8 shows the validation area and the spatial distribution of the percentage ( Ny ) of available yearly SM (Fig. 8a) 
and CoastSat (Fig. 8b) SDS data for 2000–2020. In order to perform a fair comparison only the transects with 
at least 80% ( Ny ) of SDS data availability over 2000–2020 were used (blue shoreline in Fig. 8c). The shoreline 
time series were further averaged across four different regions (coloured boxes in Fig. 8c) and compared (right-
hand panels of Fig. 8). Results show that, using spatially-averaged shoreline transects, the SDS trends of the two 
datasets are in good agreement with differences around 0.1 m/year for both eroding (Fig. 8d–f) and relatively 
stable (Fig. 8g) zones. In addition, although performed on a shorter time series, the long-term trends computed 
here were also compared to shoreline trends computed from in situ measurements at three sites in the UK (Per-
ranporth and two embayment extremities) (2007–2023) and at Truc Vert beach (2003–2023) documented  in33 
and with contrasting long-term trends. Using L = 5 km, the SDS (measured) long-term trends are − 0.25 m/year 
(− 0.14 m/year) at Truc Vert; − 0.68 m/year (− 0.29 m/year) at Perranporth; − 1.27 m/year (− 0.79 m/year) at the 
southern end of Slapton Sands; + 1.96 m/year (+ 1.03 m/year) at the northern end of Slapton Sands. The weaker 
long-term trend magnitude at Slapton Sands is explained by the moving averaging (L = 5 km), while measure-
ments were collected at the extremities of the embayment where larger changes are observed.

Another approach to estimate the long-term trend uncertainties is to compute the trends on rocky shores only. 
Across the 5608 km (18,235 transects) of rocky shoreline found along our study area, a mean (median) trend of 
+ 0.27 (+ 0.13) m/year is found with a standard deviation of 1.77 m/year. Although the shoreline detection used 
in SM is not optimal for rocky coastlines, this result together with the long-term trend comparisons with field 
data and other satellite products above, indicates conservative uncertainties of long-term trends of sandy shores 
around 0.4 m/year and a potential bias towards accretion. Of note, this 0.4 m/year uncertainty is also similar to 
subpixel precision (15 m, over 38 years).

Interannual shoreline variability
SM SDS interannual variability was validated against field data collected at Truc Vert beach, France (see loca-
tion in Fig. 8c), a high-energy west-facing meso-macrotidal (mean TR of approximately 3 m) open sandy beach. 
Since 2003, the beach has been surveyed every 2 or 4 weeks (for a detailed description  see18). Following earlier 
 work74,75, for each survey the shoreline position was defined as the intersection of the alongshore-averaged beach 
profile with a given elevation proxy zprox above mean sea level (amsl). The alongshore coverage of the surveys 
progressively increases over time, from approximately 300 m in 2003 to over 2000 m after 2016. We systemati-
cally computed the correlation between the SM SDS dataset and measured, yearly-mean, shoreline dataset for 
different shoreline proxies zprox (at 0.1-m elevation interval) and different alongshore-averaging length L (at 
1000-m intervals) of the SM SDS data, over the period 2003–2020. Of note, 2008 was removed from the analysis 
as measurements were only performed in January–February–March before the GNSS system broke down, result-
ing in an over-eroded measured shoreline in 2008. The resulting correlation matrix is shown in Fig. 9b, with 
corresponding zprox-averaged and L-averaged correlations given in Fig. 9c,d, respectively. Correlations are strong 
and statistically significant on most of the zprox − L spectra, except for the highest part of the profile zprox � 4 m 
where the morphology barely moves (Fig. 9a) except during the outstanding winter of 2013/2014. Correlation 
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peaks at 0.91 for L = 6 km and zprox = 1.7 m, i.e. slightly above mean high tide level, with the corresponding 
time series shown in Fig. 10a. For this set of parameters, R = 0.91 means that the SM SDS explains over 83% of 
the observed interannual shoreline variability at Truc Vert. Correlation further increases to 0.93 (87% of the 
observed shoreline variability) when selecting the more recent period 2013–2022 when the number of images 
used per yearly composite almost doubled (Fig. 10b).

This validation exercise indicates that the SM SDS dataset can be used to address interannual shoreline vari-
ability pending a well-adapted moving average window L. The correlation is not maximised for zprox = 0, which 
is approximately the elevation at which, on average, satellite images are taken at this  site27. This can be explained 
by (1) the wave runup, which in this high-energy environment can largely increase the waterline  elevation27. 
Noteworthy, the two drops in correlation at L ≈ 20 km and 45 km correspond to the inclusion of the Cap Ferret 
sand spit and La Teste beaches in the south, which both show dynamics that largely contrast with that at Truc 
 Vert29 due to the presence of the Arcachon tidal  inlet29,76. We therefore consider this comparison as a fair valida-
tion of the SM SDS dataset for reasonably straight open coasts. However, agreement is expected to worsen along 
rugged coasts, estuary mouths, spits, islands, etc., where shoreline response is more variable alongshore, and is 
expected to vary depending on beach state and beach profile  shape28.

SDS post‑processing
Shoreline moving averaging
Previous work shows that a spatial moving average can help reducing SDS uncertainties on open  coasts29. How-
ever, on complex coastlines, a moving average based on distance only is not appropriate as shoreline evolution 
may be averaged across coastline with opposing orientation and, likely, different response modes, as would be the 
case for a small island for example. To avoid such a problem, here for a given transect averaging was performed 
across all the transects located at a distance smaller than L/2 and with coastline orientation θ within ±δθ/2 of 
the current transect. This allows representing rapidly alongshore variable response modes (see for instance the 
islands in Fig. 6d). Based on sensitivity analysis and validation at Truc Vert beach above, the computations shown 
in this manuscript used L = 5 km and δθ = 45◦.
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Long‑term shoreline trend
Long-term rates of shoreline change were calculated for 1984–2021 using linear regression. For this, we averaged 
spatially the time series of shoreline position around the mean for a group of transects. This group of transect 
was based on e.g. latitude bins and coastline orientation (Fig. 3b–e), coastline exposure D (in Fig. 2a), geographic 
area (see validation in Fig. 8) or the moving-averaged approached described above based using L and δθ . The fair 
comparison of the SM SDS computed trends against in situ or state-of-the art shoreline dataset above provide 
an uncertainty of ±0.4 m/year for all the computed long-term trends.

Shoreline change correlation with climate indices
Consistent with previous work showing at more local scale that interannual shoreline variability can be related 
with some large-scale climate modes of atmospheric variability in  winter29,43, we compared dS the yearly change 
in shoreline position with the dominant climate indices. We used the winter-mean (DJFM) values of the conven-
tional teleconnection indices NAO, SCAND and EA, which show links with wave climate variability along the 
Atlantic coast of Europe (e.g.62,77), and with shoreline response locally (e.g.29,33,43). These indices are computed 
from Empirical Orthogonal Function (EOF) analysis of the sea level pressure field. In addition, we also used the 
WEPA index which, in contrast with NAO, SCAND and EA, was specifically designed to explain the winter-mean 
wave height variability along the Atlantic coast of Europe where the NAO and other indices showed poor correla-
tion. Noteworthy, this index also skilfully explains the interannual variability in e.g., winter-mean precipitation, 
river discharge, coastal water temperature and salinity of coastal water in western Europe (e.g.78,79). Winter WEPA 
time series was computed by normalising (1942–2021) the in situ sea level pressure difference measured at the 
Valentia and Santa Cruz de Tenerife weather stations. The (yearly) time series of moving-averaged shoreline posi-
tion around the mean was computed as well as its yearly change time series dS. Correlations and corresponding 
p-values between dS and all the climate indices were then computed to explore which climate indices explain 
some amount of interannual shoreline variability, and how these correlations vary spatially. Pearson correlation 
coefficients measuring the linear relationships were used, showing very similar results to nonlinear correlation 
(e.g. Spearman).

Data availability
 The datasets generated and further analysed during the current study are available in the Open Science Frame-
work repository, https:// osf. io/ jftw8/.
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