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Abstract

Post-clustering inference in scRNA-seq analysis presents significant challenges in
controlling Type I error during Differential Expression Analysis. Data fission, a
promising approach, aims to split the data into two new independent parts, but relies
on strong parametric assumptions of non-mixture distributions, which are violated
in clustered data. We show that applying data fission to these mixtures requires
knowledge of the clustering structure to accurately estimate component-specific scale
parameters. These estimates are critical for ensuring decomposition and indepen-
dence. We theoretically quantify the direct impact of the bias in estimating this
scales parameters on the inflation of the Type I error rate, caused by a deviation
from the independence. Since component structures are unknown in practice, we
propose a heteroscedastic model with non-parametric estimators for individual scale
parameters. This model uses proximity between observations to capture the effect
of the underlying mixture on data dispersion. While this approach works well when
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clusters are well-separated, it introduces bias when separation is weak, highlighting
the difficulty of applying data fission in real-world scenarios with unknown degrees
of separation.

Keywords: Unsupervised learning, Mixture Model, Post-clustering inference, Type I
error, Non-parametric estimation, local variance
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1 Introduction

Clustering encompasses all unsupervised statistical methods that group observations into

homogeneous and separated clusters. Widely used in various application fields such as

biology or genomics (Jaeger and Banks, 2023), clustering plays a significant role to uncover

or summarize signals contained in different kind of multivariate data. In the context of

single-cell RNA-seq (scRNA-seq) technologies which are high-throughput genomics tech-

niques that measure gene expression at the single-cell level, providing insights into cellular

heterogeneity and functional diversity within complex biological tissues, cluster analysis is

the first step of the traditional pipeline for data analysis (Amezquita et al., 2020). The

clustering groups cells based on their gene expression/abundance. Afterwards, the differ-

ential expression analysis, comparing gene abundance between groups, allows to identify

and annotate cellular sub-populations. This leads to the identification of marker genes that

could potentially serve as cell-type marker genes (Pullin and McCarthy, 2024).

However, such a two-step pipeline for post-clustering differential analysis requires using

the same data twice: first to estimate the clusters, and then again to estimate the differ-

ences between them and perform significance testing – a procedure sometimes referred to

as “double-dipping” (Kriegeskorte et al., 2009). In post-clustering differential analysis, it

has been shown that the primary risk of double dipping is to compromise the control of

the Type I error rate of otherwise well-calibrated testing procedure for traditional differen-

tial analysis, leading to false positives (Zhang et al., 2019). Fundamentally, uncertainties

stemming from cluster analysis outcomes, particularly related with determining the opti-

mal number of clusters, could create artificial differences between homogeneous groups of

observations. Failure to account for the double use of the data during the analysis may lead

differential analysis tools to erroneously identify those artificial differences (Hivert et al.,
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2024a). Although challenges related to double dipping are increasingly studied, they re-

main unresolved in the context of scRNA-seq data analysis (Lähnemann et al., 2020). We

described below the proposed approaches and the remaining challenges.

Leveraging the selective inference framework (Fithian et al., 2014), which involves condi-

tioning on the clustering event during the derivation of the test statistic and the associated

p-value, various methodological efforts have been proposed to address this double dipping

issue in post-clustering inference (Gao et al., 2022). Zhang et al. (2019) introduced the

Truncated-Normal test (TN-test), a four-step post-clustering differential analysis proce-

dure that involves splitting the data into two parts, followed by cluster analysis on the first

part of the data. Subsequently, a support vector machine (SVM) classifier is applied to the

clustered data to learn the clustering structure and predict the cluster labels on the remain-

ing data. Finally, a differential analysis is conducted between the predicted clusters using a

truncated-normal test. This truncation, on either side of the hyperplane fitted by the SVM,

allows to correct for the double dipping issue. However, information loss may occur as an

inherent consequence of the data-splitting process. Moreover, the method involves multiple

steps, introducing complexity into the overall analytical framework, and Song et al. (2023)

highlighted the poor performances of the TN-test in their numerical simulations. More

recently, Hivert et al. (2024a) and Chen and Gao (2023) have introduced univariate selec-

tive tests tailored to detect mean differences between two (multivariate) clusters. These

methods explicitly condition on the clustering event to derive their p-value, relying on the

set of all perturbed data sets that would yield the same partition when subjected to the

same clustering algorithm. Hivert et al. (2024a) rely on a Monte Carlo approach to suit any

clustering algorithm, which comes at the expense of extensive computational times. On

the other hand, Chen and Gao (2023) explicitly describe this set specifically for k−means
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and hierarchical clustering applied to the squared distance matrix. Bachoc et al. (2023)

also introduced a selective test designed for convex clustering. All these proposed selective

methods designed for post-clustering inference either require specific clustering algorithms

or introduce new specific test statistics. This consequently increases their complexity and

makes their application less straightforward in the context of scRNA-seq data analysis.

Leiner et al. (2023) have drawn inspiration from data splitting (which effectively ad-

dresses overfitting issues in machine learning) to break free from the selective inference

framework. They propose a method called “data fission”, wherein the information within

each individual observation is split into two independent parts. The first part could be used

for cluster analysis, and labeling observations on the second part simply by matching them

to their first counterpart. Differential analysis could then be conducted on the remaining

information, i.e. the second part. However, in the context of post-clustering differential

analysis, it is imperative that the two parts be independent, as each analysis (cluster analy-

sis and differential analysis) must be performed independently to effectively prevent double

dipping and the associated inflation of Type I error. Data fission requires strong paramet-

ric distributional assumptions, with only the Gaussian and Poisson (Neufeld et al., 2024)

distributions ensuring independence between the two fissioned parts. Expanding upon this

concept, Neufeld et al. (2023a) have generalized the fission process by introducing “data

thinning”. Building on the same foundational idea, they not only succeed in developing a

process capable of decomposing data into more than two parts, but also broaden the spec-

trum of distributions where independence between each part is provided. This includes the

negative binomial distribution, widely used when modeling RNA-seq data.

Data fission and data thinning have emerged as promising alternatives to selective

inference for post-clustering inference due to their compatibility with various clustering
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methods and differential analysis tests. However, they present some inherent limitations

that make them difficult to apply for post-clustering inference. First, these methods lack

results and justification when applied to mixture distributions, which are commonly used

to model data with a clustered structure (Macqueen, 1967). Consequently, the absence of

such results inherently assumes a global null hypothesis of no clusters in the data when

applying data fission or data thinning. Additionally, these methods assume prior knowledge

of parameters (e.g., variance for the Gaussian distribution or overdispersion for the negative

binomial distribution). Although robust estimators for these parameters could theoretically

ensure the validity of the method, this further adds complexity for clustered data where

each cluster has a different parameter value. In the absence of knowledge about the data

structure, specifically the clusters, the only justifiable estimator is the full-sample one (i.e.

computed using all the observations regardless of their mixture component) that fails to

correctly estimate the intra-component parameter value.

In this article, we demonstrate that these approaches are not practical for real-world

applications. Performing cluster analysis inherently assumes that the data originate from

mixture models, contradicting the parametric assumptions of data fission and data thin-

ning, which cannot decompose such distributions. Even if it is possible to move beyond the

framework of mixture models by modeling each observation as a realization from distinct

random variables with their own parameter values, accurately estimating scale parameters

remains challenging without knowledge of the mixture. Specifically, we establish a link

between the bias in estimating the variance parameter in the Gaussian distribution and

the expected Type I error rate of the two-sample t-test (Welch, 1947), underscoring the

critical importance of a robust estimator. We employ a non-parametric method for esti-

mating local variance in the Gaussian setting to try to use proximity between observations
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as a proxy of the unknown underlying mixture. However the poor performances of this

approach demonstrates that accurate variance estimation, and hence control of the Type

I error rate, remains challenging without knowing the mixture, i.e. the clustering, prior to

decomposition.

2 Methods

In the following, capital letters represent random variables with a probability distribution

function denoted as p, xi denotes a set of n realizations of X, and matrices and vectors are

bolden.

2.1 Data fission and data thinning

Data fission and data thinning are methods designed to decompose a random variable

into two new independent random variables that can ensure the post-clustering inference

validity.

Let X be a random variable with a known distribution. Both data fission (Leiner et al.,

2023) and its generalization, data thinning (Neufeld et al., 2023a), aim to decompose the

random variable X into two (or more in data thinning) new random variables X(1) and

X(2). These new variables are designed to i) retain information from the original variable

X, and ii) be independent. Of note, data fission can generate pairs of X(1) and X(2) that

are not independent, but her we will focus on the independent cases only. The balance

between the amount of information from X kept in either X(1) or X(2) is tuned by a

hyperparameter τ . Such a decomposition can be performed for various probability distri-

butions of X. For data fission, Leiner et al. (2023) identified only two distributions, the

Gaussian and the Poisson, that satisfy the independence requirement. In contrast, Neufeld
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et al. (2023a) established a comprehensive decomposition that ensures independence for

all convolution-closed distributions. This encompasses Gaussian, Poisson (Neufeld et al.,

2024) and Negative Binomial (Neufeld et al., 2023b) distributions. Decompositions for the

Distribution of X τ Data fission Data thinning

P(λ) τ ∈ [0, 1]

Z ∼ Binom(X, τ)

X(1) = Z

X(2) = X − Z

X(1) |X = x ∼ Binom(x, τ)

X(2) = X −X(1)

N (µp,Σp×p)
τ ∈]0,+∞)

τ2 ∈]0, 1[

Z ∼ N (0p,Σp×p)

X(1) = X + τZ

X(2) = X − 1
τ
Z

X(1) |X = x ∼ N (τ2x, τ2(1− τ2)Σp×p)

X(2) = X −X(1)

NegBin(µ, θ) τ ∈ [0, 1] No fission
X(1) |X = x ∼ BetaBin(x, τθ, (1− τ)θ)

X(2) = X −X(1)

Table 1: Data fission and data thinning decompositions for three usual distributions: Pois-

son, Gaussian and Negative Binomial.

three distributions into two independent random variables X(1) and X(2), are detailed in

Table 1. For proofs of independence, please refer to the Section 1 of the Supplementary

Materials for the Gaussian case, and to Neufeld et al. (2024) and Neufeld et al. (2023b) for

the Poisson and negative binomial distribution, respectively. Both Gaussian and negative

binomial data fissions/thinnings require knowledge of scale parameters (namely Σ or θ) for

practical feasibility, as highlighted in Table 1. Theoretical guarantees, and especially the

independence between X(1) and X(2), are based on using the true values of these parame-

ters. Yet, in real-life applications these are unknown and need to be estimated, most likely

from the data as described in Neufeld et al. (2023b).
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2.2 Limits in practical application of data fission and data thin-

ning

Data fission and data thinning methods face a circular challenge when applied for post-

clustering inference to mixture distributions used to describe clustered data. They require

accurate estimates of intra-component parameters (like the variance), which depend on

knowing the true cluster – but estimating the clusters is the whole point of the analysis in

the first place, and true clusters are never known a priori.

2.2.1 Mixture distributions

Neufeld et al. (2024) and Neufeld et al. (2023b) have proposed the application of data

thinning for post-clustering inference. Existing decompositions are currently limited to

non-mixture distributions. Unfortunately, these distributions can only describe a global

null hypothesis, assuming the complete absence of separated clusters within the data. In

scenarios with true clusters, a more appropriate modeling approach involves the use of

mixture models (Bouveyron et al., 2019) – each component of the mixture representing

a distinct cluster. Given n i.i.d. realizations of random variables following a mixture of

distributions, the density function for an observation xi is: p(xi) =
K∑
k=1

πkf(xi|θk), where

πk is the probability that an observation was generated by the kth component and f(.|θk)

is the density of the kth component with its specific parameters θk (for simplicity, we only

consider the case where all components belong to the same parametric distribution with

density f). In this mixture setting, where homogeneity holds solely at the component level,

data fission and data thinning can only be applied within each individual component.

Data fission and data thinning therefore create a circular situation, as illustrated in

the schematic Figure 1. To be applied for post-clustering inference, these methods require

9



Figure 1: Schematic view illustrating the circularity induced by data fission for post-

clustering differential analysis

knowledge of the intra-component parameters θk which, in turn, depend themselves on the

components that we would estimate. An effective approach could be to estimate a global

parameter θ̂ based on all observations. However, this would make the critical assumption

that the parameter value is the same across all components, i.e. θ = θk; this means that

the data are distributed according to the same distribution globally, regardless of their

component:

p(xi) = f(xi|θk) = f(xi|θ). (1)

This corresponds to the global null of no cluster. Yun and Foygel Barber (2023) highlighted

similar challenges for existing post-clustering selective tests.
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2.2.2 Scale parameter prior knowledge and estimation

We will restrict our analysis to the Gaussian setting, that is considering:

f (xi|µk,Σk) =
1

(2π)p/2|Σg|1/2
exp

(
−1

2
(xi − µk)

TΣ−1
k (xi − µk)

)
with k = 1, . . . , K, K ≥ 1 the number of components in the mixture, and µk ∈ Rp andΣk ∈

Rp×p respectively the mean vector and the covariance matrix of the k
th

components. Much

of the results apply to the negative binomial case, with the overdispersion parameter being

analogous to the variance parameter in the Gaussian case. In this setting, the challenge

lies in estimating Σk for data fission or data thinning.

Figure 2 provides a comprehensive overview of the challenges associated with variance

estimation in data fission. Panel A presents an illustrative example involving 300 real-

izations of a multivariate Gaussian distribution (K = 1) with a mean vector µ = ( 0
0 )

and a covariance matrix Σ = ( 4 0
0 1 ). The k−means algorithm was applied to this dataset,

resulting in the estimation of two clusters, C1 and C2. Data fission performance was

evaluated when using different estimations of Σ. First, we considered the true intra-

components covariance matrix Σk (see section 2.3.1 for a proposed approach to data fission

assuming several mixture component). We also considered the overall sample covariance

matrix Σ̂ = 1
n−1

∑n
i=1

(
xi −X

) (
xi −X

)t
where X is the sample mean vector. We fi-

nally use the k−means results to compute an intra-cluster covariance matrix defined as:

Σ̂k̂ =
1

|Ck|−1

∑
i=1∈Ck

(
xi −XCk

) (
xi −XCk

)t
where XCk

is the sample mean vector of the

cluster Ck. Since both clusters originate from the same component, there is no inherent

differences between them, implying that the t-test p-values should exhibit a uniform distri-

bution. Panel B presents a QQ-plot illustrating the resulting p-values against the Uniform

distribution for the test on X1 in 1,000 replications of the experiment. In this scenario

where the mixture has only one component (K = 1), the sample covariance matrix Σ̂
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Figure 2: Toy example illustrating the impact of variance estimation on data

fission p-values Panel A: A two-dimensional Gaussian distribution incorrectly clustered

into 2 clusters. Panel B: QQ-plot of the t-test p-values for the comparison between

the two estimated clusters across 1,000 simulations when data fission is performed with

3 different variance estimators. Panel C: Extension of the problem to a two-component,

two-dimensional Gaussian mixture incorrectly clustered into 3 clusters. C1 and C2 originate

from the same component, which is erroneously split into two. Panel D: t-test p-values

for the comparison between C1 and C2 over 1,000 data simulations using the same three

variance estimators for the data fission.
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provides an unbiased estimate of the true Σ, resulting in uniformly distributed p-values.

However, when considering the intra-cluster covariance matrices Σ̂k̂ (for k = 1, 2) derived

from the k−means results, the p-values no longer exhibit a uniform distribution. In this

case, the estimated matrices Σ̂k̂ for each cluster drastically underestimate the true covari-

ance matrix Σ, compromising the independence between X(1) and X(2). This deviation

from independence leads to spuriously concluding the estimated clusters are truly different

from one another.

Panel C introduces a scenario with two true clusters generated using a mixture of

two Gaussian distributions (K = 2). The k−means identifies 3 clusters (for illustration

purposes), incorrectly splitting one mixture component into clusters C1 and C2. Data

fission performance was again compared when the decomposition is performed using the

same 3 covariance estimators as in the previous scenario. Panel D presents the resulting

p-values for the t-test on C1 and C2 on X1 over 1,000 replications of the analysis. Efficient

Type I error control is achievable only by considering the true intra-components covariance

matrix. Both global and estimated intra-cluster covariances are biased estimators, leading

to correlations between X(1) and X(2), compromising control of the Type I error rate. This

underscores the intricate challenges associated with covariance estimation for data fission

in practical scenarios, mainly due to the misspecification of the generative model for data

fission arising when genuine clusters exist within the dataset.

2.3 Practical solutions

To address the circular situation of data fission and thinning in Gaussian mixture models,

we propose modeling each observation as a realization of its own Gaussian distribution.

This approach bypasses the need for prior knowledge of the true data structure, allowing
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for individual-level data fission and thinning. Nonetheless, the accurate estimation of

individual variance parameters remains a critical challenge for practical feasibility.

2.3.1 Individual fission (or thinning) for mixture models

In Gaussian mixture models, parameters are typically component-specific, meaning that

they are assumed to be shared across all individuals within each component. As explained

above and in Figure 1, this assumption poses a circular challenge as it requires knowledge of

the true data structure to be able to accurately estimate the component-specific covariance

matrices that are then needed to perform data fission or data thinning. To address this

limitation, we propose an alternative approach where each observation is modeled as a

realization of its own Gaussian distribution, i.e. pi(xi) = f (xi|µi,Σi). Thus, observations

are no longer assumed to be identically distributed. Consequently, the covariance matrixΣi

is no longer specific to the components but instead to the individual observations. Despite

this individual-level definition, two individuals drawn from the same (unknown) component

are expected to have very close variance parameters. By bypassing the components in the

definition of Σi, this modeling strategy theoretically encompasses both the global null

(K = 1) and the mixture (K ≥ 1) settings, and opens up individual-level data fission and

data thinning. As highlighted above, variance estimation remains crucial for the practical

feasibility of these methods. This new modeling assumes individual variances that still

need to be known (ideally), or precisely estimated in real-life settings.

2.3.2 Non-parametric local variance estimation

To estimate Σi, we propose to use weighted variances where the weights are determined

through non-parametric kernel smoothing. The underlying principle behind this approach

is that, despite the individual-specific nature of the variance, two observations within the
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same component of the mixture (i.e., two neighbors) should display similar variance pat-

terns. The non-parametric weights assigned to each individual reflect their contribution to

the estimation of the variance for the ith observation, effectively capturing the proximity

between individuals. First, let’s assume that we are under the univariate setting, that is:

Xi ∼ N (µi, σ
2
i ) for i = 1, . . . , n. We define σ̂2

i, the resulting estimate of σ2
i , as:

σ̂2
i =

n∑
j=1

wij (xi − m̂i)
2

(
n∑

j=1

wij

)
− 1

(2)

where wij are individual-weights and m̂i =
∑
j=1

wijxi

/
n∑

j=1

wij are individual-specific weighted

means. Ideally, wij should be zero (or very small) for all the observations xj that are not

in the same component as xi.

The catch of the variance computation in (2) lies in determining each individual weight

wij. Since it is essential for wij to appropriately capture the proximity between observa-

tions, we opted for a kernel-based definition: wij = K (xi − xj), where K(u) = 1√
2πh

e−
u2

2h2

represents the Gaussian kernel providing the proximity measurement between xi and xj.

This ensures that individual weights reflect the local relationships within the data. This

kernel choice focuses on nearby points, emphasizing their influence on the weighted vari-

ance estimate. The parameter h in the definition of K serves as the bandwidth parameter,

controlling the width of the kernel and, consequently, the neighborhood around each ob-

servation xi that contributes to its weighted variance estimate. A smaller h results in

more localized estimations, emphasizing nearby points, but can underestimate the vari-

ances. Conversely, a larger h includes a broader range of observations, and an excessively

large value might consider almost all observations in the variance estimation, yielding an

estimator close to the full sample one Σ̂. Therefore, an optimal choice for h would in-
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volve considering only the observations in the same components of the underlying mixture.

However, achieving this ideal scenario is impractical as it is equivalent to knowing the true

components of the mixture.

Bandwidth calibration is a crucial step in any kernel method (Heidenreich et al., 2013).

We propose to use individual-specific bandwidth hi = h(xi) to reduce the bias in ker-

nel density estimation. To accomplish this, we first estimate the changepoint, i∗ in the

spread of distances from observation xi to all other observations. This changepoint delin-

eates the change in components of the mixture: observations with distances preceding this

changepoint are deemed part of the same component as xi, whereas those following it are

considered part of different components. Subsequently, we define hi = |xi − xi∗| as the

distance between xi and the observation xi∗ that is furthest from xi before the break in the

mixture. Thus, hi is determined in such a way that the individual bandwidth accommo-

dates only the observations in the same component as xi, ensuring its size is sufficient to

encompass all observations of the component (Chacón and Duong, 2020).

3 Results

3.1 Quantification of Type I error rate as a function of the bias

in the variance estimation

Independence betweenX(1) andX(2) is guaranteed solely when the true variance is used for

decomposition. Substituting the true variance Σi with an estimate Σ̂i introduces correla-

tions between these new random variables as demonstrated by Proposition 1 for data fission

(a proof of this proposition could be found in Section 2 of the Supplementary Materials)

and by Proposition 10 of Neufeld et al. (2023a).
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Proposition 1 Let X ∼ N
(
µp,Σp×p

)
be a Gaussian random variable. Suppose we apply

data fission on X as described in Table 1 but using Z ∼ N
(
0, Σ̂

)
, where Σ̂ is an estimate

of the Σ. Then, Cov
(
X(1),X(2)

)
= Σ− Σ̂.

Proposition 1 indicates that if X(1) and X(2) are not independent, as with a biased es-

timator of Σ that induces significant covariance, a split of a single component into two

estimated clusters in X(1) is easily transferred to X(2) and results in false positives during

the inference step (even if the latter is carried out on X(2)).

To further describe the repercussions of variance estimation in the context of data fis-

sion, we derived an analytical expression for the Type I error rate of the t-test as a function

of the bias in estimating this parameter. Let X1, . . . , Xn be n independent and identically

distributed random variables such that, for all i = 1, . . . , n, Xi
i.i.d∼ N (µ, σ2). Here, n repre-

sents the sample size. Recall that the sampleX1, . . . , Xn is normally distributed: it contains

no real clusters, and therefore, no actual difference in means exists between subgroups of

observations that is not a consequence of the clustering. Let Z1, . . . , Zn
i.i.d∼ N (0, b2) and

τ ∈, ]0,+∞[. Our aim is to perform data fission of each Xi, using the X
(1)
i for k−means

clustering (with K = 2) and the X
(2)
i for differential testing between the two inferred clus-

ters. Here, b2 represents any value used as a plug-in for the variance of the Xi, and in

particular, b2 may be an estimate obtained for σ2. Given the generation process of the

Xi, it is established that regardless of the clustering on the X
(1)
i , there should be no mean

difference between the estimated clusters on X
(2)
i as long as independence is achieved. Let

C1 and C2 be the two estimated clusters on the X
(1)
i with the same intra-cluster variance,

which is a reasonable hypothesis with k−means clustering as explained in Section 3 of the

Supplementary Materials. Since we are under the null hypothesis of no mean difference

between the clusters, the T statistic for the t-test between C1 and C2 using the X
(2)
i is
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given by:

X
(2)
C1

−X
(2)
C2√

4s2(X(2))
n

where X
(2)
Cj

=
1

|Ck|
∑
i∈Ck

X
(2)
i (3)

Here, s2
(
X(2)

)
is their shared intra-cluster variance computed using the X

(2)
i . It can be

demonstrated that:

T
L∼ N

(
ρ
√
n√

π
2
− ρ2

, 1

)

where ρ = Cor
(
X

(1)
i , X

(2)
i

)
=

(σ2−b2)√
(σ2+τ2b2)×(σ2+ 1

τ2
b2)

. Section 3 of the Supplementary Mate-

rials gives details on the derivation of this test statistic and its distribution. The associated

Type I error rate for this test is given by 1−F (qα/2)+F (−qα/2), where F is the cumulative

distribution function of N
(

ρ
√
n√

π
2
−ρ2

, 1

)
and qα/2 is the quantile of a standard Gaussian

distribution N (0, 1).

We validated this theoretical result through numerical simulations, and conducted a

detailed exploration of the influence of variance values and sample size on the resulting

Type I error rate. We generated n realizations of a Gaussian random variable with a

mean µ = 0 and variances σ2, with 1,000 Monte Carlo repetitions. Subsequently, we

used data fission with varying values of b2 = σ̂2, obtaining X(1) for k−means clustering

with K = 2 and X(2) for testing mean differences between the two estimated clusters.

Initially, we examine the impact of the original true variance σ2 by considering σ2 values of

{0.01, 0.25, 1, 4} for a fixed sample size of n = 100. Figure 3A, illustrates the relationship

between the bias in estimating σ2 and the Type I error rate, demonstrating a consistent

agreement with the derived theoretical error rate.

We further documented the behavior of the Type I error for a fixed σ2 = 1 with varying

sample sizes n ∈ {50, 100, 200, 100, 500, 1,000} in Figure 3B, which shows the expected

impact of the sample size on the Type I error rate. These findings collectively underscore

the critical importance of accurately estimating the variance to achieve a well-calibrated
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Type I error rate with data fission.
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Figure 3: Impact of variance estimation on Type I error rate in data fission.

Panel A: Evolution of the estimated Type I error rate in data fission as a function of the

relative bias and the original variance of the data. Panel B: Evolution of the estimated

Type I error rate in data fission as a function of the relative bias and the sample size.

3.2 Performances of the local variance estimator

We conducted simulation studies to assess the performance of the non-parametric vari-

ance estimator defined in (2). Generating univariate data akin to the motivating example

in Figure 2 with n = 100 realizations from a two-component univariate Gaussian mix-

ture: 0.5N (0, σ2) + 0.5N (δ, σ2). We explored a range of ratio δ/σ values from 0 (i.e.

no separation between the components, representing the global null of no clusters in the

data) to 100 (indicating an extreme separation). Different values of σ2 were considered:

σ2 ∈ {0.01, 1, 4}. For each pair (δ, σ2) defining the mixture, variance was estimated from

the data using our proposed weighted local variance, and the result was used for individual

data fission. We then considered only the observations coming from the first component of

the mixture for k−means clustering on the corresponding X(1) with K = 2. This resulted
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in one true component splitting into two incorrect clusters. We then tested the mean dif-

ferences between those two clusters using the t-test on X(2). This scenario was replicated

1,000 times, and we computed the empirical Type I error rate at the α = 5% level.
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Figure 4: Performance evaluation of the non-parametric variance estimator in

a simulated univariate setting. All empirical results were obtained through 1,000

simulations of the data. Panel A: Median relative bias, defined as
(
σ̂2 − σ2

)
/σ2 and its

associated inter-quantile range, against the signal-to-noise ratio δ/σ. Panel B: Type I error

rate at the α = 5% level against δ/σ. Panel C: Median relative bias and its associated

inter-quantile range as a function of the sample size for three degrees of separation between

the two components (informed by the ratio δ/σ). Panel D: Type I error rate at the α = 5%

level as a function of sample size.

Figure 4A shows that local variances are underestimated (manifested as a negative rela-

tive bias) until the signal vs. noise ratio δ/σ reaches approximately 3 – a threshold value for

separation in a Gaussian mixture model previously reported in the literature (Siffer et al.,
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2018; Hivert et al., 2024a). Consequently, there are no clear change-points in the spread

of distances for individual observations and all observations should contribute significantly

to the variance calculation. However, this is not the case here (with a bandwidth hi that

is too small), leading to underestimated local variances. As the ratio increases within the

range 3.5 ≤ δ/σ ≤ 10, component separation becomes clearer but the identification of

change-points remains challenging. Change-points detection is intricate for observations in

the tails in-between the components, leading to non-zero weight for observations in both

components. Consequently, an overestimation of the local variances (positive relative bi-

ases) is observed together with an increase in their associated inter-quantile range. Finally,

for δ/σ > 10, sufficient component separation ensures consistent local variance estimation,

highlighting the critical importance of clear-cut component separation for accurate variance

estimation. So, as long as observations are well separated, our methodology outlined in

2.3.2 is able to provide accurate variance estimates. In Figure 4B, the Type I error rate

at 5% remains well calibrated for those values of δ/σ that ensure robust variance estima-

tion (i.e. δ/σ > 10), illustrating the reliable testing performance with good component

separations. Figure 4C demonstrates how increasing the sample size does not impact the

performance of the non-parametric local variance estimations for three representative val-

ues of the ratio δ/σ ∈ {0.5, 5, 10}, pointing towards component separation as the main

driver of testing performance. The corresponding Type I error rates depicted in Figure 4D

thus align with the observed relative bias results, underscoring the critical role of accurate

estimation of local variances to ensure Type I error control.
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3.3 Application to single-cell RNA-seq data analysis

Single-cell RNA-seq (scRNA-seq) data analysis pipelines often involve an initial cluster

analysis followed by differential analysis to identify marker genes and annotate cell pop-

ulations based on gene expression. Given their overdispersed count nature, the negative

binomial distribution is favored over the Gaussian distribution to model scRNA-seq data.

Unfortunately, the negative binomial distribution also raises challenges for data thinning.

The overdispersion parameter θ plays a role similar to the variance parameter in the Gaus-

sian distribution, as it is considered known. Therefore, the quality of its estimation is

directly impacts Cov
(
X(1), X(2)

)
= τ(1 − τ)µ

2

θ

(
1− θ+1

θ̂+1

)
, where θ̂ is an estimated of θ

(Neufeld et al., 2023a). Also, for negative binomial mixtures, data thinning decomposition

is once again feasible only at the component level. As the overdispersion parameter is

component-specific (Li et al., 2018), providing an estimator that ensures independence is

here also a harduous and circular task, given that the components themselves are again

unknown and thus require estimation through data thinning.

We further illustrate the necessity of applying intra-component data thinning (with

the associated intra-components overdispersion) to ensure Type I error control in the post-

clustering inference setting with numerical simulations. We generated n = 100 observations

from a two-component negative binomial mixture: 0.5NegBin(µ1, θ1) + 0.5NegBin(µ2, θ2)

with component parameters (µ1, θ1) = (5, 5) and (µ2, θ2) = (60, 40). We conducted similar

post-clustering inference as in Figure 2. In Figure 5A, applying the k−means with K = 3

clusters reveals that the first mixture component is erroneously split into 2 clusters (la-

beled C1 and C3). We then assessed the Type I error rate associated with the Wilcoxon

test between these incorrect clusters when applying data thinning with various overdisper-

sion estimators. First, we applied intra-component data thinning using oracle estimates θ̃k,
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k = 1, 2, representing true intra-component overdispersion parameters (infeasible in real-

life application where the true cluster structure is unknown). We compared those results

with two alternatives that are feasible in practice: i) applying intra-cluster data thinning

based on the k−means results from Figure 5A with their associated θ̂k̂, k̂ = 1, 2, 3, and

global data thinning with its associated θ̂. Of note, all the overdispersion estimations were

performed using Maximum Likelihood. Figure 5B presents the QQ-plot against the Uni-

form distribution of the associated Wilcoxon p-values across 1,000 simulations. Similarly

to the Gaussian setting, achieving uniformly distributed p-values is only possible through

intra-component data thinning using their oracle overdispersion estimates θ̃k. All other

data thinning approaches are performed with biased estimators of the overdispersion com-

promising the independence between X(1) and X(2), and therefore leading to failure in the

control of the post-clustering Type I error rate.

Extending our investigation from simulated scenarios to real-life applications, we used

a single-cell RNA-seq dataset from the Tabula Sapiens Consortium (Consortium* et al.,

2022) to delve into the practical challenges of estimating overdispersion. Our analysis fo-

cused on five distinct cell populations: 2,560 neutrophils, 105 macrophages, 386 monocytes,

454 granulocytes, and 833 CD4 T cells – all collected from a single donor. In this controlled

setting, where cell types were known, we succeeded in estimating the overdispersion of 8,333

genes for each cell type using the variance stabilizing transformation implemented in the

sctransform package (Choudhary and Satija, 2022). Figure 5C illustrates the comparison

of gene overdispersion when estimated solely in neutrophils versus the overdispersion esti-

mated for the same genes in the other four cellular populations. Root Mean Squared Error

(RMSE) values were computed to quantify the agreement between estimations. Our find-

ings reveal that overdispersion is specific to each cell population, as evidenced by a notable
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Figure 5: Challenges in estimating overdispersion, a gene-specific parameter, for

negative binomial data thinning. Panel A showcases erroneous clustering results on

a simulated dataset, while Panel B presents a QQ-plot against the Uniform distribution,

displaying Wilcoxon p-values from various data thinning approaches over 1,000 simulations

when testing between the two erroneous clusters. In Panel C, the estimated overdispersions

of genes within different cell populations (macrophages, monocytes, granulocytes, and CD4)

are plotted against those in neutrophils, along with their associated Root Mean Square

Error (RMSE) for comparison.

deviation from the diagonal and relatively high RMSE values. This underscores the chal-

lenge of accurately estimating this parameter without prior knowledge of the true mixture

underlying the data. Combined with our simulation studies, these results demonstrate how

Type I error can easily be inflated in real-life applications of data thining for scRNA-seq
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data analysis, particularly due to the difficulty in providing an unbiased estimate of gene

overdispersion.

4 Discussion

We highlight here the practical limitations inherent in data fission and its extension, data

thinning, for post-clustering inference challenges. A crucial issue is the assumption of

a homogeneous data distribution, which implies an absence of true clusters in the data.

To address this limitation and adapt to scenarios with true classes, a shift towards mix-

ture models becomes imperative. However, these models lack a predefined decomposition

through data fission or thinning.

We have proposed an intra-component decomposition for data fission and data thining,

and demonstrated its theoretical validity. It relies on a priori knowledge of the mixture

components scale parameters, such as variances in the Gaussian distribution or the overdis-

persion in the negative binomial distribution. However in real-life applications, these pa-

rameters are unknown. Adequately estimating these parameters becomes intricate in the

presence of true clusters, given their component-specific nature; meanwhile the quality of

the estimation of those parameters is directly linked with the covariance between the new

random variables, X(1) and X(2), decomposing the original data. Only unbiased estimation

of these parameters ensures the independence between X(1) and X(2). That independence

is paramount for post-clustering inference to adequately control the Type I error rate.

In the Gaussian framework, we theoretically quantify the relationship between the rel-

ative bias in variance estimation and the associated Type I error in post-clustering t-tests.

In practice, our simulation results suggest that a small relative bias can be acceptable while

still achieving effective Type I error control. These first results pave the way for defining

25



a principled approach to tuning the hyperparmater τ in data fission and data thining for

post-clustering inference to optimize statistical power.

As a solution to avoid the need for prior knowledge of component-specific variance

parameters in the Gaussian mixture setting, we propose a heteroscedastic model with

individual variances, that can be replaced by a plug-in estimate (such as a non-parametric

estimator of the local variance). This approach aligns more closely with the distributional

assumptions made by data fission and thinning. However, the performance of our non-

parametric approach relies heavily on the choice of its bandwidth. The best bandwidth

would be the one capturing only the observations originating from the same component,

but it would again require knowledge of the true mixture components in spite of their

estimation being part of the first clustering step of the method. Consequently, while this

heteroscedastic model better fits the parametric assumptions of data fission and thinning,

leveraging an accurate enough plug-in estimator remains challenging. This underscores

the difficulty of adapting these methods to mixture distributions. We show that when

the signal to noise ratio is extremely favorable for the clustering, with very well-separated

components, this approach unlocks the use of data-fission for post-clustering differential

testing of clustered data. In practice though, one can question the need for data fission in

such cases as the uncertainty regarding the clustering is actually very small when δ/σ ≥ 10.

We have also investigated iteratively fissioning the data and updating the variance plug-in

estimate, but this heuristic strategy requires even larger separation of the components to

effectively work.

Finally, we demonstrate that the results derived from the Gaussian distribution context

are readily applicable to the negative binomial distribution commonly employed in modeling

RNA-seq data. Specifically, we illustrate on real data that overdispersion is also component-
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specific. Therefore, without knowing the true cluster structure in the data, data thinning

cannot ensure the needed independence between clustering and differential testing.

In practice, the application of data fission or data thinning for post-clustering inference

appears to be akin to a self-referential loop generating circular reasoning. While introduced

as a solution for addressing challenges in post-clustering inference, all strategies that could

theoretically ensure independence between the two stages of the analysis ultimately rely on

knowledge of the true, but unknown, clusters. Despite its conceptual appeal, the practical

utility of these methods for post-clustering inference remains limited to extreme cases with

extremely high signal vs. noise ratios, emphasizing the need for alternative methodologies

that can navigate the complexities of unknown class structures more effectively.

All codes and data needed to reproduce the results presented here are openly accessible

from Zenodo with DOI 10.5281/zenodo.11207777 (Hivert et al., 2024b).
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Supplementary Materials to “Running in circles:
practical limitations for real-life application of data

fission and data thinning in post-clustering differential
analysis”

S1 Independence proof of the Gaussian process

Let X ∼ N (µ,Σp×p). Considering the fission process for Gaussian data described in Table
1, we can decompose X into two new random variables X(1) and X(2) using a new random
variable Z ∼ N (0,Σ). It follows form this decomposition that:

X(1) ∼ N
(
µ,
(
1 + τ 2

)
Σ
)

and X(2) ∼ N
(
µ,

(
1 +

1

τ 2

)
Σ

)
Moreover, we have X(1) ⊥⊥ X(2). Indeed, we have:

Cov(X(1),X(2)) = E
[(

X(1) − E[X(1)]
)(

X(2) − E[X(2)]
)t]

= E
[(

X(1) − µ
)(

X(2) − µ
)t]

since E[X(1)] = E[X(2)] = µ

= E
[
X(1)X(2)t −X(1)µt − µX(2)t + µµt

]
= E[X(1)X(2)t]− E[X(1)]µt − µE[X(2)t] + µµt

= E[X(1)X(2)t]− µµt − µµt + µµt

= E[X(1)X(2)t]− µµt

Moreover, we have:

E[X(1)X(2)t] = E

[
(X + τZ)

(
X − 1

τ
Z

)t
]

= E
[
XX t − 1

τ
XZt + τZX t −ZZt

]
= E[XX t]− 1

τ
E[XZt] + τE[ZX t]− E[ZZt]

= E[XX t]− 1

τ
E[X]E[Zt] + τE[Z]E[X t]− E[ZZt] since X ⊥⊥ Z

= E[XX t]− E[ZZt] since E[Z] = 0

But we also have:

Var(X) = E[XX t]− E[X]E[X t] = Σ

⇐⇒ E[XX t] = Σ+ E[X]E[X t]

⇐⇒ E[XX t] = Σ+ µµt since E[X] = µ
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and

Var(Z) = E[ZZt]− E[Z]E[Zt] = Σ

⇐⇒ E[ZZt] = Σ+ E[Z]E[Zt]

⇐⇒ E[ZZt] = Σ since E[Z] = 0

So finally,

Cov(X(1),X(2)) = E[XX t]− E[ZZt]− µµt = Σ+ µµt −Σ− µµt = 0 (4)

S2 Impact of covariance estimation under the inde-

pendence between X(1) and X(2)

Now, let suppose that we use Z ∼ N
(
0, Σ̂

)
to perform data fission. It follows from

equation (4) that, since Var (Z) = Σ̂,

Cov(X(1),X(2)) = Σ− Σ̂

S3 Derivation of t-test statistic under the null of no-

cluster in the univariate data fission post-clustering

setting

LetX1, . . . , Xn be n independent and identically distributed random variables such that, for

all i = 1, . . . , n, Xi
i.i.d∼ N (µ, σ2). Here, n represents the sample size. Let

Z1, . . . , Zn
i.i.d∼ N (0, b2) and τ ∈ (0,+∞). Here, b2 represents any value used as a plug-in

for the variance of X, and in particular, b2 can be an estimate obtained for σ2. For all
i = 1, . . . , n, the splitting process of Xi is given by:

X
(1)
i = Xi + τZi and X

(2)
i = Xi −

1

τ
Zi

We can immediately deduce the marginal distributions of X
(1)
i and X

(2)
i for all i = 1, . . . , n,

thanks to the independence between Xi and Zi:

X
(1)
i ∼ N

(
µ, σ2 + τ 2b2

)
and X

(2)
i ∼ N

(
µ, σ2 +

1

τ 2
b2
)

(5)

We denote σ2
X(1) = σ2 + τ 2b2 and σ2

X(2) = σ2 + 1
τ2
b2 as the respective variances of X

(1)
i and

X
(2)
i above.

In the context of data fission to address the challenges of post-clustering inference, a
clustering algorithm is applied to the observations of X(1). Without loss of generality, we
assume that the clustering algorithm applied to the realizations separates X

(1)
1 , . . . , X

(1)
n

into two clusters C1 and C2 around µ (which is typically the case with the k-means algorithm
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or with a two-component Gaussian mixture model with homogeneous variance when n is
sufficiently large). We also assume that these two clusters have the same size and the same
variance.
Thus, the clusters C1 and C2 can be expressed as:

C1 =
{
i = 1, . . . , n : X

(1)
i > µ

}
and C2 =

{
i = 1, . . . , n : X

(1)
i ≤ µ

}
We can then derive the conditional distributions of X

(1)
i |C1 and X

(1)
i |C2. Indeed,

P(X(1)
i = x|C1) = P(X(1)

i = x|X(1)
i > µ) with X

(1)
i ∼ N

(
µ, σ2

X(1)

)
. Therefore,

X
(1)
i |X(1)

i > µ follows a half-normal distribution, and for all i = 1, . . . , n:

E
[
X

(1)
i |X(1)

i > µ
]
= µ+

√
2σ2

X(1)

π
and Var

(
X

(1)
i |X(1)

i > µ
)
=

(
1− 2

π

)
σ2
X(1)

Since the cluster C2 =
{
i = 1, . . . , n : X

(1)
i ≤ µ

}
simply represents the cluster on the other

side of the mean µ, we similarly have:

E
[
X

(1)
i |X(1)

i ≤ µ
]
= µ−

√
2σ2

X(1)

π
and Var

(
X

(1)
i |X(1)

i ≤ µ
)
=

(
1− 2

π

)
σ2
X(1)

In the context of post-clustering inference, hypothesis tests are performed on the other
part of the information, contained in this case in X(2). We are interested in perform-
ing a two-sample t-test to evaluate a potential difference in means on X(2) according

to the groups defined by the two clusters C1 =
{
i = 1, . . . , n : X

(1)
i > µ

}
and C2 ={

i = 1, . . . , n : X
(1)
i ≤ µ

}
. Thus, we focus on the following hypotheses:

H0 : µC1 = µC2 vs H1 : µC1 ̸= µC2

where µC1 = E
[
X

(2)
i |X(1)

i > µ
]
and µC2 = E

[
X

(2)
i |X(1)

i ≤ µ
]
are the means of X

(2)
i in

cluster C1 and cluster C2, respectively.
Since we have assumed that the two resulting clusters have equal variances (and the

same size n/2), we denote the common variance as s2(X(2)) = Var
(
X

(2)
i |X(1)

i > µ
)

=

Var
(
X

(2)
i |X(1)

i ≤ µ
)
. The corresponding test statistic is then given by:

T =
X

(2)
C1

−X
(2)
C2√

4s2(X(2))
n

where X
(2)
Ck

=
1

n/2

∑
i∈Ck

X
(2)
i for k = 1, 2

Although each X
(2)
i is Gaussian, this is no longer true conditionally on the clusters, i.e.,

on X
(1)
i > µ for C1 (or on X

(1)
i ≤ µ for C2). However, when n is sufficiently large, we can

apply the Central Limit Theorem, which gives us:

X
(2)
C1

−X
(2)
C2

L∼ N
(
µC1 − µC2 ,

4

n
s2
(
X(2)

))
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The asymptotic distribution of our test statistic T is therefore:

T =
X

(2)
C1

−X
(2)
C2√

4s2(X(2))
n

L∼ N

 µC1 − µC2√
4s2(X(2))

n

, 1

 (6)

This asymptotic distribution therefore depends on three quantities: µC1 , µC2 , and
s2(X(2)), which can be computed. By the law of total expectation, we observe that:

µC1 = E
[
X

(2)
i |X(1)

i > µ
]
= E

[
E
[
X

(2)
i |X(1)

i

]
|X(1)

i > µ
]

(7)

Since X
(1)
i and X

(2)
i are two Gaussian random variables, for all i = 1, . . . , n, we have the

following bivariate Gaussian vector:(
X

(1)
i

X
(2)
i

)
∼ N2

((
µ
µ

)
,

(
σ2
X(1) ρσX(1)σX(2)

ρσX(1)σX(2) σ2
X(2)

))

where ρ = Cor
(
X

(1)
i , X

(2)
i

)
. Using the properties of multivariate Gaussian distributions,

we can deduce the conditional distribution of X
(2)
i |X(1)

i , which for all i = 1, . . . , n, is:

X
(2)
i |X(1)

i ∼ N
(
µ+

ρσX(1)σX(2)

σ2
X(1)

(
X

(1)
i − µ

)
, σ2

X(2) −
ρ2σ2

X(1)σ
2
X(2)

σ2
X(1)

)
(8)

which simplifies to:

X
(2)
i |X(1)

i ∼ N
(
µ+ ρ

σX(2)

σX(1)

(
X

(1)
i − µ

)
, σ2

X(2)

(
1− ρ2

))
(9)

Substituting the expectation of X
(2)
i |X(1)

i from above into equation (7), we obtain:

µC1 = E
[
µ+ ρ

σX(2)

σX(1)

(
X

(1)
i − µ

)
|X(1)

i > µ

]
= µ+ ρ

σX(2)

σX(1)

(
E
[
X

(1)
i |X(1)

i > µ
]
− µ

)
= µ+ ρ

σX(2)

σX(1)

µ+

√
2σ2

X(1)

π
− µ


= µ+ ρ

√
2

π
σ2
X(2)

By an identical reasoning, we find:

µC2 = E
[
X

(2)
i |X(1)

i ≤ µ
]
= µ− ρ

√
2

π
σ2
X(2)

Finally, using the law of total variance, we have:

Var
(
X

(2)
i |X(1)

i > µ
)
= E

[
Var

(
X

(2)
i |X(1)

i

)
|X(1)

i > µ
]
+Var

(
E
[
X

(2)
i |X(1)

i

]
|X(1)

i > µ
)
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From equation (9), we first observe that:

E
[
Var

(
X

(2)
i |X(1)

i

)∣∣∣X(1)
i > µ] = E

[
σ2
X(2)

(
1− ρ2

)
|X(1)

i > µ
]

= σ2
X(2)

(
1− ρ2

)
and then that:

Var
(
E
[
X

(2)
i |X(1)

i

]
|X(1)

i > µ
)
= Var

(
µ+ ρ

σX(2)

σX(1)

(
X

(1)
i − µ

)
|X(1)

i > µ

)
= ρ2

σ2
X(2)

σ2
X(1)

Var
(
X

(1)
i |X(1)

i > µ
)

= ρ2
σ2
X(2)

σ2
X(1)

(
1− 2

π

)
σ2
X(1)

= ρ2
(
1− 2

π

)
σ2
X(2)

Finally, we obtain:

s2
(
X(2)

)
= Var

(
X

(2)
i |X(1)

i > µ
)

= σ2
X(2)

(
1− ρ2

)
+ ρ2

(
1− 2

π

)
σ2
X(2)

= σ2
X(2)

(
1− 2

π
ρ2
)

By a similar reasoning, we find:

Var
(
X

(2)
i |X(1)

i ≤ µ
)
= σ2

X(2)

(
1− 2

π
ρ2
)
,

which, fortunately, confirms our initial assumption of equal intra-cluster variances. Thus,
we can finally compute:

E [T ] =
µC1 − µC2√

4s2(X(2))
n

=
µ+ ρ

√
2
π
σ2
X(2) −

(
µ− ρ

√
2
π
σ2
X(2)

)
√

4σ2

X(2)(1−
2
π
ρ2)

n

=
ρ
√
n
√

2
π√

1− 2
π
ρ2

,

and we ultimately find:

T
L∼ N

(
ρ
√
n√

π
2
− ρ2

, 1

)
. (10)

Recall that the sample X1, . . . , Xn is normally distributed: it does not contain any true
clusters, and thus no real difference in means exists between subgroups of observations
other than what is due to clustering. Therefore, the test statistic T should be under H0,
and thus centered around 0. In our result in (10), we observe a deviation of the distribution

of T from 0, quantified by ρ
√
n√

π
2
−ρ2

. The Type I error at level α associated with this test is
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then given by 1− F (qα/2) + F (−qα/2), where F is the cumulative distribution function of

the normal distribution N
(

ρ
√
n√

π
2
−ρ2

, 1

)
and qα/2 is the quantile of order α/2 of the standard

normal distribution N (0, 1).

Here we assumed that all variances were known, and thus s2
(
X(2)

)
was known as

well. Therefore, it was possible to calculate the distribution of the test statistic for the
Z test to compare means between two samples. However, this result extends easily to
the more practical case where s2

(
X(2)

)
is unknown and an estimate ŝ2

(
X(2)

)
is used

instead. In this case, still assuming that variances are equal between the two clusters, the
distribution of the test statistic T follows a Student’s t distribution T (n − 2) (due to the
uncertainties associated with estimating this common variance). The associated Type I
error then becomes: 1 − FT (qα/2) + FT (−qα/2), where FT is the cumulative distribution

function of the non-central Student’s t distribution with mean ρ
√
n√

π
2
−ρ2

and n − 2 degrees

of freedom, and qα/2 is the quantile of order α/2 of the Student’s t distribution with n− 2
degrees of freedom.

This result underscores the crucial importance of precise variance estimation for the
application of data fission. Indeed, for the test to be valid, that is, for the Type I error to
be controlled at level α, the distribution of the test statistic must be centered at 0. This
implies that:

ρ
√
n = 0 ⇐⇒ ρ = 0

⇐⇒ Cor
(
X

(1)
i , X

(2)
i

)
= 0 ∀i = 1, . . . , n

⇐⇒
Cov

(
X

(1)
i , X

(2)
i

)
σX(1)σX(2)

= 0 ∀i = 1, . . . , n

⇐⇒ Cov
(
X

(1)
i , X

(2)
i

)
= 0 ∀i = 1, . . . , n

⇐⇒ σ2 − b2 = 0

Thus, only a data fission procedure performed with the true variance parameter (or at
least an unbiased estimator of it) can ensure effective control of the Type I error.
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