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Asymmetric multi-task learning for interpretable
gaze-driven grasping action forecasting
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Abstract— This work tackles the problem of automati-
cally predicting the grasping intention of humans observ-
ing their environment, with eye-tracker glasses and video
cameras recording the scene view. Our target application
is the assistance to people with motor disabilities and
potential cognitive impairments, using assistive robotics.
Our proposal leverages the analysis of human attention
captured in the form of gaze fixations recorded by an
eye-tracker on the first person video, as the anticipation
of prehension actions is a well studied and well known
phenomenon. We propose a multi-task system that simul-
taneously addresses the prediction of human attention in
the near future, and the anticipation of grasping actions.
In our model, visual attention is modeled as a competitive
process between a discrete set of states, each one asso-
ciated to a well-known gaze movement pattern from visual
psychology. We additionally consider an asymmetric multi-
task problem, where attention modeling is an auxiliary task
that helps to regularize the learning process of the main ac-
tion prediction task, and propose a constrained multi-task
loss that naturally deals with this asymmetry. Our model
shows superior performance than other losses for dynamic
multi-task learning, current dominant deep architectures for
general action forecasting and particularly-tailored models
for predicting grasping intention. In particular, it provides
state-of-the-art performance in three datasets for egocen-
tric action anticipation, with an average precision of 0.569
and 0.524 in GITW and Sharon datasets, respectively, and an
accuracy of 89.2% and a success rate of 51.7% in Invisible
dataset.

Index Terms— Grasping action forecasting, multi-task
learning, interpretable attention prediction, constrained
loss

I. INTRODUCTION

INTENTION prediction has become a relevant task in
many applications, especially in those that rely on human-

robot and human-machine interaction as assistive robotics [1],
shared control systems as neuroprostheses [2]–[4] or Advanced
Driving Assistance Systems (ADAS). The reason is the strong
coupling between humans’ intention and their physical actions,
since the former represent the human internal mental state that
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prompts and coordinates the execution of the later, initiating,
guiding and controlling actions up to their completion [5].

Human intention can be predicted not only before the action
actually begins but also during its execution. In fact, following
the characterization proposed by Pacherie [6], which models
temporal distances and relations between the intention and the
corresponding action, intentions can be classified into distal
(seconds to minutes), proximal (seconds) and motor intentions
(hundreds of milliseconds). The first two are clearly antici-
pative at long/medium- and short-term, respectively, whereas
motor intention starts just before and spans along full action
execution. This division has an important impact on the
temporal scale of the analysis, known by some authors as
tempo [7], requiring an adjustment of the granularity based
on the prediction horizon and the particular goals of the task.

In both proximal and motor scenarios, gaze is a paramount
cue to predict human intention. The rationale behind this
hypothesis is related to the notion of active perception [8]
and intentionality [9], which can be defined as a person’s
commitment to perform a particular action [10], and requires
skills such as foresight and planning. In particular, visual
searchers can be considered as perceptual experiments to
generate sensory data necessary to plan and execute physical
actions in the very near-future. In this sense, Ballard et al. [11]
proposed a ‘just-in-time’ fixation strategy stating that fixations
that provide information for a particular action immediately
precede that action and are crucial for a fast and economical
execution of the task.

Furthermore, in the last few years, gaze sensors and, es-
pecially, wearable eye-tracking glasses that jointly capture
egocentric visual field, gaze information and other physi-
ological signals as egomotion, are coming to the market
at very competitive prices, allowing the intensive study of
human behavior and gaze dynamics in an ecological way, with
subjects performing their daily activities [12].

Among the full repertoire of human actions, gaze is spe-
cially relevant for manipulation tasks, as they exploit the pro-
cess eye-hand coordination [13]. In the light of this hypothesis,
many approaches can be found in the literature [2], [14]–[17]
that rely on the analysis of gaze dynamics to infer human
intention and predict manipulation actions (anticipatedly or
during their execution). However, most methods follow a
bottom-up strategy: gaze is used as a sensory signal to compute
features modeling the dynamics of visual attention, on top of
which models for action prediction are developed.

This work, instead, further exploits the existent synergies
between future gaze prediction and action forecasting. We
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propose AMT-GAF: Asymmetric Multi-Task system for Gaze-
driven grasping Action Forecasting. AMT-GAF is a multi-task
model that simultaneously predicts future human visual atten-
tion and grasping intention. Our hypothesis is that subjects
drive their attention based on the task being performed, so
both concepts (visual attention and intentionality) are closely
linked. In consequence, by addressing them simultaneously,
we pursue a twofold goal: first, we aim to induce regularization
over the shared representations and improve the performance
of action forecasting; and second, we aim to enhance model
interpretablity by establishing links between gaze dynamics
and future actions. Regarding the second goal, we propose
an interpretable system for future visual attention, in which
attention is modeled through a discrete state model, in which
states are associated to well-known eye-movement patterns
from visual psychology [18].

Next we summarize the main scientific contributions of our
work:

1) We introduce an interpretable model for task-based
visual attention prediction. Attention is modeled as a
competitive process between a discrete set of states, each
one associated to a well-known gaze movement pattern
from visual psychology. Future gaze is then computed
from a combination of several spatial attention maps,
each one modeling future attention under one of the
considered states. In addition, we introduce the use of
an additional cognitive ingredient: a short-term Visual
Working Memory that stores information about objects
that have attracted human attention in the near past.

2) We propose an asymmetric multi-task model for the
simultaneous forecasting of grasping actions and future
attention. We introduce a novel constrained loss that
considers action forecasting and gaze prediction as pri-
mary and auxiliary tasks, respectively, and successfully
handles challenging cases where providing an accurate
attention map from candidate distributions is hard.

3) We present a new dataset, SHARON, for natural grasp-
ing action forecasting that is complementary to previous
datasets in the field, focusing on efficient system deploy-
ment and anticipated action prediction. The SHARON
dataset will published with the paper to promote the
research in the field.

4) We provide a comprehensive set of experiments in three
datasets to assess our technical contributions, and com-
pare our approach with other losses for dynamic multi-
task, state-of-the art architectures for general action
forecasting, and other models particularly designed for
natural grasping intention prediction.

The remainder of this paper is as follows: in section II we
analyze the most relevant related work in the fields of gaze-
based intention estimation and multi-task learning. Section
III describes our problem and potential application scenarios.
Section IV is the central section of the paper, where we
present our proposed interpretable model for task-based visual
attention and the constrained loss for asymmetric multi-task
learning. In section V we present an experimental analysis
of our method and compare it with other state-of-the-art

approaches from the literature. Section VI concludes this work
and outlines its perspectives.

II. RELATED WORK

A. Gaze-driven intention estimation

Many works in the literature use gaze to dig into human
internal mental states and discover short-term (proximal, mo-
tor) intentions. In [19] gaze is used to predict human intention
with subjects interacting with virtual environments. The work
in [20] combines gaze and model-based AI planning to build
probability distributions over a set of possible intentions during
a multi-player board game. Some works [15], [16], [21] have
shown that using gaze to predict intention during tele-operation
tasks provides great advantages in reducing an operator’s
workload and a task’s difficulty as well as enhancing the
task performance. Recently, gaze has also been considered a
fundamental cue to enable robots with predictive capabilities
and support a more natural Human-Robot-Interaction (HRI),
as in [22] and [23] for cooperative beverage preparation, and in
[1] for more complex breakfast recipes. The interested reader
is referred to the work of Bellardinelli [12] for an excellent
discussion of cognitive theories exploring the relation between
gaze and intention and an extensive survey of computational
approaches using gaze to predict human intention.

Some other previous works fit particularly well our scenario
of grasping intention using gaze as a fundamental cue. In
[24] the authors combine features modeling gaze dynamics, a
motion model using the Kalman filter, and different classifiers,
to predict human intention in the form of interacting object and
action. The same authors extend their proposal in [17], and
combine Yolo-based object detectors and sequence modeling
(HMMs and RNNs) techniques to predict grasping intention.
This work additionally introduces a novel dataset, called
Invisible, which deals with the relevant Midas problem by
including videos with both grasping and only viewing actions.
The Midas problem, firstly introduced and addressed in the
work of [25], states that not everything that we gaze upon, is
something we want to interact with.

All discussed methods focus on motor intention, and con-
sider as valid segments for intention prediction those that
go from the moment just before the object is being grasped
until the end of the action execution. In this work, however,
we put more focus on grasping action forecasting, which
implies estimating intention before the action actually takes
place (proximal and anticipative motor intention). We consider
that this goal adapts more naturally to scenarios in which the
action cannot be carried out by humans (e.g. shared control
of neurosprostheses for amputees or assistive robots bringing
utensils closer to impeded humans). Previous works, as [14]
and [2], tackle similar problems by combining active object
detectors with Recurrent Neural Networks to provide grasping
action forecasting.

Furthermore, previous methods limit the use of gaze as a
sensory signal to compute features modeling the dynamics of
visual attention, on top of which models for intention predic-
tion are developed. Our proposal, on the contrary, incorporates
gaze in the process of intention prediction more ambitiously:
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we also aim to predict the future visual attention and exploit
the existent synergies between both tasks: action forecasting
and visual attention prediction. In other words, we think that
anticipating how humans will use their gaze will help to
understand their intentions and forecast their actions. To the
best of our knowledge, this is the first time that both tasks are
addressed simultaneously in a unified model, through the use
of a novel asymmetric multi-task loss with constraints.

B. Multi-task learning in action-prediction
Multi-task Learning (MTL) is a technique that aims to con-

currently learn multiple objectives from shared representations
[26]. In some scenarios, like object detection [27], MTL is
inherently required due to end-user task definition, which is
decomposed in several necessary subtasks (e.g. object category
identification and bounding box regression). In other cases,
losses are combined in MTL to provide complementary views
of the same task: e.g. in semantic image segmentation, cross-
entropy, Dice or Jaccard losses are often linearly combined to
account for different factors influencing segmentation perfor-
mance [28]. Finally, there are cases where MTL is proposed
to leverage the synergies between closely-related tasks and
improve the performance with respect to single-task learning
[29]. In those cases, it is usual to distinguish a primary task
and a set of auxiliary tasks. The latter are incorporated into
the learning process to regularize learning and obtain better
shared representations. Thus, the performance of the primary
task is improved.

Action prediction is a task where MTL is prevalent. In [30]
action prediction and estimation of the temporal progress are
tackled together within a MTL approach. The work in [31]
addresses the joint long-term forecasting of future actions and
their duration. Future-transformer [32] combines the tasks of
temporal action segmentation in the past with the prediction
of the actions in the future, and Self-Regulated Learning
(SRL) [33] incorporates a contrastive loss to generate future
spatio-temporal features on top of which action forecasting
is made. The work in [34] is close to our proposal as it
aims to simultaneously predict semantic actions and generate
trajectories representing future human motions. Our work,
however, focuses on the predicting future eye-gaze movement
(instead of head and body motion) and relies on a set of
interpretable and well-known gaze-motion patterns from visual
psychology.

All the discussed multi-task methods follow a shared-bottom
structured model [35], and either simply sum individual losses
to form the combined multi-task loss, or perform linear com-
binations where weights are fixed a priori. Some limitations
arise in these simple approaches: first, the performance of
such systems is strongly dependent on the relative weighting
between each task’s loss, requiring extensive empirical tuning;
second, task weights are often static throughout the course of
training, potentially diverting training resources to unnecessary
tasks or samples [36]; third, shared-bottom model structures
(e.g. architecture with shared bottom layers, and then parallel
task-dependent top layers), although reduce the risk of over-
fitting, can suffer from optimization conflicts caused by task
differences.

Regarding the third problem, several works have designed
specific architectures that leverage the common elements and
identify differences between tasks: the works in [35] and [37]
propose to use Mixture-of-Experts (MoE) architectures, which
explicitly learn to model task relationships from data that can
be also combined with multi-task losses to leverage these
relationships. These architectures make use of a set of experts,
each one providing an alternative representation of the data,
which are then combined using a weighted linear combination
that is task-dependent. Hence, two tasks can both assign
high weights to those experts modeling their similarities and
different weights to track their particular aspects. Of similar
inspiration, the work in [38] proposes a encoder-decoder
architecture, in which the encoder is shared by all tasks
being addressed, and a hybrid decoder is implemented through
attention modules, including a shared block that exploits inter-
task dependencies and a set of individual blocks that obtain
particular task representations. The use of mixture-of-experts
is a complementary solution to our proposal and could be
easily plugged into our architecture with slight adaptations.
However, our scenario of asymmetric multi-task learning,
which aims to minimize overfitting and increase regularization
in the representation, together with the requisite of real-time
execution in our application, suggests adopting of simpler
shared-bottom model structures and focusing on the other two
limitations stated.

To overcome the first two limitations, several methods have
been proposed that aim to dynamically set the mixing coef-
ficients of the linear combination of losses. Self-paced MTL
[39] considers both sample and task difficulty to automatically
compute the mixing weights for samples and tasks in a multi-
task problem. In [40] the authors proposed to weigh multiple
loss functions by considering the homoscedastic uncertainty of
each task, and apply their method to a combined problem of
semantic image segmentation and pixel depth estimation from
monocular images. Dynamic task prioritization [36] automati-
cally prioritizes more difficult tasks by adaptively adjusting the
mixing weight of each task’s loss objective, where difficulty
is inversely proportional to performance (measured through
differentiable KPIs). The method is successfully applied to
combined problems of visual classification, segmentation, de-
tection, and pose estimation.

The work in [41] is of special closeness to our approach,
as it considers an asymmetric MTL, in which one task is
considered a primary, whereas the others are auxiliary. In this
proposal, task weighting is dynamically optimized to reduce
negative transfer in multi-task learning: by checking when
adding auxiliary losses decreases the performance compared
to the single-learning with the primary loss, the method adjusts
the mixing weights accordingly. Our problem is also asymmet-
ric, with a well-defined primary task of action forecasting, and
the supporting task of future gaze prediction. Our approach,
however, diverges to deal with a particular challenge in our
scenario: in our model, attention prediction relies on a set
of pre-defined spatial distributions, each one corresponding
to a well-known gaze motion pattern from psychology. As
sometimes none of the candidate maps points to the true future
gaze location, achieving accurate predictions is very hard
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Fig. 1. An overview of our scenario of HRI with predictive robotics.

in these cases and cannot be realistically addressed without
leading to overfitting. Consequently, we have developed a
constrained loss that simply aims to perform well enough in
the auxiliary task.

III. APPLICATION SCENARIO

Our application scenario of HRI enabled by predictive
robotics is depicted in Fig. 1. We aim to help people with
motor disabilities and potential cognitive impairments, using
assistive robotics that naturally bring them out-of-reach objects
while they are performing activities of daily living (ADL). We
envisage the use of different types of robots, from neuroprothe-
ses (e.g. Reachy1 [42]) to humanoid robots (e.g. as Tiago++2)
and, in order to bring a more natural and efficient collaboration
with humans, we limit the use of voice commands. Instead, we
resort to multimodal signals, as electromyograms, exocentric
vision (e.g. advanced pose and joint-bone analysis as in [43])
or egocentric vision, to build predictive robots that decode
human intention and act proactively without the need of
explicit human requests. In this work, we focus on egocentric
vision, and equip subjects with Pupil Invisible glasses3, a
wearable multi-sensor that incorporates: a) a camera recording
their visual field at 30Hz, b) an eye-tracker that captures their
gaze at 120Hz, c) an IMU unit to record egomotion caused by
head and body movements, and d) a microphone. The glasses
also come with a prescription lens kit that accommodate a
variety of wearers and correct a wide diopter range, a relevant
requisite to work with senior patients.

The sensed data are transferred via wireless connection to
the assistive robot, which performs real-time processing and
consequent execution of physical actions to help humans. The
Artificial Intelligence (AI) that governs the robot is made up of
three processing modules. The first one is the Active Object
Detection (AOD) module. Video frames showing the visual
field of the human and the corresponding gaze locations are
its input. The AOD, using gaze as a guiding signal, identifies
the active object among all elements in the scene, i.e., the
object that the user is interacting with or aims to interact
with. The AOD module operates on a frame-by-frame basis,
providing a vector ot ∈ RCo+1, where t is the time instant,
and Co is the number of object categories considered in our
problem (we include an additional category ‘background’ to
account for cases where attention is not directed to any object

1https://www.pollen-robotics.com/reachy/
2https://pal-robotics.com/es/robots/tiago/
3https://pupil-labs.com/products/invisible/

of interest). This vector encodes the probability of each object
category being the active object at the current instant. The
AOD module is out of the scope of this work, as it has been
already described in detail in previous works (the interested
reader is referred to [2], [14]). Here we simply highlight
that this module is trained using video-label weak annotations
indicating the active object for a video sequence, and using
gaze as guiding signal, thus avoiding the need of time-
consuming annotation though bounding boxes. Henceforth, a
user can easily train the detector for a new acquired object
by simply looking at it for a brief time, from different angles
and viewpoints, and indicating the object category (e.g. using
a voice command like ‘Train new object with category frying
pan’).

The outputs of the AOD, along with the remaining sensed
data, are passed to the second module, the Grasping Intention
Prediction (GIP) module. It identifies when the human wants
to grasp and manipulate an object that is out of reach. The
GIP generates a new vector yt ∈ RCo+1 containing the
grasping action probabilities. We envisage grasping action as
a multiclass problem with Co+ 1 categories: one category for
the non-grasping action (e.g. the user does not need to grasp
any object) and the others indicating that the user aims to grasp
each of the considered Co object categories. The GIP system
represents the central contribution of this paper and will be
thoroughly described in section IV.

Finally, the vector yt is passed to our Motor Planning
and Execution (MPE) module that, when a grasping action
is required, plans its physical execution and carries out the
action, grasping the object or bringing it close to the patient.
The MPE is however out of the scope of this paper, including
the physical execution of the grasping actions.

IV. AMT-GAF: ASYMMETRIC MULTI-TASK LEARNING
FOR GAZE-DRIVEN GRASPING ACTION FORECASTING

A. General description of the module

AMT-GAF: Asymmetric Multi-Task system for Gaze-driven
grasping Action Forecasting is a multi-task model that simul-
taneously predicts future human visual attention and grasping
intention. Our hypothesis is that subjects drive their attention
based on the task being performed, so both concepts (visual at-
tention and intentionality) are closely linked. In consequence,
by addressing them simultaneously, we aim to improve the
performance of a baseline isolated action prediction system.
Furthermore, our work aims to scientifically contribute towards
the design of more human-centric AI [44] in two ways:

1) Providing more interpretable AI tools, so that the robot
actions can be better understood by non-expert humans,
thus improving AI trustworthiness. In this regard, we
have designed an interpretable model that defines task-
based human attention through a set of eye movement
patterns that are well-known in visual psychology.

2) Providing AI tools that incorporate ingredients from
cognitive sciences and emulate the functioning of the
human natural intelligence: in our case, besides the eye
movement patterns, we have incorporated a short-term
Visual Working Memory that enables efficient redirection
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Fig. 2. Interpretable model for task-based visual attention. Each state is associated to a probabilistic spatial map predicting future gaze location.

of visual attention to objects that have been fixated in
the recent past.

In the following sections, we will thoroughly describe each
scientific contribution: the interpretable model and the VWM
will be described in detail in section IV-B and our multi-
task architecture will be detailed in section IV-C. Finally, in
section IV-D we will introduce a novel loss for multi-task
learning, besides considering the asymmetry between both
tasks, naturally deals with situations where the estimation of
the future attention is poor and the overall performance is
degraded.

B. An interpretable model for task-based visual attention
prediction

It is known that humans use their gaze to generate the
necessary sensory data to guide their perception of the en-
vironment [45], and thus be able to decide what to do next.
Given this close relationship between perception and intention,
we hypothesize that understanding how subjects guide their
visual attention to the different elements in the scene will
provide clues, not only about the actions they are currently
carrying out, but also about their intentions and future actions.
In consequence, besides simply decoding human intention, we
also aim to forecast the spatial location of gaze.

To do so, and since one of our goals is to achieve a system
that is interpretable and understandable for humans, we have
modeled the dynamics of task-based attention as a competitive
process between a finite set of eye movement patterns. Each
pattern is a potential state that defines the dynamics of the
gaze and sets a particular spatial distribution of future attention
along the visual field of the subject. We have considered
motion patterns that are well-known in visual psychology
and, therefore, become interpretable and understandable for
humans. Furthermore, we treat the state encoding future visual
attention as a latent variable (we will not have labels indicating
the gaze state at each moment). It must be inferred from
other observed information as the position of the gaze in the
current frame and other sensed data. The goal is to learn a
model that automatically identifies the current state of attention
and selects the corresponding spatial map to predict the gaze
location in the near future.

We next describe the states of visual attention, indicating
how they drive gaze and produce eye movements, as well

as their corresponding spatial distributions of future visual
attention, which are further depicted in Fig. 2.

1) Fixation (including microsaccades): In this case, we
model visual attention during a fixation, in which a
subject fixes his gaze over a stable area covering a
particular element in the scene [46]. During a fixation,
gaze shifts are only due to micro-saccadic movements
(very short shifts) towards different points within the
element of interest [47]. When visual attention is in
this state, the candidate gaze map is built upon the
current fixation, defining a two-dimensional Gaussian
distribution centered at its location. In Fig. 2, it can be
seen how the map proposed by this state is centered on
the current fixation (e.g. blue Gaussian centered on the
blue diamond).

2) Predictable Eye Movements: this state covers predictable
eye movements that may happen in two scenarios: a)
smooth pursuits: eyes move to maintain a moving object
of interest on the fovea [18]; and b) slow saccadic
movements, which allow subjects to perform a scanning
of the scene. In order to generate the corresponding
attention map, we predict the future gaze position using
a constant-velocity model, so that we first compute an
eye motion vector (see Eye Movement definition in sec.
IV-C), and use it to shift the current fixation and define a
two-dimensional Gaussian distribution (see red Gaussian
at Fig. 2). It is noteworthy that, when eye movements
are negligible, this map is similar to the Fixation one.

3) Visual Working Memory (VWM): the VWM, which will
be explained below, allows us to store the locations of
objects that have previously attracted subject’s attention.
Each memory position will produce a candidate attention
map for future frames, emulating when subjects drive
their attention back to an object that they have previously
identified (see the yellow Gaussian distributions located
at milk, cereals and plate in Fig. 2.

4) Center Bias: Human eye-tracking studies have shown
that gaze is often biased towards the center of natural
scene stimuli (’center bias‘) [48]. We model this depen-
dency with a large Gaussian located at the center of the
visual field (pink Gaussian at Fig. 2).

5) Fast saccadic movements: saccades are rapid, ballistic
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eye movements between fixations that bring an area of
the visual scene onto the fovea [46], and model those
instants in which subjects want to drive their attention
to a new element in the scene and shift their gaze
quickly to another area which as not been yet fixated.
This movement is therefore highly unpredictable using
previous information and instead driven by competitive
mechanisms of visual saliency. Hence, the most strik-
ing regions compete to attract the subject’s attention
based on their low-level characteristics (color, lighting,
structure). In this work, a bottom-up attention map is
generated using a low-level visual saliency algorithm
[49] and, subsequently, the areas covered by Fixation,
Predictable Eye Movements and VWM maps are masked
to remove the influence of previously attended elements
in the scene. In Fig. 2 the probability map is represented
in green tones.

It is known that the VWM plays an important role in task-
based visual attention. In this work, we have designed a VWM
inspired by [50]: 1) It is a short-term memory that stores visual
and spatial information of 4-5 relevant objects that have been
previously fixated by the human; and 2) each object stored in
the memory has an associated attentional weight to be used in
competitive processes of attention and during visual searches.
From these premises, we have designed a tabular VWM in
which each entrance i is defined through the following fields:
• Object category: Category of the stored object ci, with
ci = 1...Co.

• Object location: coordinates xi of the object center with
respect to the current fixation. Coordinates of previously
stored objects are continuously updated using a geometric
alignment module (see [2] for additional details) so that
they are always relative to the current fixation.

• Attentional weight: the attentional weight wi will be used
in competitive processes of attention, and is also updated
for each new instant t modeling short-term persistence:

wi,t = max(γwi,t−1, oci,t) (1)

where oci,t is the score of the object category ci in the
current instant t, and γ is a memory factor that sets
the speed at which objects are forgotten and removed
from the memory in case they are not fixed again.
We have heuristically set its value to γ = 0.9, which
roughly corresponds to a memory that keeps objects
during approximately 1 second (at 30fps) in case they
are not longer re-fixated.

In practice, we set a memory of size of 5 entrances, so we
just consider the objects with the highest attentional weight
among the considered categories. We use this VWM with two
purposes: a) to generate candidate attention maps, as explained
above; and b) to model subjects’ intention and forecast their
actions.

Once the states have been conceptually defined together
with their associated attention spatial maps, we next introduce
the mathematical model of interpretable task-based future
attention prediction. We model the state of visual attention
through a latent discrete variable that takes S potential values

Fig. 3. Graphical representation of our probabilistic AMT-GAF for si-
multaneous prediction of visual attention and grasping intention. Nodes
represent random variables and arrows stand for dependencies. White
nodes are latent variables to be inferred, while shaded nodes are
observable variables. Boxes mean repetitions of a process/variable.

(the number of considered states or patterns of eye movement)
based on the probabilities stored in the vector v. Next, the
spatial distribution of future visual attention a ∈ RH×W is
modeled using a probabilistic mixture model over the S latent
states (for simplicity, we omit temporal index t):

a =

S∑
s=1

vsms (2)

where ms ∈ RH×W is the candidate map associated to
the candidate state s (as shown in Fig. 2). In other words,
the final attention map is generated as a linear combination
of the candidate maps in which the mixing coefficients are
taken from the discrete state variable v. In order to leverage
gradient-descent learning over the parameters of the discrete
distribution (v), we apply the re-parametrization trick with a
Gumbel-Softmax distribution [51]. This distribution represents
a soft-approximation of the maximum operator and enables the
competition between attention states. Furthermore, let us note
that, thus defined, the model is interpretable, as the weights vs
to learn express the importance of each attention component.

Finally, the map a is used to predict the coordinates of
the future gaze location g̃t+∆ = fg(at) for a future instant
t′ = t+ ∆, computed as a nonlinear regression fg(·). Here ∆
represents the anticipation step, which has been heuristically
set to 0.2 secs (6 frames at 30fps), to consider significant but
yet predictable shifts in the gaze location.

C. Architecture of AMT-GAF
Once we have presented our interpretable model for visual

attention, we now introduce our proposed probabilistic multi-
task model for simultaneous prediction of future visual atten-
tion and grasping intention, called AMT-GAF. The graphical
model of AMT-GAF is shown in Fig. 3, where shaded nodes
represent observable and white nodes represent hidden vari-
ables, respectively. We rely on two latent variables: a) the
discrete variable v that models the underlying state of the
visual attention; and b) a continuous latent variable z, shared
by both tasks in our multi-task model, which encodes the
dynamics of the visual field and the human intention.

For each instant t = 1...T , our model receives an input xt
that contains a concatenation of the following variables:

1) Current Gaze location gt ∈ R2: Assuming the impor-
tance of the central bias [48], we consider that users
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Fig. 4. Computational architecture that implements the graphical model proposed in Fig. 3. Mean µzt and covariance Σzt of the latent state zt
are generated by a Transformer Encoder [52], which is fed by the set of previous observations x1:t and a positional encoding variable st. Then,
our multi-task model implements two processing branches, one to predict the actions ŷt and one to predict the future gaze coordinates ĝt. Feed-
forward blocks are implemented as stacks of Linear layers and Relu activations. Add & Norm blocks implement residual layer, that add original
and processed signals, followed by a layer normalization. SUM means summation over channels for each spatial position of the attention maps.
Gaussian and Gumbel-Softmax re-parametrizations, as well as both losses (red circles), are explained in text.

tend to center their field of view on the active object
when they aim to interact with it. Note, this does not
happen under other states of visual attention, such as
scene scanning.

2) Eye movement ut ∈ R2: we measure eye movements by
subtracting consecutive gaze locations (t − 1, t). How-
ever, in order to remove the influence of the egomotion
and vestibulo-ocular movements (eye movements that
compensate head motion) [53], we first need to geo-
metrically project the previous point gt−1 with respect
to the current frame, yielding gtt−1 [2]. Then, the eye
motion vector is ut = gt − gtt−1. Eye displacement
is a physiological measure of interest to know user
intention, and helps to identify the different types of eye
movements/attentional states (scanning of the scene, sac-
cadic shifts between objects, fixations over the object of
interest, smooth pursuit over hands during manipulation,
etc.)

3) Ego-motion vt ∈ R2: we additionally include the motion
of head and body of the human wearing the glasses
to better understand their physical interaction with the
environment (approaching objects, stabilizing pose be-
fore grasping an object, manipulating objects, etc.). We
compute ego-motion by subtracting the eye movement
from the total gaze displacement between consecutive
instants: vt = gt − gt−1 − ut = gtt−1 − gt−1.

4) Vector of active objects ot ∈ RCo : provided by the AOD,
as explained in section III.

5) Information from the VWM: using the information con-
tained in the VWM, we build two additional input
vectors: wt ∈ RCo : which contain the attention weights
for each object category (with zero values if an object is
not encoded in the VWM); and dt ∈ RCo : the Euclidean
distance between the object locations and the image
center.

For each instant t = 1...T during HRI, our model is fed
with the concatenated input xt ∈ R3Co+6 and the S spatial
attention maps mit, i = 1...S, each one associated with
one candidate state of attention, and performs the following
generative process:

1) It samples the latent shared state variable zt from a
Gaussian distribution:

zt ∼ N (µzt,Σzt); with (3)
µzt = fµzt(x1:t) (4)
Σzt = fΣzt(x1:t) (5)

where we can observe that the parameters of the distribu-
tion at the instant t depend on the inputs in the current
and previous instants x1:t. Distribution parameters are
computed applying learnable non-linear transforms fµzt

and fΣzt
.

2) Next, it samples the latent attention state vt from a dis-
crete distribution, approximated by a Gumbel-Softmax
distribution [51] G:

vt ∼ G(fa(zt)) (6)

where the vector of probabilities in the distribution is
computed as a non-linear transformation fa of the shared
state variable zn

3) It generates the spatial distribution of future visual
attention at, using a mixture model over the states (see
eq. (2).

4) It predicts the coordinates of the gaze location
g̃t+∆ = fg(at) applying a nonlinear regression fg over
the spatial distribution at.

5) It predicts the vector of probabilities of the next grasping
action ỹt as ỹt = fy(zt), where the variable ỹt follows a
discrete distribution in which the probability of an action
is computed from the shared latent state variable zt using
a nonlinear transform fy .
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Figure 4 brings details about the computational architecture
that implements the graphical model proposed in Fig. 3. fµzt

and fΣzt , in charge of modeling the latent shared state zt, are
both implemented with a shared Transformer Encoder [52],
which is fed by the set of previous observations x1:t and a
positional encoding variable st. This network generates the
mean µzt and the covariance Σzt of the Gaussian variable
zt ∈ R512 ∼ N (µzt,Σzt) representing the latent state of the
human visual dynamics.

To allow optimizing the model parameters using gradient-
descent methods, we again leverage the re-parametrization
trick, sampling an auxiliary variable ε from a normal dis-
tribution ε ∼ N (0, I), and applying an affine transform so
that zt = µzt + Σzt · ε. We found out that modeling zt
as a random variable is especially effective in our scenario,
in which data augmentation through random transformation
of input variables is hard to apply due to the strong inter-
dependence between the different sensed signals.

During inference, we simply set zt ∼ µzt to remove noise
and maximize performance. The latent state is in turn passed
through two different feed-forward networks: a) the network
fy addresses the main task, forecasting the grasping action
yt ∈ RCo+1; and b) a sequential network composed of two
processing blocks, fa and fg , that addresses the auxiliary
task. It computes the fused map of visual attention at and
the coordinates of a future (t + ∆) gaze location in g̃t+∆,
respectively.

D. A constrained loss for asymmetric multi-task learning
The multi-task architecture of AMT-GAF is trained in a

unified form, using a loss that combines two individual losses,
each one associated with a task of interest. Without loss of
generality, we will consider that each training batch contains
just one video so that we can avoid video indexes that will
increase the complexity of the descriptions unnecessarily. The
extension to multi-video batches is nevertheless straightfor-
ward.

Given a video with T temporal instants, we consider: 1) an
action-prediction loss Lact(ỹ,y), which compares the set of T
grasping action predictions ỹ and the corresponding labels y;
and 2) a gaze-prediction loss Lgaze(g̃∆,g∆), which compares,
for an anticipation step ∆, our gaze predictions g̃∆ with the
corresponding ground truth annotations g∆.

We use a Lact implemented through a set of binary cross-
entropy losses (one per action category, using sigmoids to
transform unbounded outputs into probabilities), that incor-
porates sample weighting to robustly handle two challenges
that are particularly relevant in our scenario: inaccurate active
object predictions from the AOD and temporally weak annota-
tions for frame-level grasping action prediction. The interested
reader is referred to [2] for a detailed description of the loss.

In addition, Lgaze has the form:

Lgaze(g̃∆,g∆) =
1

T −∆

T−∆∑
t=1

||g̃t+∆ − gtt+∆||2 (7)

Lgaze is the mean square error between frame-level predictions
g̃t+∆ and annotations gtt+∆ (let us note that ground truth

annotations in t+∆ are aligned with respect the current frame
t).

A basic solution enabling multi-task learning consists of a
linear combination of both losses, with a fixed α parameter
that controls the influence of each term:

Llin(θ, α) = Lact(ỹ,y; θ) + αLgaze(g̃∆,g∆; θ) (8)

where we have included θ, which represents the learnable
parameters of our model (e.g. the weights in the neural
networks). Our hypothesis is that the minimization of Lgaze
will help to regularize the latent representation of the visual
dynamics zt, as we include additional but closely related
information to drive the learning process. During test,
this branch might be neglected without any impact on the
performance. However, we consider that the gaze prediction
branch deserves being computed in test as it actually enhances
the model interpretability, as we will show in the experimental
section.

In our scenario of application, the prediction of actions
represents our primary focus, whereas the prediction of future
attention remains an auxiliary task. Besides, our explainable
model, in which the next visual attention is predicted from
a series of candidate maps, may lead to situations where
none of the candidate maps points to the true gaze location,
providing poor estimations g̃∆ of the future attention. During
optimization, we observed that these cases produce large
loss values and gradients (specially after several epochs of
training, when models have already been partially adjusted)
that dominate the learning process in detriment of the primary
loss. This phenomenon leads to degradation in the system
performance. To overcome this issue, we have replaced the
linear combination of losses with a novel constrained loss
function for asymmetric multi-task learning. Hence, for each
training video, we aim to solve the following optimization
problem:

minimize
θ

Lact(ỹ,y; θ)

s.t.

T−∆∑
t=1

Lgaze(g̃t+∆,g
t
t+∆; θ) ≤ THgaze (9)

With this new approach, we aim to minimize the primary
loss (the action loss) subject to obtaining a gaze prediction that
is good enough (below a threshold THgaze). If the constraint
is hold for a video, the gaze loss no longer affects the
optimization, which will primarily focus on action forecasting.
This approach prevents from indiscriminately learning weights
that aim to optimize an ill-posed problem, where the available
candidate maps do not allow to find a solution for the future
gaze.

To provide a solution for the problem in eq. (9), we re-define
the constrained problem in its Lagrangian form, leading to a
multi-task loss Lmt:

Lmt(θ, λ) = Lact(ỹ,y; θ)

+ λ

(
T−∆∑
t=1

Lgaze(g̃t+∆,g
t
t+∆; θ)− THgaze

)
(10)
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where λ ≥ 0 is the Lagrange multiplier associated to the
problem restriction. The dual function corresponding to these
problem is:

g(λ) = inf
θ
Lmt(θ, λ) (11)

And the dual optimization problem is:

maximize
λ

g(λ) (12)

which is concave with respect to the Lagrange multiplier λ,
and allows us to use a Projected Gradient Ascent (PGA) for
optimization, only requiring the computation of the gradient
as:

∂g(λ)

∂λ
=

T−∆∑
t=1

Lgaze(g̃t+∆,g
t
t+∆; θ)− THgaze (13)

The optimal solution of the dual problem is a lower bound
for the solution of the primal formulation (concept known
as weak duality). In our problem, Lact (see [2]) and Lgaze,
although both are convex with respect to the network outputs
ỹ and g̃t+∆, they are generally not with respect to the network
parameters θ, something characteristic in deep learning archi-
tectures. In consequence, strong duality cannot be ensured,
and the solution θ∗ of the dual problem is just a lower bound
that may be more or less tight [54] (dual gap). However, we
have found that, for reasonable values of THgaze, and due
to the partial independency between the paths that compute ỹ
and g̃t+∆ (e.g. layers starting from the latent representation
zt on), our optimization process usually finds feasible points
obeying the constraints, thus ensuring that the obtained bounds
are tight.

Finally, to optimize our model with respect to this novel
loss, we perform the following process. We initialize λ = 0
and iterate as follows:

1) Given the current model parameters θ, we use PGA and
eq. (13) to update λ towards the direction that maximizes
the dual.

2) For the new obtained λ value, we perform Stochastic
Gradient Descend (SGD) to find the optimal model
parameters θ that minimize the dual function for the
given value of λ (see eq. (11)).

It is worth giving some notes on the implementation process.
For each new value of λ computed in step 1, we should
perform several iterations of SGD in order to find the optimal
parameters of the model for this λ (the dual value in eq. (11)).
Then, we can update λ and proceed again, until convergence
(e.g. λ = 0 if there exists a feasible solution). In practice,
without observing a noticeable lack of performance and due
to the time required to optimize over model parameters, we
limit this loop to 3 repetitions, when we finish even if the
constraints are not yet satisfied, and limit the number of θ
updates in step 2 to 1. Overall, this leads to a 1-to-1 gradient
ascent-descent between dual (λ) and primal (θ) parameters.

V. EXPERIMENTAL SECTION

A. Datasets and Experimental Setup
We have considered three egocentric datasets in our ex-

periments: GITW and SHARON, which focus on proximal

and motor intention forecasting (milliseconds to seconds),
and the complementary Invisible dataset, which considers the
prediction of motor intention not only before but also during
the action execution.

Grasping In The Wild (GITW)4 has been recorded with Tobii
Glasses 2 worn by subjects performing activities of everyday
life in an ecological environment (7 kitchens). It contains
404 egocentric videos of lengths varying between 3.5 and 26
seconds, with a total length of 62 minutes, and 16 categories
of objects being grasped: bowl, can of coca-cola, frying
pan, glass, jam container, pan lid, milk container, mug, oil
bottle, plate, rice container, sauce pan, sponge/scourer, sugar
container, vinegar bottle, and washing up liquid. Videos have
been recorded with a resolution of 1920 × 1080px @25Hz,
whereas gaze points were acquired at 50 Hz. The same dataset
is used to train the AOD and GIP modules.

Symmetric HumAn RobOt iNteraction (SHARON)5 contains
two datasets: SHARON-OBJECTS and SHARON-GRASP.
The database has been recorded with Pupil Invisible Glasses
at 1088 × 1080px @30Hz, providing gaze points at a rate
of 200Hz. The dataset includes 21 utensils and ingredients
of interest in breakfast recipes: bowl, butter, cereals, coffee,
cup, cutting board, fork, fridge, jam, knife, microwave, milk,
nesquick, nutella, olive oil, plate, sliced bread, spoon, sugar,
toaster, tomato sauce, water. SHARON-OBJECTS contains
128 videos recorded by 6 subjects in which the object of
interest is placed alone over a smooth surface and the user
looks and manipulates the object in isolation. In all cases,
volunteers signed the corresponding informed consent. We use
this dataset to learn the AOD module following the efficient
gaze-driven approach in [2], which minimizes the effort of
human annotation. SHARON-GRASP contains 236 videos
with lengths varying from 1.5 and 11 seconds, with a total
length of 32.6 minutes, recorded by 6 subjects, and is used to
learn the GIP module.

The recording protocol is similar in both datasets: each
subject first listened to the instruction with the name of the
object-to-grasp. Next, he/she explored the visual scene to find
the location of target object and finally grasped it. The main
difference between them, besides the use of different eye-
tracker glasses to acquire the data (different data rates, images
dimensions) and the sets of objects of interest, lies in the
annotation process. In GITW the videos have been annotated
by labeling the temporal segment (tstart, tend) starting when
the user fixates the active object for the first time (after
searching the scene) and ending at the instant just before the
object is grasped. In SHARON-GRASP, labeling is efficiently
implemented through voice commands and Automatic Speech
Recognition (ASR) systems: first, the subject receives a voice
command to indicate the object to be grasped, second, the
subject indicates that the object is grasped at the exact moment
of touching the object. We set the segment of interest for
grasping action prediction as ranging from the last sample
of the first voice command and the starting sample of the
second one. It is noteworthy that this annotation yields to a

4www.labri.fr/projet/AIV/dossierSiteRoBioVis/GraspingInTheWildV2.htm
5To be published upon paper acceptance
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TABLE I
ASSESSMENT OF OUR CONSTRAINED LOSS FOR ASYMMETRIC MT ON GITW DATASET.

Model
AP@∆t(secs) Gaze Error(%)

(mean ± std)∆t = 0.2 ∆t = 0.4 ∆t = 0.6 ∆t = 0.8 ∆t = 1.0 ∆t = 1.2 ∆t = 1.4 ∆t = 1.6 ∆t = 1.8 ∆t = 2.0 AVG

Single-task (no VWM) 0.176 0.322 0.428 0.494 0.550 0.580 0.600 0.608 0.622 0.624 0.536 –
Single-task (with VWM) 0.186 0.330 0.440 0.516 0.578 0.608 0.630 0.646 0.656 0.660 0.564 –
MT Fixed (α = 0.01) 0.124 0.230 0.352 0.472 0.568 0.618 0.646 0.660 0.670 0.676 0.544 7.60 ± 0.71

MT Fixed (α = 0.1) 0.124 0.232 0.354 0.472 0.574 0.620 0.648 0.664 0.672 0.676 0.546 4.96 ± 0.61

MT Fixed (α = 1.0) 0.174 0.294 0.404 0.496 0.580 0.608 0.634 0.646 0.656 0.662 0.553 4.54 ± 0.67

LB-MT [41] 0.160 0.288 0.400 0.496 0.574 0.610 0.636 0.650 0.658 0.66 0.552 4.52 ± 0.71

DTP-MT [36] 0.174 0.294 0.406 0.496 0.576 0.608 0:632 0.648 0.656 0.660 0.553 5.06 ± 0.68

MT Constrained 0.186 0.330 0.444 0.520 0.584 0.612 0.638 0.658 0.668 0.670 0.569 6.16 ± 0.43

TABLE II
ASSESSMENT OF OUR CONSTRAINED LOSS FOR ASYMMETRIC MT ON SHARON DATASET.

Model
AP@∆t(secs) Gaze Error (%)

(mean ± std)∆t = 1.0 ∆t = 1.5 ∆t = 2.0 ∆t = 2.5 ∆t = 3.0 ∆t = 3.5 ∆t = 4.0 ∆t = 4.5 ∆t = 5.0 AVG

Single-task (no VWM) 0.132 0.296 0.442 0.536 0.586 0.606 0.620 0.628 0.628 0.498 –
Single-task (with VWM) 0.140 0.296 0.442 0.538 0.612 0.630 0.642 0.652 0.654 0.512 –
MT Fixed (α = 0.01) 0.134 0.292 0.416 0.524 0.592 0.614 0.622 0.634 0.634 0.496 3.00 ± 0.23

MT Fixed (α = 0.1) 0.134 0.292 0.442 0.544 0.622 0.640 0.650 0.658 0.662 0.516 1.28 ± 0.08

MT Fixed (α = 1.0) 0.142 0.296 0.448 0.548 0.620 0.640 0.650 0.662 0.664 0.519 0.86 ± 0.11

LB-MT [41] 0.128 0.286 0.340 0.528 0.600 0.626 0.632 0.644 0.648 0.503 0.92 ± 0.11

DTP-MT [36] 0.136 0.296 0.446 0.542 0.620 0.642 0.650 0.660 0.664 0.517 1.16 ± 0.11

MT Constrained 0.140 0.296 0.450 0.556 0.626 0.648 0.658 0.668 0.672 0.524 1.44 ± 0.11

more challenging problem, as we are not considering the time
required by the subject to, once the command is listened and
processed, scan the scene and search the object to be grasped.

We have measured the performance to anticipate grasping
actions using the Average Precision (AP), which is computed
by accumulating detections (true and false) along the videos
in the test set for different values of the detection threshold.
Furthermore, to assess the anticipation time, AP has been
computed at different times ∆t = t − tstart. The considered
range of ∆t varies between datasets (see Tables I and II), due
to the different annotation protocols discussed in the previous
paragraph, which allow lower values of ∆t in GITW. We
compute AP in our multiclass problem with Co + 1 classes
considering a true positive only when the system detects that
the subject aims to grasp the right object during the period
t ∈ (tstart, tend), and a false positive if the detection is either
associated to a wrong object or is done before the valid period.
To establish a fair comparison, every compared method has
been trained using the same feature set described in sec. IV-
C and using the Lact proposed in [2]. Furthermore, in order
to obtain statistically stable results, we have followed a 5-
fold cross validation in both datasets, leading to final mAP
values. We will use these two datasets to assess our technical
contributions and to establish a comparison with state-of-the-
art methods of action forecasting.

Invisible Dataset [17] is a very recent dataset for gaze-
driven natural object grasping detection. This dataset com-
plements GITW and SHARON with one appealing property:
apart from regular grasping sequences, it also contains videos
in which users look at specific objects without the intention of
grasping them. Hence, the original set of 10 object categories
leads to a 21-multiclass action prediction problem: 1 class for
no object of interest (the user simply scans the scene), 10
categories for viewing objects, and 10 categories for grasping

objects. Discriminating between viewing and grasping and
object is rather challenging in advance, when a subject has not
yet used their hand. On the other hand, and due a different
scenario of application [17], intention is not only predicted
in advance in this dataset but also detected during the action
execution. This means that the whole videos are labeled with
the same category, including frames in which the subject is
actually grasping or even holding the object. Although this
set-up is not realistic in scenarios where action forecasting is
required, as control of neuroprostheses or predictive robotics
in HRI, we have followed the original set-up of the user-
based experiments in the paper (see [17]) to obtain comparable
results with other methods, and used the same performance
metrics: frame-based average action prediction Accuracy, and
Success Rate. We used this dataset to establish a comparison
with particular methods for gaze-based grasping intention
prediction.

B. Assessment of model contributions: VWM and
constrained loss for asymmetric multi-task learning

In this section, we provide a comprehensive analysis of the
effect of the main technical contributions of our proposal.
Results are provided for GITW and SHARON datasets in
Tables I and II, respectively. We have conducted studies
comparing our full approach (AMT-GAF) with three ablated
versions by incrementally adding contributions: (1) a single-
task approach (considering only Lact and removing the pro-
cessing blocks associated to the gaze prediction) that does not
include the VWM in the input feature set; and (2) a single-
task approach but including VWM as features, and (3) the
classical linear multi-task (MT fixed), defined in eq. (8) and
trained using fixed values of the mixing hyperparameter α.
Furthermore, we have extended the comparison with two other
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TABLE III
A COMPARISON WITH STATE-OF-THE-ART METHODS FOR ACTION FORECASTING ON GITW DATASET.

Model
AP@∆t(secs) Gaze Error(%)

(mean ± std)∆t = 0.2 ∆t = 0.4 ∆t = 0.6 ∆t = 0.8 ∆t = 1.0 ∆t = 1.2 ∆t = 1.4 ∆t = 1.6 ∆t = 1.8 ∆t = 2.0 AVG

Gonzalez et al. [2] 0.170 0.308 0.426 0.498 0.556 0.592 0.604 0.614 0.626 0.628 0.539 –
RU-LSTM [55] 0.162 0.296 0.422 0.508 0.582 0.612 0.632 0.644 0.652 0.654 0.556 –
SRL [33] 0.158 0.274 0.388 0.464 0.528 0.568 0.588 0.606 0.610 0.614 0.516 –
AMT-GAF (Ours) 0.186 0.330 0.444 0.520 0.584 0.612 0.638 0.658 0.668 0.670 0.569 6.16 ± 0.43

TABLE IV
A COMPARISON WITH STATE-OF-THE-ART METHODS FOR ACTION FORECASTING ON SHARON DATASET.

Model
AP@∆t(secs) Gaze Error (%)

(mean ± std)∆t = 1.0 ∆t = 1.5 ∆t = 2.0 ∆t = 2.5 ∆t = 3.0 ∆t = 3.5 ∆t = 4.0 ∆t = 4.5 ∆t = 5.0 AVG

Gonzalez et al. [2] 0.152 0.276 0.404 0.482 0.536 0.562 0.572 0.580 0.582 0.461 –
RU-LSTM [55] 0.156 0.318 0.444 0.536 0.592 0.616 0.628 0.634 0.640 0.507 –
SRL [33] 0.132 0.286 0.422 0.508 0.562 0.588 0.600 0.606 0.612 0.480 –
AMT-GAF (Ours) 0.140 0.296 0.450 0.556 0.626 0.648 0.658 0.668 0.672 0.524 1.44 ± 0.11

advanced approaches for dynamic multi-task learning: Loss-
balanced task-weighting (LBTW-MT) [41], and Dynamic-Task
Prioritization (DTP-MT) [36].

Regarding the use of the VWM, we can observe that VWM
is useful even as a feature, as it keeps along time scores of
objects that have been previously fixated in the short past.

Concerning multi-task learning, in SHARON dataset, the
auxiliary task of gaze prediction always helps to regularize
the solution for the action prediction task. In GITW, the
linear combination of losses with fixed weights, although
yields competitive results for some values of ∆t, fails to
provide stable performance and even achieves worse average
AP than the single-task approach. This makes us think that
the existence of ill-posed restrictions over the visual attention
forecasting degrades the optimization process. This intuition
is also supported by the fact that, for both datasets, the best
performance is always achieved by the proposed constrained
loss, which demonstrates that the use of restrictions success-
fully prevents over-fitting when none of the candidate maps
adjusts well to the real future gaze. Furthermore, dynamic MT
methods LBTW-MT an DTP-MT do not yield good results in
our scenario. These methods aim to balance the importance of
each task during optimization based on its difficulty, so that
learning focuses more on those tasks for which the system
is not performing well yet. However, although this might be
beneficial to some extent, it will lead to severe over-fitting in
the cases discussed previously. Hence, we can conclude that
our multi-task architecture is beneficial, as it regularizes the
solution for action prediction, but requires a dynamic loss that
correctly balances the influence of both tasks and handles the
existence of ill-posed problems during optimization. In our
case, we have provided a dynamic balancing: λ in eq. (10) is
computed for each video and learning iteration.

TABLE V
A COMPARISON WITH STATE-OF-THE-ART METHODS FOR NATURAL

GRASPING INTENTION ON INVISIBLE DATASET. RESULTS FOR ALL

COMPARED METHODS HAVE BEEN TAKEN FROM [17]
Method Accuracy Success Rate
Video-Net [56] 60.40 ± 7.28 43.72 ± 7.98
Midas-Net [25] 65.40 ± 6.49 47.94 ± 5.88
TAGMM [24] 78.43 ± 4.19 60.74 ± 4.72
GIRSDF [17] 88.12 ± 3.13 79.48 ± 5.49
AMT-GAF (Ours) 89.20 ± 3.33 81.7 ± 7.59

C. A comparison with state-of-the-art architectures of
action forecasting

In this section we compare our proposal with other com-
putational architectures in the literature that tackle prediction
of proximal intention in the form of human action forecasting
in egocentric video. The results of this experiment are given
for GITW and SHARON datasets in Tables III and IV,
respectively. In particular, we compare our method with:

1) Gonzalez et. al [2]: the method used to tackle grasping
action prediction in the paper proposing GITW dataset.
The method used an LSTM for sequence modeling, and
originally introduced the Lact that we use in the present
work. We have simply substituted its simpler feature set
by the one presented in this paper.

2) RU-LSTM [55]: Rolling-Unrolling LSTMs have demon-
strated a great performance to encode previous sequen-
tial information and decode future information for action
prediction, and become a reference method for general
action forecasting as EGTEA [57] and EPIC-Kitchens
[58], [59].

3) SRL [33]: a recent paper that has achieved state-of-the-
art results in both EGTEA and EPIC-Kitchens, which
leverages the generation of future features on top of
which future actions are predicted. Similarly, the method
has been adapted and trained in our scenario of appli-
cation.

RU-LSTM and SRL have been designed for action fore-
casting in EGTA and EPIC-Kitchens datasets and consider
a slightly different action prediction problem which, from
our point of view, is not very realistic and does not fit well
our scenario of application: they pose action prediction as a
multiclass problem over fixed segments of analysis (e.g. 2
seconds before the next action begins), which requires setting
the beginning of actions not only in training but also during
test; in consequence, they do not consider ”no action” as a
possible class either. We have therefore adapted both RU-
LSTM and SRL to our online scenario by setting a prediction
horizon of one frame, adding the additional class ‘no-grasp’,
and taking our proposed loss Lact for training.

The tables show that AMT-GAF clearly outperforms the
rest of approaches. RU-LSTM and SRL, although have shown
impressive results in EGTA and EPIC-Kitchens, adapt worse
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to our particular scenario of online grasping action prediction.
The rationale behind is that both approaches have been de-
signed to simultaneously provide a vector of predictions at
several anticipation horizons (e.g. at 0.25, 0.5, 0.75 ... until
2 secs of anticipation) while our predictions are intended in
the very short-term and in an online manner. Consequently
the impact of both the unrolling LSTM in RU-LSTM and the
future feature prediction module in SRL is strongly limited.
In our approach, the attention-based encoder model encodes
the internal state of subject visual dynamics and predictions
are inherently instantaneous, with a horizon of one frame.
Furthermore, it seems that attention establishes better long-
term relationships between the current state and past observa-
tions, and our multi-task approach leverages the analysis and
prediction of the gaze to regularize the learning process of the
grasping action prediction.

Let us note that long-term relationships captured by our
transformer encoder, although generally beneficial and leading
to the optimal resultsin almost cases, are however outper-
formed by RNN-based solutions in SHARON dataset when
∆t < 2secs (see LSTM in [2] and RU-LSTM [55]). We have
further analyzed this issue and found that RNNs yield similar
recall but higher detection precision than our solution in these
two particular cases, which means that our approach leads
to more false grasping action detections. Our hypothesis is
that during those early instants, given the high variability in
the training videos (e.g. in some videos subjects may be still
searching for the object, in others they have already located
it), our transformer encoder is learning long-term relationships
that do not generalize well on the test videos.

D. A comparison with state-of-the-art methods predicting
natural grasping intention

In this section we compare our method with several solu-
tions specifically-tailored to the prediction of natural grasping
intention using the Invisible dataset: Video-Net [56], Midas-
Net [25], TAGMM [24] and GIRSDF [17].

In this case, and following the approach of Gaze-Yolo in
[17], we trained our object detector to concurrently identify
the active object and also its associated action (viewing or
grasping). Results for the challenging subject-based experi-
ments are provided in Table V, in which a cross-validation
scheme was applied leaving for testing all videos from one
subject at a time. Results show that our method outperforms
the rest of the considered approaches, even when all of them
have been carefully designed for the particular task of grasping
intention prediction. Furthermore, AMT-GAF outperforms the
remaining methods by a large margin, in except for the
GIRDSF. GIRDSF was proposed together with the Invisible
dataset and therefore is especially fine-tuned to perform well
on it. In any case, our method achieves better performance
and shows one relevant advantage compared to GIRDSF: it
does not require to annotate objects using bounding boxes,
as our AOD module is trained using weak labels indicating
the object of interest in each video and the action being
carried. This strongly improves the usability of our approach
and its deployment in scenarios where novel unseen objects

Fig. 5. Distribution of motion patterns conditioned on the action predicted
by our model (no grasping, grasping an object) in GITW dataset.
Note that fixation and predictable motion have been fused to improve
visualization.

are dynamically introduced: our weak-learning approach and
voice command-based annotations (see SHARON description)
would only require users to look at the new object for some
time and from different angles and viewpoints to automatically
learn visual models of the object and incorporate it to the AOD
module.

E. Interpretability
Including the auxiliary task of future gaze prediction not

only impacts the performance on the primary task, but also
enhances the interpretability of our approach, as the gaze
prediction module has been designed in accordance with
cognitive theories of eye movements [18], [46], [47]. To
demonstrate our claims, we have conducted a post-hoc study
that combines temporal and statistical analyses of eye motion
patterns conditioned on model predictions, with the application
of an inherently interpretable global surrogate model [60] for
action prediction. We did all the experiments in GITW as
the action annotations are more accurate in this dataset (e.g.
annotations identify the first moment when the subject fixates
the object to be grasped).

In order to assess the relevance of each state s of visual
attention for each time instant t, we have computed the pos-
terior probability of its associated component in our mixture
model, evaluated at the predicted future gaze location g̃t+∆

(see sec. IV-C) as:

p(St = s|g̃t+∆) =
vtsmts(g̃t+∆)∑S

s′=1 vts′mts′(g̃t+∆)
(14)

With this posterior probability we can effectively measure the
influence of each attention state on the final prediction of the
future gaze location.

Fig. 5 shows the values of the posteriors conditioned on
the model grasping actions predictions ỹt: (left) p(St =
s|g̃t+∆, ỹt = 0) if the decision is non-grasping; and (right)
p(St = s|g̃t+∆, ỹt > 0) if the decision is grasping an object.
Let us note that fixation and predictable motion have been
aggregated to improve visualization as they often drive visual
attention to the same area in the scene (e.g. in the absence of
large displacements). Similarly, all maps encoding the location
of objects in the VWM have also been aggregated into a
unified map.

We can see that various patterns change between non-
grasping and grasping instants: central bias and, to a lesser
extent, saccadic movements, are more dominant during non-
grasping instants, whereas fixation-predictable motion behave
oppositely. We have observed that gaze is much more unstable
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Fig. 6. Plots of intepretable weights for different eye motion patterns
along time in various video sequences for GITW dataset, together with
two binary signals: the ground-truth action grasping label (indicating the
segment between the moment when the subject has fixated the object
of interest and the moment just before he/she grasps the object), and
model’s action prediction (0 no intention to grasp, 1 intention to grasp an
object).

during the phase previous to the grasping preparation, as the
subject is scanning the scene or even approaching the object.
In those cases, different motion patterns follow one after
another to drive visual attention and, quite often, attention

Fig. 7. Coefficients of an interpretable logistic regressor fed by a buffer
of the previous 2 secs of relevances for our considered attention states.

is directed towards the center of the scene, which explains
the high relevance of center-bias. During the prediction of
grasping actions, in contrast, fixation-predictable motion are
the dominant states, as subjects tend to keep their attention
over the object of interest. Finally, we observe that VWM is a
relevant state and attracts attention during both instant types.

Previous intuitions can be confirmed looking at Figure 6,
which shows the temporal variation of the posterior p(St =
s|g̃t+∆). The first three examples clearly show that, during the
instants previous to the first fixation of the object of interest
(e.g. before the label changes from 0 to 1), attention is modeled
as a sequence of different eye motion patterns, including
some stable fixations, some unpredictable shifts and a notable
influence of the central bias phenomenon. In addition, VWM
is recurrently used to redirect gaze to previously fixated
elements. We can also see, as we presumed from cognitive
theories [46], that states in gaze dynamics are generally short
(hundreds of milliseconds) and quickly evolve into new ones
(in except of central bias, which tends to be dominant during
longer periods when the other states fail to accurately represent
visual attention).

Once the active object is fixated, gaze looks more stable
and fixation-predictable motions become the clear dominant
patterns. Although this is the usual behavior, we can also
find cases where gaze exhibits a different behavior. As we
show in the fourth example, during the instants just after the
label changes to 1, attention is still dominated by central bias
and saccadic movements. The consequence is that our system
is not able to infer the right action until then, when gaze
becomes more stable over the object to be grasped (fixation
and VWM patterns). After analyzing videos, we found that
this is sometimes caused by subjects that, after identifying the
location of the object of interest, approach the object using
their peripheral vision. In other cases, it may be due to an
inaccurate labeling process, e.g. annotators identify the first
active object fixation when gaze passes over the object during
a saccadic movement.

To get deeper insights about the importance of visual atten-
tion and gaze motion patterns in the intention-action processes,
we have additionally developed a global surrogate model [60]
that tackles action prediction using a linear classifier fed by
the attention state relevances. In particular, we have chosen a
logistic regressor with L1-regularization to predict a binary
signal (0 no grasp, 1 grasp an object), working over the
sequence of posteriors p(St = s|g̃t+∆) corresponding to
the last second (e.g. 25 frames at 25 fps in GITW dataset).
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Considering 5 states (fixation, central bias, predictable motion,
saccade and VWM), this leads to a total dimension of D=125.
We have further normalized the inputs by standardization. Our
choice of a linear classifier and L1-regularization lies in its
simplicity and its inherent interpretability through the study of
the coefficients, which are different than zero only for relevant
features. Furthermore, to emulate our full model in online
action forecasting (e.g. generate the variable ỹt), we combine
the binary decision provided by the surrogate model (grasp,
no grasp) with the output of the AOD, to allow identifying the
object to be grasped.

Our surrogate model addresses the binary prediction prob-
lem (grasping, non-grasping) with an AP = 0.689. Combined
with the outputs of the AOD in the multi-class prediction
problem yields a reasonable average AP = 0.335. Although
this value is notably below the performance of the full model
(average AP = 0.569, as stated in Table III), it demonstrates
that our modeling of visual attention through simple and
interpretable motion patterns encodes very valuable informa-
tion about human intention. Of course, the difference in the
performance between full and surrogate models lies in the fact
that the first relies on the richer and more expressive latent
variable zt, which is not restricted to the attention states but
encodes instead the full dynamics of the visual field.

Finally, we have further analyzed the values of the coeffi-
cients in the classifier, as they provide meaningful cues about
the relationships between eye motion patterns and human
grasping intention. Results are shown in Fig. 7. Let us note
that, due to L1-regularization, less relevant features have
associated null coefficients. From the figure, we can see that
finding the central bias pattern in the short-term past (up to
0.5 secs) is very indicative of non-grasping instants, whereas
recent occurrences of predictable motion and fixations suggest
grasping actions. If instead we observe the more distant past
(from 1 sec. on), the behavior of these patterns is the opposite,
indicating the complementary actions. In addition, we can
see that VWM has some medium-term anticipation capability
(grasping action is going to happen in 1-2 seconds). Finally,
saccadic movements were found to be certainly irrelevant in
our surrogate model.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we have presented AMT-GAF, a multi-task
model that simultaneously predicts future visual attention
and forecast grasping actions by decoding human intention.
Based in the hypothesis that perception, in the form of
visual exploration, and intention are strongly coupled, we
have designed an asymmetric multi-task learning approach
in which action forecasting is the main and future visual
attention is the auxiliary task, respectively. In addition, we
have proposed a novel constrained optimization problem that
minimizes the action forecasting loss subject to achieving good
enough results in future visual attention prediction.

Our experiments have demonstrated that our multi-task
model successfully regularizes learning and improves the
performance of action forecasting. Therefore, the use of our
asymmetric multi-task loss is fundamental to exploit the

synergies between both tasks and avoid learning degradation.
Furthermore, AMT-GAF also outperforms two architectures
that represent the state-of-the-art in general action forecasting,
and a large set of methods that have been specifically designed
for grasping intention detection.

Our module for future visual attention is inherently inter-
pretable, as it relies on a set of states associated to well-
known eye motion patterns from visual psychology. These
states model how humans direct their gaze towards the dif-
ferent elements in a scene during a task. Our experiments
have demonstrated the strong links that exist between these
attentional states and human intention, and leveraged this
relationship to provide meaningful explanations to system
decisions.

Further work will follow three lines of research. First, we
are currently making experiments with real-time HRI between
humans and assistive robotics to demonstrate that predictive
robotics (enabled by AMT-GAF) can successfully anticipate
human needs and act proactively, leading to more natural
interactions and saving time with respect to reactive robots
responding to explicit human requests (e.g. voice commands).
We aim to additionally couple AMT-GAF with existing system
for shared control of neuroprosthesis [4], integrating data from
natural arm movement and gaze information [61]. Second,
we will extend the anticipation horizon from the current
short-term (milliseconds) to medium and long-terms (seconds,
minutes) and incorporate action prediction to more complex
activities as cooking or working. With these horizons, gaze
losses importance as guiding signal, and should be replaced
by a compositional and sequential analysis of the duple tasks-
atomic actions (e.g. a cooking recipe can be defined as a
sequence of atomic actions involving ingredients and utensils).
Third, we aim to dig into the model usability and adaptation to
dynamic and changing environments. Currently, our weakly-
supervised AOD can be easily adapted to new acquired utensils
by simply recording videos of the objects. However, we
consider action detection as a multi-class problem, which
requires that the action categories are defined a priori. This
limits the incorporation of new utensils in case they lead to
new unseen object categories and, in consequence, to new
actions (e.g. grasping a new unseen object or putting the
object into another). Hence, our goal is to develop zero or
few-shot learning approaches that can adapt better to dynamic
environments and learn from little demonstration.
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[2] I. González-Dı́az, J. Benois-Pineau, J.-P. Domenger, D. Cattaert, and
A. de Rugy, “Perceptually-guided deep neural networks for ego-action
prediction: Object grasping,” Pattern Recognition, vol. 88, pp. 223 –
235, 2019.

[3] S. Mick, S. Effie, L. Dure, H. Christophe, J. Benois-Pineau, G. Loeb,
D. Cattaert, and A. Rugy, “Shoulder kinematics plus contextual target
information enable control of multiple distal joints of a simulated pros-
thetic arm and hand,” Journal of NeuroEngineering and Rehabilitation,
vol. 18, 01 2021.

[4] E. Segas, S. Mick, V. Leconte, O. Dubois, R. Klotz, D. Cattaert, and
A. de Rugy, “Intuitive movement-based prosthesis control enables arm
amputees to reach naturally in virtual reality,” eLife, vol. 12, p. RP87317,
oct 2023.

[5] A. R. Mele, Springs Of Action: Understanding Intentional Behavior.
Oxford University Press, 02 1992.

[6] E. Pacherie, “The phenomenology of action: A conceptual framework,”
Cognition, vol. 107, no. 1, pp. 179–217, 2008.

[7] Y. Liu, J. Yuan, and Z. Tu, “Motion-driven visual tempo learning for
video-based action recognition,” IEEE Transactions on Image Process-
ing, vol. 31, pp. 4104–4116, 2022.

[8] J. J. Gibson, The Ecological Approach to Visual Perception. Houghton
Mifflin, 1979, ISBN: 978-1-848-72578-2.

[9] M. Bratman, Intention, plans, and practical reason. Cambridge, MA:
Harvard University Press, 1987, ISBN: 978-0-674-45818-5.

[10] B. F. Malle and J. Knobe, “The folk concept of intentionality,” Journal
of Experimental Social Psychology, vol. 33, no. 2, pp. 101 – 121, 1997.

[11] D. BALLARD, M. HAYHOE, and J. PELZ, “Memory representations
in natural tasks,” JOURNAL OF COGNITIVE NEUROSCIENCE, vol. 7,
no. 1, pp. 66–80, WIN 1995.

[12] A. Belardinelli, “Gaze-based intention estimation: principles, method-
ologies, and applications in hri,” 2023.

[13] R. Johansson, G. Westling, A. Bäckström, and J. Flanagan, “Eye–hand
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