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Vitiligo is a chronic auto-immune disease characterized by skin depigmentation due to the loss of 
melanocytes. The better understanding of the disease mechanisms is currently undergoing a signifi-
cant dynamism, opening a new era in therapeutic development. The pathophysiology of vitiligo has 
attracted the attention of researchers for years and many advances have been made in clarifying the 
crosstalk between the cellular players involved in the development of vitiligo lesions. The understand-
ing of the complex interactions between epidermal cells (i.e. melanocytes and keratinocytes), dermal 
fibroblasts, and immune cells, led to a better characterization of the signals leading to the loss of 
melanocytes. Recent advances highlighted the role resident T memory cells in the development and 
recurrence of lesions. This narrative review aims to give an overview of the mechanisms leading to 
melanocyte disappearance in vitiligo, with a focus on the intercellular interaction network involved in 
the activation of the local skin immune response.

ABSTRACT

Introduction

The pathophysiology of vitiligo is complex and involves 

combinatorial factors (genetic predisposition, environmen-

tal triggers, intrinsic melanocyte abnormalities, oxidative 

stress), leading to an exaggerated activation of the innate 

and adaptive immune response (Fig. 1) [1]. Genome wide 

association studies (GWAS) have improved the understand-

ing of the genetic architecture of vitiligo. It is considered that 

the overall risk of vitiligo linked to genetic determinants 

is high, corresponding to about 80% of the risk, whereas 

environmental factors account for 20% [2,3]. Indeed, four 

large-scale GWAS, three of which were carried out on Euro-

pean and North American populations and one on an Asian 

(Chinese) populations, identified more than fifty vitiligo 

susceptibility genes [4–7]. Interestingly, most of these genes 

are associated with proteins related to innate, adaptive or 

regulatory immune responses. Others regulate cell apoptosis 

and some genes are related to proteins regulating melanocyte 

function. This review discusses how the crosstalk between 
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epidermal, dermal, and immune cells leads to melanocyte 

disappearance in vitiligo.

Initiation of the Disease: Bridging Oxidative Stress, 
Epidermal, Dermal Cells and the Activation  
of the Innate Immune Response

For many years, it has been considered that melanocytes lo-

cated in the non-lesional pigmented skin of vitiligo patients 

are more sensitive to oxidative stress by releasing elevated 

levels of reactive oxygen species (ROS), associated with an 

imbalance in the antioxidant system [8]. Keratinocytes and 

fibroblasts also display increased levels of ROS [9]. This ac-

cumulation of ROS leads to several intracellular events such 

as DNA abnormalities and premature apoptosis that induce 

the release of several melanocyte peptides as well as abnor-

mal melanocyte function and melanin production [8].

Melanocytes produce pro-inflammatory signals such as 

damage-associated-molecular patterns (DAMPs) and chemo-

kines, leading to the activation of the immune response and 

the recruitment of immune cells. Among these danger signals, 

inducible heat shock protein 70 (HSP70i), calreticulin (CRT) 

or high mobility group B1 (HMGB1) proteins are the most 

evaluated in vitiligo [10–14]. These DAMPs released in the 

extracellular environment are likely bridging cellular stress 

and the autoimmune response directed against melanocytes 

in vitiligo, and could therefore represent interesting potential 

targets to prevent the initiation of disease-causing autoim-

munity [15]. Indeed, HMGB1 can induce the production of 

chemokines, such as ligand (C-X-C motif) CXCL16 or inter-

leukin (IL)-8 by epidermal cells (melanocytes and keratino-

cytes), which are important for the recruitment of immune 

cells [11]. CRT may induce apoptosis of melanocytes and 

the release of membrane debris important for immunogenic-

ity [10]. Lastly, several studies from the group of Le Poole 

emphasized the role of HSP70i in vitiligo [13,16–18], and 

our group showed its involvement in the activation of innate 

immunity and the production of type I interferon (IFN) [14].

Keratinocytes also play an important role in the physio-

pathology of vitiligo. Structural alterations of keratinocytes 

have been observed in the non-lesional skin of patients, with 

abnormal thickening of the epidermis due to an increase in 

the spinous layer [19]. Alterations of basal and suprabasal 

keratinocytes, in particular vacuolar degeneration and spon-

giosis, are sometimes found [20]. At the peri-lesional site  

(at the edge of the lesions, where melanocytes are still pres-

ent), keratinocytes have the capacity to produce several fac-

tors that contribute to the generation of a pro-inflammatory 

environment, such as stem cell factor (SCF), endothelin-1 

(ET-1), and pro-inflammatory cytokines like IL-1β, IL-6, 

and tumor necrosis factor (TNF)-α. Danger signals produced 

locally in the skin are responsible for the activation of the 

pyrin domain of NOD like receptor (NLR) proteins, such 

Figure 1. Pathophysiological mechanisms of vitiligo. In a genetically predisposed individual and under environmental triggers, epidermal 

cells (keratinocytes and melanocytes) will release danger signals (e       .g.: HSP70), leading to the activation of the innate immune system.  

IFNγ-producing innate lymphoid cells (ILC1) or IFNα-producing plasmacytoid dendritic cells will induce the production of chemokines, 

such as CXCL9, CXCL10, or CXCL16 by epidermal and dermal cells. Melanocytes expressing the CXCR3B subunit can be impacted by the 

interaction with these ligands. Together, these events will induce local activation of resident memory T cells and the recruitment of circulating  

T cells expressing CXCR3 and NKG2D and producing elevated levels IFNγ and TNFα, leading to the loss of melanocytes and depigmentation.
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as NLRP3, an inflammasome activating protein, promoting 

the secretion of IL-1β and IL-18 [21]. In addition, kerati-

nocytes from vitiligo non-lesional and peri-lesional skin re-

lease chemokines involved in the recruitment of T cells in 

the skin, like CXCL9, CXCL10, and CXCL16. CXCL9 and 

CXCL10, induced by IFNγ (an important cytokine in the 

physiopathology of vitiligo), bind to their cognate receptor 

CXCR3 expressed on immune cells, and most T cells in vit-

iligo patients skin express CXCR3 [14,22–24]. In addition, 

Xu et al. recently showed in a mouse model of vitiligo that 

IFNγ-responsive dermal fibroblasts, through their release of 

chemokines, are active players in the homing of CD8 T cells 

to the skin [25].

Another innate inflammatory signature found increased 

in peri-lesional areas of vitiligo is the IFNα pathway, which 

contributes to the activation of antigen-presenting cells in 

the skin and the production of chemokines to reinforce the 

recruitment of other immune populations at the peri-lesional 

site [26,27]. IFNα production is linked to the presence of 

plasmacytoid dendritic cells and induces the release of 

chemokines such as CXCL9 and CXCL10 by epidermal cells 

[14,26]. In addition, the presence of innate immune lym-

phoid type 1 cells (ILC1) in vitiligo skin has been recently 

demonstrated, which respond to non-specific stimuli and 

produce significant amounts of IFNγ during the initiation of 

the disease, leading to early melanocyte apoptosis [28].

Progression Phase of the Disease: Involvement  
of a Cutaneous Immune Memory Response

Following these initial events, vitiligo skin is characterized 

by the presence of a localized T cell infiltrate close to the epi-

dermis and residual melanocytes, mainly consisting of CD8  

T cells. Recent studies highlighted the involvement of resident  

memory T cells (TRM) in disease pathogenesis [24,27,29–31]. 

TRM are long-lived memory T cells that persist in tissues like 

the skin and are characterized by a specific transcriptional 

program [32,33]. They express characteristic cell surface 

markers involved in their retention in the tissue, such as CD69, 

CD103, or CD49a, the latter marker defining a subset of TRM 

cells with cytotoxic properties [29,34–36]. It is now clear that 

the micro environment plays a crucial role in the formation 

and regulation of TRM. Indeed, the expression of CD103 is 

dependent on transforming growth factor (TGF)-β [36], and 

a growing number of studies reported the involvement of 

several pro-inflammatory cytokines involved in TRM homeo-

stasis, such as IL-15, IL-12, IL-18, IL-33, IFNγ, TNFα [32].  

The presence of TRM in vitiligo skin is undoubtedly linked 

to the recurrence of lesions on previously affected anatomi-

cal sites that have repigmented following treatment [37], as 

shown in psoriasis or atopic dermatitis [38–40]. Therefore, 

owing to their functional role in the pathogenesis of vitiligo, 

targeting TRM appears as a reliable therapeutic strategy.

Vitiligo: Mainly a Type 1 Skewed  
Immune Response

Analyses of vitiligo peri-lesional and lesional skin revealed 

upregulation of type-1 associated pathways. Vitiligo is 

consistently associated with an infiltration of CD8 T cells 

producing high levels of IFNγ and TNFα. These T cells are 

characterized by the expression of the receptor CXCR3 that 

respond CXCL9 and CXCL10, which are highly expressed 

in the skin of patients [24,41–44]. Targeting the CXCR3- 

CXCL9 and CXCL10 axis in vitiligo seems to be a promising 

therapeutic strategy in vitiligo [43,45]. Our group showed 

that natural killer group 2 member D (NKG2D) defines a 

subset of highly functional memory CD8 T cells in vitiligo 

and may represent a potential therapeutic target [46]. This 

type-1 immune response appears to be a key driver of mela-

nocyte loss in vitiligo and participates in every stage of the 

pathogenesis. To date, IFNγ and TNFα immune pathways 

are the most studied in vitiligo. The binding of IFNγ to its 

receptor induces a signaling dependent of the Janus kinase 

(JAK) and signal transducer and activator of transcription 

(STAT) pathways, in particular the activation of JAK1/2 and 

STAT1. Interestingly, JAK inhibition appears to be a reliable 

strategy to treat patients and ruxolitinib cream (a topical 

JAK 1 and JAK 2 inhibitor) is now approved both in US and 

EU for the management of vitiligo [47–49]. IFNγ induces 

the production of CXCL9 and CXCL10 by keratinocytes, 

amplifying the inflammation and the recruitment of immune 

cells expressing CXCR3 which will promote the progression 

of vitiligo [14]. IFNγ and TNFα also have a direct impact 

on the function of melanocytes by decreasing the pigmen-

tation process [50–55]. We recently demonstrated that the 

combined activity of these two cytokines induces the disrup-

tion of E-cadherin expression, the main protein responsible 

for the adhesion of melanocytes to keratinocytes, leading to 

their destabilization and detachment [53]. In addition, Tu-

lic et al. showed that melanocytes are able to express the B 

isoform of CXCR3 in response to IFNγ, making them more 

susceptible to apoptosis in response to CXCL10 [28].

Additional cytokines and signaling pathways may also 

be involved in vitiligo pathogenesis. For example, elevated 

levels of IL-17 and IL-23 are found in the serum and/or skin 

of vitiligo patients, and IL-17 has been reported to regulate 

melanocyte function and survival [56]. However, targeting 

IL-17 in vitiligo patients did not show a major benefit [57]. 

Type-2-related cytokines have been reported increased in vit-

iligo patients’ blood, and few studies showed an inhibition 

of melanogenesis in response to IL-4 and IL-13 [58–62]. Our 

group found that vitiligo skin is also associated with a type-2  

immune response and an increased production of IL-13 by  

T cells [27]. In addition, Jin et al. reported that IFNγ-induced 

dermal fibroblasts to release CCL2 and CCL8, inducing a 

type-2 cytokine profile in vitiligo skin lesion [63]. However, 
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the precise role of type-2 related cytokines in the develop-

ment of vitiligo remains unclear.

Defects in Immune Regulation During Vitiligo

Like any chronic inflammatory disease characterized by an 

exaggerated immune response, vitiligo is associated with a 

disruption of immune regulatory systems. Indeed, GWAS 

identified a polymorphism of FOXP3 gene, the main tran-

scription factor of regulatory T cells (Tregs), in vitiligo, but 

also of genes involved in regulation of the immune response, 

such as CTLA-4 (cytotoxic T lymphocyte antigen 4), IL-10, 

and TGFβ [3,64,65]. However, it is still unclear whether this 

defect in the regulation mechanisms results from reduced 

migration of Tregs into the skin and/or loss of suppressive 

function of these cells, which would favor the exacerbated 

effector activity of CD8 T cells [66,67]. Chemokines and 

their receptors appear critical factors to replenish Tregs in 

the skin and ensure their immunosuppressive function. For 

instance, enhanced skin expression of CCL22 induced mi-

gration of Tregs into the skin and reduced depigmentation 

in vivo in mice [68]. In addition, Gellatly et al. showed in a 

vitiligo mouse model that CCR5/CCL5 axis facilitates Tregs 

function in the skin [69]. Hence, therapeutic strategies aim-

ing to restore Tregs abundance and function in the skin may 

be promising for patients [70].

Conclusion

The development of vitiligo lesions involves a complex cross-

talk between epidermal, dermal, and immune cells. Such 

understanding of the mechanisms leading to the loss of me-

lanocytes led to the identification of several targets and the 

development of future targeted therapies that will undoubt-

edly improve the management of the disease.
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