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Abstract: A H∞ robust adaptive nonlinear observer for state and parameter estimation of a class
of Lipschitz nonlinear systems with disturbances is presented in this work. The objective is to
estimate parameters and monitor the performance of nonlinear processes with model uncertainties.
The behavior of the observer in the presence of disturbances is analyzed using Lyapunov stability
theory and by considering an H∞ performance criterion. Numerical simulations were carried out
to demonstrate the applicability of this observer for a semi-active car suspension. The adaptive
observer performed well in estimating the tire rigidity (as an unknown parameter) and induced
disturbances representing damage to the damper. The main contribution is the proposal of an
alternative methodology for simultaneous parameter and actuator disturbance estimation for a more
general class of nonlinear systems.

Keywords: adaptive observer; nonlinear system; Lipschitz nonlinearities

1. Introduction

Observer design for nonlinear systems satisfying the Lipschitz condition has been the
subject of constant research, because these systems have the particularity to represent a wide
class of real processes. The Lipschitz property of nonlinear systems was initially used by [1]
for observer design, by providing a sufficient conditions to guarantee the asymptotic stability
of the observation error. Although studies have been conducted on the design of observers for
Lipschitz nonlinear systems, this problem is still insufficiently explored, see, e.g., [2–6]. In [2],
the authors presented H∞ observers for nonlinear Lipschitz systems using an LPV approach.
The observer gains were computed by solving a set of LMI and the observer was evaluated
for a neural mass model. In [3], the authors presented an observer-based controller design
for stabilizing Lipschitz nonlinear systems with parameter uncertainties and perturbation
inputs. The observer-based controller was evaluated for different numerical cases. In [4],
the authors presented a generalized observer for nonlinear uncertain descriptor systems
satisfying the one-sided Lipschitz condition. Perturbations affecting both inputs and outputs
were considered. The goal of the proposed approach was to attenuate the effects of these
perturbations. Observers for one-sided Lipschitz nonlinear systems with disturbances and
limited communication resources in communication networks were treated in [5], and finally
a nonlinear H∞ proportional derivative observer for one-sided Lipschitz singular systems
with disturbances was designed and tested through simulation for a DC motor in [6].

As described in the previous paragraphs, there have been many works that dealt
with the observation and control of various types of Lipschitz nonlinear systems. How-
ever, simultaneous state and parameter estimation approaches for this type of system,
for monitoring purposes, have not been fully addressed. Process monitoring is typically
oriented towards verifying the behavior of certain important state variables of the process.
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However, there are faults, disturbances, or unknown inputs that can affect the estimation
process, causing dysfunctions or inaccuracies in the control, stabilization, or monitoring of
the process.

Parameter estimation techniques could play a crucial role in addressing this issue by
continuously updating the model parameters based on the observed data, thereby enhanc-
ing the accuracy of monitoring systems. Parameters can vary over time due to system
deterioration, among other factors. By accurately estimating them, it becomes possible
to better track the process behavior and to early detect anomalies or faults. Integrating
parameter estimation approaches into process monitoring systems could potentially reduce
the reliance on human operators for fault detection, leading to more reliable and automated
monitoring processes. This, in turn, could improve system safety, efficiency, and reliability
in various industrial applications. Further research and development in this area could
contribute significantly to advancing the field of process monitoring and control.

There are several methods used to estimate process parameters in order to better
characterize the systems and to adequately estimate and monitor process variables. Among
these methods, adaptive observers have the particularity of being able to estimate state
variables and/or one or several parameters of the system, e.g., [6–10]. For instance, in [7],
an adaptive observer for estimating unknown parameters by separating measurable states
from the non measurable ones was presented. One disadvantage of this observer is that
the unknown parameter must be included in the equation of measurable states. Another
example was provided in [8], where a descriptor adaptive observer was synthesized for
fault estimation in uncertain nonlinear systems. This observer was designed using the
H∞ approach and Lyapunov stability criteria. The observer was tested on a robotic arm
simultaneously affected by actuator and sensor faults. An actuator fault diagnosis and
reconfiguration system based on an H∞ observer was proposed in [9] for a vehicle steering
system. Although the proposed approach is interesting, the system requires that all states
be measurable, which is not always feasible in practice. On the other hand, a fuzzy adaptive
observer for fault and disturbance estimation for Takagi–Sugeno fuzzy systems is presented
in [10]. While the Takagi–Sugeno approach is a consistent method for addressing nonlinear
problems, algorithms to compute the observer gains by solving a set of LMIs can become
complicated for systems with a large number of nonlinearities. Other adaptive observers,
prioritizing convergence time, can be found in [11,12].

One of the latent challenges in implementing adaptive observers is considering situations
or unforeseen phenomena that may occur in practice, such as disturbances, abrupt or incipient
parameter variations, or sensor/actuator faults, in the design process. Work that addressed
these kinds of problems was presented in [13–18]. In [13], the authors designed an adaptive
observer to estimate the state vector and the unknown parameter, as well as an output feedback
controller. They considered uncertainties in the sensors, unknown growth rate, and stochastic
disturbances. The gains are adaptively adjusted to account for sensor sensitivity, which is
treated as an unknown continuous function. Another interesting study was presented in [14],
where the authors proposed an adaptive observer with variable gains to design a fault-tolerant
control mechanism for sensor bias faults in the active suspension of vehicles. The approach
was specifically developed for this case study and may not be applicable to other practical
cases. In [18], an adaptive observer was developed to estimate the uncertainties in linear
systems. Other applications of adaptive observers include bioreactors [19], polymerization
reactors [20], fuel cells [21], heat exchangers [22], distillation plants [23], induction motors [24],
nuclear reactors [25], and reaction-diffusion systems [26], among others.

In this paper, a robust adaptive nonlinear observer H∞ for a class of Lipschitz nonlin-
ear systems is presented. The behavior of the observer in the presence of disturbances is
analyzed using Lyapunov stability theory and with an H∞ strategy successfully employed
in previous approaches, as in [27,28]. This work distinguishes itself through several key
advancements compared to prior research: (i) It extends the applicability of the methodol-
ogy to a broader class of nonlinear processes with uncertain models affected by unknown
inputs or disturbances, facilitating the estimation of both process variables and unknown
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parameters; (ii) by incorporating the H∞ criteria into the design, the observer demonstrates
enhanced resilience against undesired disturbances, ensuring a more robust performance;
(iii) the simplicity of computing observer gains, eliminating the necessity to solve additional
differential equations typically associated with Kalman observers (or filters as presented
in [29,30]); (iv) unlike high-gain observers, there is no need for a coordinate transformation
in the observer design process, streamlining the implementation and reducing complexity.

From a theoretical perspective, prior research has not specifically addressed adaptive
observers for nonlinear Lipschitz systems with unknown parameters, particularly those
affected by disturbances. This study employs an H∞ approach to attenuate the impact of
these unknown disturbances. These important results are summarized in Theorem 1. The
applicability of the proposed approach is demonstrated in the performance monitoring of
the semi-active suspension of a car.

2. Preliminaries
2.1. Notation

In this article, In and 0n denote the n-dimensional identity and zero matrices, respec-
tively, ∥ · ∥ and ∥ · ∥L2 denote the Euclidean and the L2 norm, respectively, i.e.,

∥x∥2 = (|x1|2 + · · ·+ |xn|2)
1
2 = (xTx)

1
2

and

∥η∥L2 =

√∫ ∞

0
ηT(t)η(t)dt < ∞

L2 is the space of piecewise continuous, square-integrable functions. S > 0 is a symmetric
positive definite matrix, whereas S ≥ 0 is a symmetric positive semi-definite matrix. T < 0
is a symmetric negative definite matrix, whereas T ≤ 0 is a symmetric negative semi-
definite matrix. A variable with a hat x̂ denotes the estimated value of x. AT and A−1

denote the transpose and inverse of matrix A, respectively.
sup is the supremum of a set, i.e., the least upper bound in a set, for example

sup{x ∈ R|0 < x < 10} = sup{x ∈ R|0 ≤ x ≤ 10} = 10

min is the smallest value of a set, for example

min{−5 ≤ x ≤ 5} = 5

C⊥ denotes the orthogonal projection on to null(C), the kernel or null space of matrix C.

2.2. Problem Formulation

Consider the following nonlinear system:

S :
{

ẋ(t) = Ax(t) + Ψ(y, u) + Φ(x, θ, u) + Nη(t)
y(t) = Cx(t)

(1)

with

Φ(x, θ, u) = Φ1(x, u) + BΦ2(x, u)θ(t) (2)

where x(t) ∈ Rn is the state vector, θ(t) ∈ Rq is the unknown parameter vector, u(t) ∈ Rm is
the input, y(t) ∈ Rp is the output of the system, η(t) ∈ Rr is a bounded disturbance vector;
Φ(x, θ, u) ∈ Rn is a nonlinear function depending on states x(t), unknown parameters θ(t),
and inputs u(t). This function can be decomposed as is shown in Equation (2). Ψ(y, u) ∈ Rn

is a nonlinear function depending on outputs and inputs. Finally, A ∈ Rn×n, B ∈ Rn×l ,
C ∈ Rp×n, and N ∈ Rn×l are constant matrices of appropriate dimensions.
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Assumption 1. Inputs u(t), outputs y(t), the parameter vector θ(t), and the disturbance η(t) are
assumed to be bounded.

Assumption 1 implies that controlled variables u, measurements y, and parameters θ
are limited by the actuators, sensors, or physical limitations of the process.

Assumption 2. It is assumed that the nonlinear function Φ(x, θ, u) satisfies the Lipschitz condition
with respect to state variables for bounded values of u(t) and θ(t), i.e.,

∥Φ(x, θ, u)− Φ(x̂, θ, u)∥≤γ∥(x − x̂)∥ (3)

where γ is the Lipschitz constant of function Φ.

As described previously, the nonlinear function Φ(x, θ, u) can be decomposed into
two terms: Φ1(x, u) and BΦ2(x, u)θ(t), where the second term is affine to the parameter
vector θ(t).

Assumption 3. Functions Φ1(x, u) and Φ2(x, u) are also Lipschitz functions with regards to x(t)
and bounded inputs u(t).

Assumptions 2 and 3 imply that the dynamics of a real system can be represented by
differential equations involving uniform continuity (Lipschitz) functions. This property
guarantees the existence and uniqueness of the solution of differential equations to an
initial value problem. Indeed, this is the key feature to exploit in the design process.

Lemma 1 ([31]). Let M and N be two constant matrices of appropriate dimensions. Then, the
following inequality

MTN +N TM ≤ αMTM+
1
α
N TN

holds for any scalar α > 0.

Consider now the following adaptive nonlinear observer:

O :


˙̂x(t) = Ax̂(t) + Ψ(y, u) + Φ1(x̂, u) + BΦ2(x̂, u)θ̂(t) + L(y(t)− Cx̂(t))
˙̂θ(t) = ΓΦT

2 (x̂, u)H(y(t)− Cx̂(t)), with Γ > 0,
ŷ(t) = Cx̂(t)

(4)

where x̂(t) is the estimate of the state vector, θ̂(t) is the parameter estimation vector, and
Γ ∈ Rq×q is a positive definite matrix. Matrices L and H must be selected in such a way
that the convergence of the observer is guaranteed.

Consider the following errors

ex(t) = x(t)− x̂(t) (5)

eθ(t) = θ(t)− θ̂(t) (6)

where ex(t) represents the state estimation error, and eθ(t) represents the parameter estima-
tion error.

The derivate of Equation (5) is

ėx(t) = ẋ(t)− ˙̂x(t) (7)

= Ax + Ψ(y, u) + Φ1(x, u) + BΦ2(x, u)θ + Nη−
Ax̂ − Ψ(y, u)− Φ1(x̂, u)− BΦ2(x̂, u)θ̂ − L(y − Cx̂) (8)

By adding and subtracting the term BΦ2(x̂, u)θ(t), we obtain
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ėx(t) = (A − LC)ex(t) + Φ1(x, u) + BΦ2(x, u)θ(t)− Φ1(x̂, u)− BΦ2(x̂, u)θ(t)+

BΦ2(x̂, u)θ(t)− BΦ2(x̂, u)θ̂(t) + Nη(t) (9)

By taking into account the consideration marked in a box as

eΦ(t) = Φ1(x, u) + BΦ2(x, u)θ(t)− Φ1(x̂, u)− BΦ2(x̂, u)θ(t) (10)

= Φ(x, θ, u)− Φ(x̂, θ, u) (11)

Equation (9) becomes

ėx(t) = (A − LC)ex(t) + eΦ(t) + BΦ2(x̂, u)eθ(t) + Nη(t). (12)

By considering that θ(t) is a constant parameter, i.e., θ̇(t) = 0, then

ėθ(t) = θ̇(t)− ˙̂θ(t)

= −ΓΦ2(x̂, u)T HCex(t) (13)

Considering the Lipschitz condition of Equation (3), presented in [32], a condition is
proposed that ensures the stability of the observer:

eT
Φ(t)QeΦ(t) ≤ eT

x (t)Rex(t) (14)

where Q and R are two positive definite symmetric matrices.
Equations (12) and (13) are written in matrix form as[

ėx(t)
ėθ(t)

]
︸ ︷︷ ︸

δ̇(t)

& =

[
A − LC BΦ2(x̂, u)

−ΓΦ2(x̂, u)T HC 0q

]
︸ ︷︷ ︸

A

[
ex(t)
eθ(t)

]
︸ ︷︷ ︸

δ(t)

+

[
In

0q×n

]
︸ ︷︷ ︸

B

eΦ(t) +
[

N
0q×l

]
︸ ︷︷ ︸

N

η(t) (15)

and from Equations (1) and (4) we obtain

r(t) = Cx(t)− Cx̂(t)

=
[
C 0p×q

]︸ ︷︷ ︸
C

[
ex(t)
eθ(t)

]
︸ ︷︷ ︸

δ(t)

(16)

where r(t) = y(t)− ŷ(t) is the output error estimation.
The problem is to propose an adaptive observer for the class of Lipschitz nonlinear

systems given in Equations (1) and (2), in order to simultaneously estimate the process
variables x(t) and the parameter vector θ(t), and so that the worst case estimation error
energy over all bounded energy disturbances η(t) is minimized, i.e.,

1. for η(t) = 0, the errors ex(t) = x(t)− x̂(t) and eθ(t) = θ(t)− θ̂(t) converge asymptot-
ically to zero.

2. for η ̸= 0 we solve the min supη∈L2−{0}
||r(t)||L2
||η(t)||L2

.

3. H∞ Adaptive Observer Design

In this section, the H∞ observer design is presented. The following theorem gives the
sufficient conditions for Equation (15) to be stable and ||r(t)||L2 < λ||η(t)||L2 for η(t) ̸= 0.

Stability of the Observer

This section is devoted to the stability analysis of Equation (15). The following theorem
gives the conditions for the stability in a set of LMIs.
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Theorem 1. There exists an observer having the form given in Equation (4) for the nonlinear system (1)
such that the dynamic error of Equation (15) is stable and ||r(t)||L2 < β||η(t)||L2 , if there exists
positive definite matrices P, R, and Q, and positive scalar β such that the following LMI is satisfied:PA − SC + AT P − CTST + CTC + R PN P

NT P −βIn×l 0n
P 0n×l Q

 ≤ 0 (17)

where the observer gain L is solved as L = P−1S, and the observer matrix H is obtained as
H = BT PC−1.

Proof. Consider the following Lyapunov candidate function:

V(t) = δT(t)Xδ(t) > 0 (18)

where

X =

[
P 0n×q

0q×n Γ−1

]
> 0 (19)

the derivative of V(t) along the solution of (15) is given by

V̇(t) = δ̇(t)TXδ(t) + δ(t)TXδ̇(t) (20)

= δT(t)(ATX + XA)δ(t) + δT(t)XNη(t) + ηT(t)NTXδ(t)+

δT(t)XBeΦ(t) + eT
Φ(t)BXδ(t) (21)

by replacing matrices A, B, N from Equation (15) and X from Equation (19) then

V̇(t) = eT
x (t)P(A − LC)ex(t) + eT

x (t)PeΦ(t) + eT
x (t)PBΦ2(x̂, u)eθ + eT

x (t)PNη(t)+

eT
x (t)(A − LC)T Pex(t) + eT

Φ(t)Pex(t) + eT
θ (t)Φ2(x̂, u)T BT Pex(t)+

ηT(t)NT Pex(t)− eT
θ (t)Φ2(x̂, u)T HCex(t)− eT

x (t)C
T HTΦ2(x̂, u)eθ(t) (22)

Note that if the equality BT PC⊥ = 0 is satisfied, this implies that there exists matrices
H and L, such that BT P = HC [33], where C⊥ represents an orthogonal projection onto
null(C). With this consideration, the above inequality can be simplified as follows:

V̇(t) = eT
x (t)P(A − LC)ex(t) + eT

x (t)PeΦ(t) + eT
x (t)PNη(t) + eT

x (t)(A − LC)T Pex(t)+

eT
Φ(t)Pex(t) + ηT(t)NT Pex(t)

= eT
x (t)[(A − LC)T P + P(A − LC)]ex(t) + 2eT

x (t)PeΦ(t)+

eT
x (t)PNη(t) + ηT(t)NT Pex(t) (23)

There exists an scalar β > 0 such that

V̇(t) < β2ηT(t)η(t)− rT(t)r(t) (24)

by integrating the two sides of this inequality we obtain∫ ∞

0
V̇(τ)dτ <

∫ ∞

0
β2ηT(τ)η(τ)dτ −

∫ ∞

0
rT(τ)r(τ)dτ

or equivalently V(∞)−V(0) < β2||η(t)||22 − ||r(t)||22. Under zero initial conditions, we obtain

V(∞) < β2||η(t)||22 − ||r(t)||22
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which leads to ||r(t)||22 < β2||η(t)||22. From Equation (24), we can deduce

V̇(t) + rT(t)r(t)− β2ηT(t)η(t) < 0 (25)

By replacing V̇(t) from Equation (23) and r(t) from Equation (16), we obtain

eT
x (t)[(A − LC)T P + P(A − LC)]ex(t) + 2eT

x (t)PeΦ(t)

+ eT
x (t)PNη(t) + ηT(t)NT Pex(t) + eT

x (t)C
TCex(t)− β2ηT(t)η(t)< 0 (26)

By applying the following equivalence in the framed term, we obtain

2eT
x (t)PeΦ(t) = 2eT

x (t)PQ−1/2Q1/2eΦ(t) (27)

By using Lemma 1, we can obtain the following inequality from Equation (27):

2eT
x (t)PQ−1/2Q1/2eΦ(t) ≤ eT

x (t)PQ−1Pex(t) + eT
Φ(t)QeΦ(t) (28)

Now, by using the condition given in Equation (14) in the framed expression, we
obtain the following inequality from (26)

eT
x (t)[(A − LC)T P + P(A − LC)]ex(t) + eT

x (t)PQ−1Pex(t) + eT
x (t)Rex(t)

+ eT
x PN(t)η(t) + ηT(t)NT Pex(t) + eT

x (t)C
TCex(t)− β2ηT(t)η(t) ≤ 0 (29)

This can be written in matrix form as[
ex(t)
η(t)

]T

Ω
[

ex(t)
η(t)

]
≤ 0 (30)

where

Ω =

[
P(A − LC) + (A − LC)T P + CTC + PQ−1P + R PN

NT P −β2 In×l

]
.

If Ω ≤ 0, the index performance given in (25) is verified. By using the Schur comple-
ment, we obtain

Ω =

P(A − LC) + (A − LC)T P + CTC + R PN P
NT P −βIn×l 0n

P 0n×l Q

 ≤ 0

where β = β2. By simplifying the therm S = PL, we obtain

Ω =

PA − SC + AT P − CTST + CTC + R PN P
NT P −βIn×l 0n

P 0n×l Q

 ≤ 0 (31)

By solving the LMI (31), the observer gains L and H can be easily obtained, as stated
in the theorem.

4. Application to a Semi-Active Automotive Suspension

A semi-active suspension composed by a magnetorheological (MR) damper is repre-
sented in Figure 1. The system is represented by the following mathematical model [34]:

ms z̈s(t) = −ks(zs(t)− zus(t))− FMR(t) (32)

mus z̈us(t) = ks(zs(t)− zus(t))− kt(zus(t)− zr(t)) + FMR(t) (33)
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Figure 1. Semi-active suspension diagram.

The semi-active damping force (FMR(t)), with the inclusion of a manipulation signal
(electric current) is represented as follows:

FMR(t) = I fcρ(t) + b1żde f (t) + b2zde f (t) + η(t) (34)

where ρ is the nonlinear part representing the hysteresis of the force provided by the
magnetorheological damper [35]. Such non-linearity is described by:

ρ(t) = tanh(a1żde f (t) + a2zde f (t)) (35)

The nomenclature of the parameters and variables of the model is described in Table 1.

Table 1. List of parameters and variables of the mathematical model.

Parameter Description Value Units

a1, a2 Pre-effort zone of FMR 37.8, 22.15 (Ns)/m
b1, b2 Post-effort zone of FMR 2830.86, −7897.21 (Ns)/m
fc Damping force 600.95 N/A
I Electric current 2 A
ks Spring stiffness coefficient 86,378 N/m
kt Tire stiffness coefficient 260,000 N/m
ms, mus Suspended mass and Unsprung (tire) mass 470, 110 kg

Variable Description Role Units

zde f Vertical damper position output y3 m
˙zde f Vertical damper speed ẏ3 m/s

zr Road profile input m
zs, zus Vertical displacement of ms, mus outputs y1 and y2 m
żs, żus Vertical speed of ms, mus state x2 and x4 m/s
z̈s, z̈us Vertical acceleration of ms, mus ẋ2 and ẋ4 m2/s
ρ Shock absorber hysteresis nonlinear function
FMR Force MR damping force N

The measured outputs are y1(t) = zs(t), y2(t) = zus(t) and y3(t) = zs(t)− zus(t) = zde f (t).
In addition, consider the following change of variables: x1(t) = zs(t), x2(t) = żs(t) = ẋ1(t),
ẋ2(t) = z̈s(t), x3(t) = zus(t), x4(t) = żus(t) = ẋ3(t) and ẋ4(t) = z̈us(t).
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The model given by Equations (32) and (33) can be rewritten as follows:

ẋ1(t) = x2(t)

ẋ2(t) =− b2 + ks

ms
x1(t)−

b1

ms
x2(t) +

b2 + ks

ms
x3(t)

+
b1

ms
x4(t)−

fcρ

ms
I(t)− 1

ms
η(t)

ẋ3(t) = x4(t)

ẋ4(t) =
b2 + ks

mus
x1(t) +

b1

mus
x2(t)−

b2 + ks + kt

mus
x3(t)

− b1

mus
x4(t) +

fcρ

mus
I(t) +

1
mus

η(t)

+
kt

mus
zr(t)

(36)

The state, the output, and the input vectors are x(t) = [x1(t) x2(t) x3(t) x4(t)]T ,
y(t) = [y1(t) y2(t) y3(t)]T , u(t) = [η(t) I(t) zr(t)]T , where x1(t) and x2(t) are the vertical
chassis position and the vertical chassis speed, x3(t) and x4(t) are the vertical tire position
and the vertical tire speed, y1(t) is the vertical chassis position, y2(t) is the vertical tire posi-
tion and y3(t) is the vertical damper position, zr(t) is the road profile, and η(t) represents a
disturbance in the damper. This disturbance occurs when driving on a road with potholes
and bumps, as well as due to excess luggage or passengers getting into the car. A damaged
shock absorber causes an imbalance in the chassis and increases the undesirable pitching
and rolling motion of the car.

Equation (36) can be represented in the form of system (1):


ẋ1
ẋ2
ẋ3
ẋ4


︸ ︷︷ ︸

ẋ

=



0 1 0 0

− b2 + ks

ms
− b1

ms

b2 + ks

ms

b1

ms
0 0 0 1

b2 + ks

mus

b1

mus
− b2 + ks

mus
− b1

mus


︸ ︷︷ ︸

A


x1
x2
x3
x4


︸ ︷︷ ︸

x

+



0

− fcρ

ms
I

0

fcρ

mus
I


︸ ︷︷ ︸

Ψ(y,u)

+


0

0

0

1


︸︷︷︸

B

[
zr − x3

mus

]
︸ ︷︷ ︸

Φ2(x3,u)

θ︸︷︷︸
kt

︸ ︷︷ ︸
Φ(x,u,θ)

+



0

− 1
ms
0

1
mus


︸ ︷︷ ︸

N

η (37)

y1
y2
y3


︸ ︷︷ ︸

y

=

1 0 0 0
0 0 1 0
1 0 −1 0


︸ ︷︷ ︸

C


x1
x2
x3
x4


︸ ︷︷ ︸

x

(38)
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It can be seen in Equation (38) that function Φ(x, u, θ) is:

Φ(x, u, θ) =


ϕ1(x, u, θ)
ϕ2(x, u, θ)
ϕ3(x, u, θ)
ϕ4(x, u, θ)

 =


0
0
0

zr − x3

mus
θ


In order to verify Assumption 2, the Lipschitz constant γ of function Φ(x, u, θ) is

computed as follows (see Lemma 3.1 in [36]):

γ =

∥∥∥∥∂Φ(x, u, θ)

∂x

∥∥∥∥
1
=

∥∥∥∥∥∥∥∥∥∥
0 0 0 0
0 0 0 0
0 0 0 0

0 0 − 1
mus

0

∥∥∥∥∥∥∥∥∥∥
1

=
1

mus

The nonlinear function Φ(x, u, θ) satisfies the Lipschitz condition with respect to the
state variables [7]. Assumption 3 is also verified. The Lipschitz constant of function
Φ2(x3, u) ∈ R is the same as the Lipschitz constant of function Φ(x, u, θ), i.e.,:∥∥∥∥∂Φ2(x3, u)

∂x3

∥∥∥∥
1
=

1
mus

Therefore, the observer (4) is used to simultaneously estimate the state variables and
the unknown parameter θ.

By considering that the parameter to be estimated is the spring stiffness coefficient kt,
then the observer (4) for system (37) is


˙̂x1
˙̂x2
˙̂x3
˙̂x4


︸ ︷︷ ︸

˙̂x

=



0 1 0 0

− b2 + ks

ms
− b1

ms

b2 + ks

ms

b1

ms

0 0 0 1

b2 + ks

mus

b1

mus
− b2 + ks

mus
− b1

mus


︸ ︷︷ ︸

A


x̂1
x̂2
x̂3
x̂4


︸ ︷︷ ︸

x̂

+


0

− fc ρ

ms
I

0
fc ρ

mus
I


︸ ︷︷ ︸

Ψ(y,u)

+


0

0

0

1


︸︷︷︸

B

[
zr − x̂3

mus

]
︸ ︷︷ ︸

Φ2(x̂3,u)

θ̂︸︷︷︸
kt

︸ ︷︷ ︸
Φ(x̂,u,θ)

+L(y − Cx̂)

˙̂θ = Γ
[

zr − x̂3

mus

]T
H(y − Cx̂)

The matrices L and H are the gains of the observer, and they must be selected to
guarantee the estimation convergence of the estimated states and parameters. The gain
Γ > 0 is a positive scalar. In this case, Γ = 125 is chosen, because this value allows an
adequate convergence time for the observer.
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5. Simulation Results

To evaluate the performance of the proposed observer, the behavior of the suspension
was analyzed when a disturbance occurs in the damping force η(t), affecting the position
of the piston, causing poor vehicle comfort, and risk of rollover due to disturbances on the
road zr(t). The parameters presented in Table 1 were considered to estimate the unknown
parameter kt, which represents the stiffness of the tire. The simulation was implemented
using MATLAB, with a simulation time of 65 s. This time frame was chosen to ensure the
system stabilized adequately before any subsequent disturbances or inputs could affect it
again. The first-order Euler method was used to integrate the differential equations, with
an integration step of 1ms. The initial conditions of the system and the observer were
x(0) = [0 0 0 0]T and x̂(0) = [0.1 0.1 0.1 0.1]T . The electric current was I(t) = 2 A.

A road profile was assumed starting as a straight path, and then it passed through two
consecutive speed bumps and finally it continued with its path zr(t) as shown in Figure 2.
This road profile was considered as an input zr(t). It can be appreciated that each bump on
the road exerted a vertical force on the vehicle during 3 s, affecting the vertical positions x1,
x3 and zde f .

0 10 20 30 40 50 60

0

2

4

6

Figure 2. Road profile zr: a straight path and two speed bumps.

The system had a disturbance in the actuator η(t). The disturbance profile, shown
in Figure 3, corresponds to around 15% of the shock absorber’s operating range, thereby
affecting the comfort and safety of passengers. This disturbance influences the position
of the shock absorber piston gradually, diminishing its ability to dampen the vehicle
oscillations resulting from road irregularities.

10 20 30 40 50 60

0

500

1000

1500

Figure 3. Disturbance η affecting the semi-active damping force FMR(t) (see Equation (34)).
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The observer gains were obtained by solving the LMI presented in Equation (17) using
the MATLAB toolbox YALMIP:

L =


−0.9627 −0.9677 0.0050
1.3959 −1.0688 2.4647
−0.6003 −0.5931 −0.0072
−1.0688 1.3799 −2.4487

 (39)

H =
[
−0.3696 −0.3708 0.0012

]
(40)

As shown in Figure 4, the unknown parameter θ = kt was adequately estimated with
appropriate time convergence.

Figure 4. Simulated wheel stiffness coefficient θ (solid line) and its estimation value θ̂ (dotted line).

Once the parameter kt had been estimated, the observer was able to estimate the
position of the chassis x1 and its estimated value x̂1 (Figure 5). The effect of the disturbance
η was observed at t = 8 s. This harmed the comfort and safety of passengers. The observer
attenuated the effect of the disturbance by minimizing the oscillation of x̂1. It can be seen
that the disturbance caused an alteration in the behavior of the shock absorber when the
vehicle went over speed bumps on the road.

0 10 20 30 40 50 60

0

2

4

6

Figure 5. Chassis vertical position x1 (blue line) and its estimated value x̂1 (red line).

The position of the tire x3 and its estimated value x̂3 are shown in Figure 6.
It can be seen that the effect of the disturbance η on the damper caused oscillations,

which forced the tire to follow the path over speed bumps on the road. Once again, the
observer attenuated the oscillation of x̂3, obtaining an adequate estimation of the output
despite the presence of the disturbance.
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0 10 20 30 40 50 60

0

2

4

6

8

Figure 6. Tire vertical position x3 (blue line) and its estimated value x̂3 (red line).

Knowing the positions of the chassis and the tire, the vertical position of the shock
absorber could be calculated (as seen in Figure 7). One can observe the effect of the
disturbance on the actuator when the tire passed over the road profile, allowing us to
minimize the disturbance to our observer.

0 10 20 30 40 50 60

-1.5

-1

-0.5

0

Figure 7. Vertical damper position zde f (blue line) and its estimated value ẑde f (red line).

The behavior of the suspension was affected by the disturbance η. The greater the
force that disturbed the shock absorber, the greater its deformation. The observer estimated
the tire’s stiffness coefficient kt to monitor the deterioration of the tire and managed to
attenuate the disturbance.

6. Conclusions

An H∞ adaptive observer was presented for processes that can be modeled as nonlin-
ear Lipschitz systems. The proposed conditions under a passivity constraint were employed
to deal with nonlinear systems with certain unknown parameters. The proposed observer
was able to simultaneously estimate unknown states and parameters, even in the presence
of disturbances. The main advantage of this observer is that it can be applied to a wider
class of systems with unknown parameters. Moreover, by incorporating the H∞ criteria into
the design, the observer demonstrated enhanced resilience against undesired disturbances,
while ensuring robust performance. Unlike high-gain observers, the observer design pro-
cess does not necessitate a coordinate transformation, thereby streamlining implementation
and reducing complexity. A semi-active car suspension was used to test the performance of
the proposed observer. Thanks to the H∞ approach, the effect of disturbances or unknown
inputs could be attenuated, allowing for better monitoring of the systems. The simplicity
of computing the observer gains was demonstrated, eliminating the need to solve the addi-
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tional differential equations usually associated with Kalman observers. It is well known
that Kalman observers (or filters as presented in [29,30]) require additional differential
equations to recursively compute the observer gain, incorporating the predicted covariance
matrix to estimate the accuracy of state estimates (e.g., [37]). In contrast, the proposed
observer employs fixed-value observer gains, which are computed offline once, by solving
the LMIs provided in Theorem 1. The simulation results demonstrated the effectiveness of
the proposed approach in dealing with a practical system. As future work, we expect to
apply the H∞ approach at the output to supervise the operation of dynamic systems in the
presence of sensor disturbances.

Future work will focus on developing adaptive observers for non-Lipschitz nonlinear
systems, such as those involving dry friction. This approach aims to broaden the scope and
address more realistic scenarios.
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