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ABSTRACT
Analyzing longitudinal data in health studies is challenging due to sparse and error-prone measurements, strong within-individual
correlation, missing data and various trajectory shapes. While mixed-effect models (MM) effectively address these challenges,
they remain parametric models and may incur computational costs. In contrast, functional principal component analysis (FPCA)
is a non-parametric approach developed for regular and dense functional data that flexibly describes temporal trajectories at a
potentially lower computational cost. This article presents an empirical simulation study evaluating the behavior of FPCA with
sparse and error-prone repeated measures and its robustness under different missing data schemes in comparison with MM. The
results show that FPCA is well-suited in the presence of missing at random data caused by dropout, except in scenarios involving
most frequent and systematic dropout. Like MM, FPCA fails under missing not at random mechanism. The FPCA was applied to
describe the trajectories of four cognitive functions before clinical dementia and contrast them with those of matched controls in
a case-control study nested in a population-based aging cohort. The average cognitive declines of future dementia cases showed a
sudden divergence from those of their matched controls with a sharp acceleration 5 to 2.5 years prior to diagnosis.

1 | Introduction

In medical research, it is very common to collect in a cohort
of participants the repeated measures of various markers at
different visits in order to study the trajectories of the underlying
biological processes. For example, in HIV research studies, the
temporal evolution of CD4 is used to assess the immune system
response [1]. In prostate cancer, the prostate specific antigen
is a marker used to monitor prostate cancer progression [2]. In
cognitive ageing studies, the temporal evolution of neuropsycho-
logical tests is used to assess the cognitive abilities trend among
the older adults [3].
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Marker data repeatedly measured over time in longitudinal stud-
ies have several characteristics that raise analytical challenges.
First, the structure of the data induces a strong within-individual
correlation which implies a variability across individuals. Second,
the data collection process [4], often heavy in medical studies,
usually leads to sparse measurements and individual-specific
timings. For instance, in epidemiological cohorts of chronic
diseases, it is not rare to have data every 2 to 5 years only [1–3].
Third, participants may leave the study before the end because
they died or because they refused to undergo the next visit
which leads to dropout [5]. These early truncations of the lon-
gitudinal process are often linked to the health status of the
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participant, and thus are likely informative. Fourth, marker
data collected in health studies are systematically noisy obser-
vations of the true underlying process of actual interest. Finally,
the marker trajectories may exhibit different shapes, requir-
ing flexible modeling tools of time trends. Figure 1 illustrates
the characteristics of such marker data in the context of four
neuropsychological tests collected in a cognitive aging study
with the error-prone trajectories and sparse measurements (left
panels), the individual-specific timings (middle panels), and the
missingness patterns (right panels).

Mixed-effect models (MM) are the standard method to ana-
lyze longitudinal data in health studies [6]. They extend the
classic linear regression models to correlated data by mod-
eling both marginal trajectories using fixed effects and the
individual-specific deviations using individual regression coeffi-
cients called the random effects. MM split the observations into
the observation error and the underlying data generation process
defined in continuous time, thus handling any measurement
time and accounting for serial correlation. Any basis of time
functions can be considered, including splines or polynomials,
for flexible modeling. As estimated in the maximum likelihood
framework, MM estimates are robust to missing data as long
as the missingness mechanism is predictable by the observed

data (mechanism also known as missing at random) [7, 8]. MM
thus handle most challenges faced with the longitudinal data
collected in health data. However, MM are parametric tools; the
distribution of both the error and the random effects must be
specified by the user. Also, in some specific cases, the flexibility
put into the MM may come with a great computational cost,
particularly when the model is nonlinear and includes many
random effects because of an heavy numerical integration in the
log-likelihood calculation [9].

Repeated measures of markers are observations of a continuous-
time process and as such they could also be considered as sparse
and irregular functional data. Indeed, classic functional data
is a collection of noisy observations from an unknown random
function 𝑓 on a regular and temporally dense grid of time. In
functional data analysis, one of the main goal is to describe and
summarize the temporal evolution of these trajectories. One of
the most well-known method to do so is the functional prin-
cipal component analysis (FPCA) [10, 11]. Similarly to classic
principal component analysis, it projects functional data into
a lower dimensional functional space defined by a functional
basis. In this functional space, each participant has its own set
of coordinates called functional principal component scores. In
health studies, FPCA is also very appealing because it allows,

FIGURE 1 | Description of the repeated data in 174 dementia cases and 174 matched controls (𝑁 = 348) from the 3C study according to the delay
(in years) to dementia diagnosis for the cases, and the delay to the dementia diagnosis of the matched case for controls (with 0 corresponding to the
dementia diagnosis visit of the case). Are reported the individual observed trajectories over time to diagnosis of four cognitive scores (mini-mental state
examination [MMSE], Benton visual retention test [BVRT], Isaacs set test [IST30], and trail making test score part A [TMTA]) with 10 randomly selected
individual trajectories emphasized in green (first column); the distribution of the times of measurement (second column) and the missingness pattern
visualization for each individual at each visit (third column). A black segment means the score is observed, a white segment means no observation is
available. The strong structure on the missingness pattern is a consequence of the matched nature of the data.
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with a fully non parametric approach, to describe and summarize
temporal trajectories in a parsimonious way using only a few
principal functional components and individual contributions
to these components. However, to be suitable for the analysis
of longitudinal data stemmed from health studies, functional
analysis methods should necessarily handle the challenges of
sparsity, irregularity of the observation grid and missing data.
Previous work have proposed FPCA for sparse longitudinal data
[12]. Furthermore, FPCA should work in theory with irregu-
lar observation grids although current implementations in R
packages are not always flexible enough. The main unsolved
challenge is the behavior of FPCA techniques with missingness
mechanisms. No theoretical or numerical evaluation has been
sought. While FCPA is expected to behave well in case of com-
pletely random missingness since it constitutes a specific type of
irregular grid, the behavior of the FPCA to other types of miss-
ingness still deserve to be investigated, especially when working
with longitudinal data from health studies where informative
missingness is common. The aim of this article is to evaluate the
robustness of FPCA to various schemes of missing data in an
empirical simulation study and to compare its performances to
the classic mixed-effect model approach.

Section 2 briefly introduces the motivating data example with
repeated evaluations of cognitive functioning in a population-
based aging cohort. In Section 3, the statistical framework–in
particular the missing data mechanisms–is described and both
the MM and the FPCA are introduced. Results from two empiri-
cal simulation studies are reported in Section 4. The two methods
are then applied in Section 5 to describe the trajectories of four
cognitive functions in years preceding clinical dementia onset in
contrast with the trajectories of matched controls. Our findings
are summarized and discussed in Section 6.

2 | The Three-City Study

The three-city study (3C study) is a French observational cohort
study started in 1999 aiming at exploring the link between vas-
cular diseases and dementia in the older adults [3]. Subjects aged
65 years and older at baseline were recruited in three French cities
and followed-up every 2 to 3 years during 17 years. At each visit,
the cognitive functioning was measured by a battery of cognitive
tests, and a diagnosis of dementia was established according to
a three steps procedure: a screening based on neuropsychologi-
cal performance; a clinical evaluation performed by a neurologist;
and a final diagnosis made by an independent committee of neu-
rologists (see [3] for details).

Our motivating aim was to describe the cognitive trajectories of
participants diagnosed with dementia and contrast them with
those expected during natural aging. To this end, we built a
nested case-control study from the 3C study. We included the
174 incident dementia cases diagnosed in the Bordeaux Center
with at least one measure at each cognitive test, and individually
matched them in density of incidence with 156 controls free of
dementia at the time of diagnosis of the case. The matching was
done according to sex, presence of at least one APOE-𝜖4 allele
(main genetic risk factor of dementia), level of education, age at
diagnosis with a 3-year margin, and length of follow-up at diag-
nosis (in years). We removed the cognitive measures occurring

5 years after the diagnosis (considered as time 0) as most cases
were not able anymore to undergo a large cognitive battery.

We focused on four psychometric scores that evaluate differ-
ent cognitive aspects: the mini-mental state examination score
(MMSE) [13] which evaluates global cognitive functioning (with
range 0–30), the Benton visual retention test score (BVRT) [14]
which measures visual memory (with range 0–15), the 30-s
Isaacs set test (IST) score [15] which assesses verbal fluency
(with range 0–73) and the number of correct moves per minute
at the trail making test score part A (TMTA) [16] which assesses
executive functioning and attention. Note that the TMTA was
not assessed at the second visit.

Figure 1 describes the sample with the individual cognitive tra-
jectories, the timings and patterns of missingness, thus illustrat-
ing the sparsity, irregularity in timings and missing data usually
encountered in cohort studies.

3 | Methods

3.1 | Sparse and Irregular Repeated Measures
Data

We assume that we observe repeated measures of a longitudinal
marker over time 𝑡 for each unit 𝑖 of a sample of size 𝑁. These
observations 𝑦𝑖𝑗 also noted 𝑦𝑖(𝑡𝑖𝑗) with 𝑗 = 1, … , 𝑛𝑖 lead to an
individual vector of observations yi = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖 )

⊤ where 𝑛𝑖
denotes the number of observations for unit 𝑖. The observations
𝑦𝑖𝑗 are measurements with error of the underlying process of
interest 𝑦⋆

𝑖
(𝑡) so that 𝑦𝑖𝑗 = 𝑦⋆(𝑡𝑖𝑗) + 𝜀𝑖𝑗 where 𝜀𝑖𝑗 denotes the

independent random observation error.

Classically, in the functional data framework, the observation
grid t = (𝑡1, … , 𝑡𝑛)

⊤ is dense, regular over time (e.g., hourly
measures, daily measures) and the same across the 𝑛 units. In
contrast, in health studies on humans (cohorts, clinical trials),
the data collection is frequently done with a lower frequency and
the visit times ti = (𝑡𝑖1, … , 𝑡𝑖𝑛𝑖 )

⊤ may vary across individuals.
For example, in the 3C cohort data, there may be variations
of several months or even years across individuals around the
theoretical visits every 2 to 3 years because collecting cognitive
test results implies an heavy and expensive observation process.
Additionally, it is very common to have missing data which leads
to different size of observation grid. Such a design defines sparse
and irregular functional data.

3.2 | Missing Data Mechanisms

We use the classical formalism of missing data for a marker of
interest as introduced by Little and Rubin [8]. We denote 𝑌 the
set of all marker data which includes those that are observed 𝑌𝑜

and those that are missing 𝑌𝑚. The binary variable 𝑅 is the indi-
cator variable of observation with 𝑅𝑖𝑗 = 1 if 𝑌𝑖𝑗 is observed, and 0
otherwise. Little and Rubin [8] distinguishes three mechanisms
of missingness. Data is called missing completely at random
(MCAR) when the probability that the marker is missing does
not depend on the marker at all,

𝑃(𝑅|𝑌𝑜, 𝑌𝑚) = 𝑃(𝑅)
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It happens for instance when a cognitive test is unavailable at a
certain visit because this test was not scheduled in the protocol
for this visit (as this is the case for the TMTA at the second visit
in 3C). Data is called missing at random (MAR) when the proba-
bility that the marker is missing depends on the observed values
of the marker,

𝑃(𝑅|𝑌𝑜, 𝑌𝑚) = 𝑃(𝑅|𝑌𝑜)

It happens for instance when a participant refusal to pass a cogni-
tive test depends upon his/her results at previous visits. Finally,
data is called missing not at random (MNAR) when it can also
depend on the unobserved values of the marker,

𝑃(𝑅|𝑌𝑜, 𝑌𝑚) = 𝑃(𝑅|𝑌𝑜, 𝑌𝑚)

This can happen for instance when a participant refuses to pass
the test because he/she feels that his/her cognitive level has
dropped since last visit.

Missing data can be divided into two main types: intermit-
tent missing data, when a measurement is missing during the
follow-up but other measurement can be collected later on, and
dropout data which happens when any visit after the dropout
visit will be missing. In this work, we are interested in both types
of missing data.

3.3 | Mixed-Effect Models

Mixed-effect models have been introduced by Laird and Ware
[17] and since then have been widely used to model repeated
measures collected in longitudinal health studies. We focus on a
mixed model that assumes a continuous marker with zero-mean
independent Gaussian errors 𝜀𝑖𝑗 so that 𝑦𝑖𝑗 = 𝑦⋆

𝑖
(𝑡𝑖𝑗) + 𝜀𝑖𝑗 . The

underlying value of the marker at time 𝑡 is then modeled as
follows:

𝑦⋆𝑖 (𝑡) = 𝑔(𝑡, 𝑋𝑖(𝑡), 𝜷, 𝒃𝒊) (1)

where 𝑋𝑖(𝑡) denotes a set of time-dependent covariates, 𝜷

denotes the vector of fixed parameters, 𝒃𝒊 denotes the vector of
random effects with 𝒃𝒊 ∼  (0, 𝑩) and 𝑔 a basis of functions that
describes the shape of the marker trajectory. The observation
error 𝜀𝑖𝑗 ∼  (0, 𝜎2) is assumed to be independent from the
vector of random effects. In the remainder of this work, we con-
centrate on linear mixed-effect models where 𝑔(𝑡, 𝑋𝑖(𝑡), 𝜷, 𝒃𝒊) =∑𝑝

𝑘=1(𝛽𝑘 + 𝑏𝑖𝑘)𝑔𝑘(𝑡, 𝑋𝑖(𝑡)) with (𝑔1, … , 𝑔𝑝) a 𝑝-basis of a priori
specified functions of time, most often splines or polynomials.

Mixed-effect models have been extended to handle different
types of data: binary or count data using generalized linear
mixed model theory, or continuous data with strong ceiling or
floor effect which is very common among neuropsychological
scores [18, 19]. For the latter, a parametric monotonic function is
applied to 𝑌 in Equation (1) to normalize the marker data.

The mixed-effect model is generally estimated by maximizing
the log-likelihood:

𝓁(𝜽) =
𝑁∑
𝑖=1

log∫ 𝑓(𝑌𝑖|𝒃𝒊)𝑓(𝒃𝒊)𝑑𝒃𝒊

where 𝜽 denotes the model parameters (𝜃 = (𝜷, vec(𝑩), 𝜎)⊤),
𝑓(𝒀𝒊|𝒃𝒊) is the density function of the outcome conditional to
the random effects and 𝑓(𝒃𝒊) is the density of the random effects.
When the model is linear in the random effects, the integral has
an analytical solution. In other cases, the log-likelihood compu-
tation often implies to numerically approximate the integral [20].

Fitted values of existing observations or predictions of new data
are easily derived from a fitted mixed model using the a posteriori
distribution of the random effects given the individual observa-
tions. In linear mixed-effect models, it is directly computed using
conditional expectation properties of multivariate normal vari-
ables while for nonlinear models, it is approximated by the mode
of the posterior distribution [17, 21].

Despite the possible use of flexible families of time-functions
(e.g., splines), a MM remains a parametric model with a distri-
bution for the random effects and for the random error to be
chosen (often Gaussian). Additionally, some assumptions on
the variance structure of the random effect might be needed
when the number of random effects increases to avoid a too large
number of covariance parameters.

One essential feature of the MM is its robustness to MAR data,
which ensures an unbiased estimator under MAR [7]. When the
missing data are suspected to be MNAR, that is when the miss-
ing mechanism also depends on unobserved data, a joint model
of the missingness mechanism is required. This can be done with
a logistic model for intermittent missing data or a survival model
for dropout [22, 23]. However, in any case, the model requires
a correct specification of the missing data mechanism to yield
robust estimates [24]. For instance, if the instantaneous risk of
dropout is assumed to be associated with the marker level, the fol-
lowing proportional hazard model can be jointly estimated with
the mixed model in (1):

𝛼𝑖(𝑡) = 𝛼0(𝑡) exp(�̃�⊤
𝑖𝑗𝜸 + 𝑦⋆𝑖 (𝑡)

⊤𝜼)

with 𝛼0(𝑡) the baseline risk function, �̃�⊤
𝑖𝑗 a set of covariates, 𝜸 and

𝜼 two vectors of parameters to be estimated.

3.4 | Functional Principal Component Analysis

Functional principal component analysis has been introduced by
Besse and Ramsay [25] and since then has been used for describ-
ing, modeling, predicting or classifying abundant temporal
series [11, 26]. As for mixed-effect models, we consider additive
random errors such that observations 𝑦𝑖𝑗 = 𝑦⋆

𝑖
(𝑡𝑖𝑗) + 𝜀𝑖𝑗 with

𝑦⋆
𝑖
(𝑡𝑖𝑗) the underlying process of interest. In functional data, the

vector 𝒚⋆
𝒊
= {𝑦⋆(𝑡𝑖𝑗)}𝑗=1, … ,𝑛𝑖

for unit 𝑖 is considered as a random
realization of an unknown underlying function. Consequently,
the whole set of longitudinal trajectories 𝒚⋆ = (𝒚⋆

1 , … , 𝒚⋆
𝑵
)⊤

is a collection of realizations of an unknown random function
𝑓 assumed to be smooth. This unknown function has mean
𝜇(𝑡) and covariance function 𝐺(𝑠, 𝑡) = cov(𝑓(𝑡), 𝑓(𝑠)). FPCA
is essentially based on the Karhunen–Loève decomposition
[27, 28] which states that the underlying unknown smooth
function 𝑓 can be decomposed into:

𝑓𝑖(𝑡) = 𝜇(𝑡) +

∞∑
𝑘=1

𝜉𝑖𝑘𝜙𝑘(𝑡) (2)

4 of 14 Statistics in Medicine, 2024
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where the index 𝑖 in 𝑓𝑖 emphasizes the fact that the random real-
ization of 𝑓 is subject specific, 𝜉𝑖𝑘 and 𝜙𝑘 are the eigenvalues (or
functional principal component scores) and eigenfunctions from
the decomposition of the covariance operator 𝐺, respectively.
From this decomposition, dimension reduction is straightfor-
ward by limiting the sum in (2) to the first 𝐾 components only:

𝑓𝑖(𝑡) = 𝜇(𝑡) +

𝐾∑
𝑘=1

𝜉𝑖𝑘𝜙𝑘(𝑡) (3)

From the noisy data 𝑦𝑖𝑗 , local linear smoothers [10, 12] are used
to estimate the mean function 𝜇 and the covariance function 𝐺.
The estimated covariance surface is discretized to make spec-
tral decomposition of the covariance operator easier and from
that, eigenfunctions are obtained [11, 29]. In the case of dense
functional data, the scores can be estimated using a numerical
integration [10] which is not feasible in the case of sparse data.
Functional principal components analysis through conditional
expectation (PACE) [12] has been proposed as an alternative
way of computing the eigenvalues in case of sparse data. Using
properties of conditional Gaussian multivariate density, an
expression for 𝔼(𝝃 𝒊|𝒀𝒊) is obtained, very close in spirit to what
is done in linear mixed-effect models. From that, by plugging in
the estimated eigenvalues, eigenfunctions, covariance, and mean
function, an estimate of the score can be computed. In PACE,
the scores are assumed to be Gaussian but the method is robust
to violation of this assumption [12].

When using FPCA, the determination of 𝐾 in (3) is critical.
Apart from rare exceptions, 𝐾 is determined from the data by
optimizing a statistical criterion such as percentage of variance
explained, AIC, or BIC where cross-validation can be used. Fitted
values of existing observations or predictions of new data can
be easily computed by plugging into (3) the estimated �̂�(𝑡𝑖𝑗) and
�̂�𝑘(𝑡𝑖𝑗), and the individual eigenvalues �̂�𝑖𝑘 computed using the
PACE algorithm.

Many R packages have implemented FPCA for functional data
but only a few are suited to the case of sparse and irregular func-
tional data, in particular during the prediction step for new units.
For example,fda [30] does not implement PACE and requires the
same observation grid for all units which is not realistic in many
health contexts. Package MFPCA [31] is suited to sparse and irreg-
ular functional data but it struggles to make predictions on new
units with different observation grids. We identified two pack-
ages for the estimation of FPCA in case of sparse and irregular
data: face [32] and fdapace [33]. Their major difference lies in
the specification of the smoothing used to estimate the functional
components: fdapace uses local weighted polynomial smooth-
ing whilefaceuses P-splines smoothing. We thus considered the
two implementations in our work.

Contrarily to linear mixed-effect models, no theoretical justifica-
tion exists regarding FPCA robustness to missing at random data,
and no empirical study has explored this issue so far.

4 | Simulation Study

We numerically evaluated the performances of FPCA to ana-
lyze sparse, noisy and irregular repeated data in the presence

of dropout with (i) a comparison of the predicted values with
those obtained by mixed models considered as the gold standard
approach, and (ii) an evaluation of the robustness of FCPA
estimations to dropout. We followed the recommendations of
Morris, White, and Crowther [34] to plan and report these two
simulation studies.

4.1 | Comparison Between FPCA and MM

4.1.1 | Aims

The first simulation aimed to contrast the performances of MM
and FPCA to predict missing values under different scenarios of
dropout with different implementations of MM and FPCA.

4.1.2 | Data Generation Mechanism

We generated individual repeated data in samples of𝑁 = 700 par-
ticipants. The sparse visit process was generated from a fixed grid
of visits between 𝑡 = 0 and 𝑡 = 12 with three levels of sparsity in
the visits times: a measure every 3, 2, or 1 years leading to a max-
imum of 5, 7, or 13 observations per individual.

To mimic a more realistic observation window, the individual
visit times 𝑡𝑖𝑗 were obtained by adding a random uniform noise
around the theoretical visits for each observation (± 1.5, 1,
0.5 years for visits every 3, 2, and 1 years, respectively). This
uniform noise adds a first level of irregularity to the observation
grid by making it specific to each individual. The repeated
marker data at each visit time 𝑡𝑖𝑗 were generated according to
a mixed model with a nonlinear shape over time captured by
a five-parameter logistic model as implemented in the nlraa
package [35]:

𝑦⋆𝑖 (𝑡𝑖𝑗) = 𝑦∞𝑖 +
𝑦0𝑖 − 𝑦∞𝑖

(1 + exp(𝛼𝑖 × (log 𝑡𝑖𝑗 − log 𝜏𝑖)))𝜃𝑖

where 𝑦0𝑖 = 10 + 𝑏𝑖1 and 𝑦∞𝑖 = 35 + 𝑏𝑖2 are the individual-
specific asymptotic values of 𝑦 for 0 and infinite times, respec-
tively; 𝜏𝑖 = 10 + 𝑏𝑖3 is the time when the mean value of 𝑦 is
attained (only if 𝜃𝑖 = 1), that is, 𝑦(𝜏𝑖) = (𝑦0𝑖 + 𝑦∞𝑖)∕2,𝛼𝑖 = 5 + 𝑏𝑖4
controls the steepness of the transition and 𝜃𝑖 = 1 + 𝑏𝑖4∕3 is an
asymmetry parameter. Individual-specific trajectories were
generated assuming random-effects 𝑏𝑖 = (𝑏1𝑖 , 𝑏2𝑖 , 𝑏3𝑖 , 𝑏4𝑖)

⊤ ∼

 (0, 𝐵) with 𝐵 a diagonal 4 × 4-matrix with diagonal (3, 5, 2, 2)⊤.
The prone-to-error observations were derived by adding an inde-
pendent homoscedastic Gaussian error 𝜀𝑖𝑗 ∼  (0, 32) such that:
𝑦(𝑡𝑖𝑗) = 𝑦⋆

𝑖
(𝑡𝑖𝑗) + 𝜀𝑖𝑗 .

At this stage, we have a complete set of repeated measures for
each participant up to the administrative censoring at year 12.
We added a second level of irregularity to the observation grid
by truncating the observation process at an individual time of
dropout (i.e., early leave from the study), making the observation
grid length subject-specific. We considered a dropout with two
intensities (30% and 60%) and the six following missing data sce-
narios (see supplementary material for details):

• MCAR: the participant drops out at 𝑡𝑖𝑗 with a probability
determined by a logistic model with 𝑡𝑖𝑗 as predictor;
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FIGURE 2 | Top-left and right panels: Generated individual longitudinal data according to a mixed model for𝑛 = 100 randomly selected participants
prior to dropout (top-left) and after six different generated mechanisms of dropout with rate 0.6 (right). Bottom-left: The mean function and the two
functional principal components that can be derived from the top-left individual trajectories using a functional principal component analysis (FPCA).

• fixed MAR: the participant systematically drops out at 𝑡𝑖𝑗 if
𝑌𝑖(𝑗−1) is above a threshold 𝜈;

• threshold MAR: the participant drops out at 𝑡𝑖𝑗 with a proba-
bility determined by a logistic model with the indicator that
𝑌𝑖𝑗−1 > 𝜈 as predictor;

• increasing MAR: the participant drops out at 𝑡𝑖𝑗 with a proba-
bility determined by a logistic model with 𝑌𝑖𝑗−1 as predictor;

• threshold MNAR: the participant drops out at 𝑡𝑖𝑗 with a prob-
ability determined by a logistic model with the indicator that
𝑌𝑖𝑗 > 𝜈 as predictor;

• increasing MNAR: the participant drops out at 𝑡𝑖𝑗 with
a probability determined by a logistic model with 𝑌𝑖𝑗 as
predictor;

The data generated as described above satisfies the three main
challenging characteristics of longitudinal data usually encoun-
tered in epidemiological studies: sparsity with three levels of
visit frequency, error-proneness with a Gaussian noise on the
repeated measures of the marker, and irregular time grid both in
visit occurrence and grid length. The generated longitudinal data
of 100 randomly selected individuals are displayed in Figure 2.
The right panels illustrate the two types of early truncation of the
longitudinal process: the dropout under the above mechanisms
(with a rate of 0.6) and the administrative censoring at year 12.

4.1.3 | Estimands

Each sample was separated into a training set of 200 participants
and a test set of 500 participants. The estimands of interest
were the predictions of the marker values 𝑦𝑖𝑗 in the test set

whether they were observed or missing (true generated values
were known from the generation procedure). These predictions
were computed from the estimations of FPCA and MM on the
training set.

4.1.4 | Methods

For each simulation setting, that is for a fixed frequency of visits
(every 3, 2, and 1 years), for a fixed rate of dropout (30% or 60%),
for a fixed missing data scenario (MCAR, fixed MAR, threshold
MAR, increasing MAR, threshold MNAR, increasing MNAR), we
estimated the following models:

• Linear mixed-effect models (including a random effect on
the intercept and on each time function) with time trend:
modeled as a quadratic trend (LMM_quad); modelled as a
cubic trend (LMM_cub); approximated by natural splines
with two internal knots at the terciles (LMM_spl_quant);
approximated by natural splines with two equidistant
internal knots (LMM_spl_equi).

• Functional principal component analysis with the number
of principal components chosen such that the percentage of
explained variance reached 90% (FPCA_fve90_fdapace)
or 99% (FPCA_fve99_fdapace) in fdapace or 99%
(FPCA_face_fve99) in face.

• Shared random effect joint model (JM) in which the longi-
tudinal submodel followed a quadratic time trend (random
intercept and random slope on each time function) and the
survival submodel was a proportional hazard model with
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a baseline risk function approximated by B-splines (three
internal knots at the quartiles) and a dependence through
the current underlying value of the marker. Note that the
joint model was only estimated in the two MNAR scenarios
(threshold MNAR and increasing MNAR) as a gold standard
comparator for the MNAR situation.

The linear mixed-effect models were estimated using the lcmm
package [36] (function hlme) and predictions were obtained
using the predictRE function. The joint models were esti-
mated using the JM package [37], and predictions computed
with the predict function. FPCA models were estimated with
the fdapace package [33] and the face package [32]. With
fdapace, prediction was only possible for times available in the
training set. We thus discretized the time window (with a step
of 0.5) to ensure that every discretized 𝑡𝑖𝑗 in the test set also
appeared in the training set, and used the internal predict
function of fdapace and face.

4.1.5 | Performance Measure

For each setting, the procedure was replicated on 1000 repli-
cates. The performances were evaluated with the root mean
square error (RMSE) by separating: (i) the RMSE computed on
the actual observations of the test set (i.e., non-missing due to
dropout), and (ii) the RMSE computed on the missing data of the
test set (after time of dropout).

To make all the RMSEs comparable across models within a fixed
scenario, we considered standardized RMSEs. To do so, we first
estimated a reference flexible model in the complete training
set (i.e., without any missing data). This reference model was
chosen as a mixed model with B-splines time trend with three
internal knots placed at the quartiles. We computed the RMSE
of this model on test data (either missing data only, or observed
data only) and defined it as the reference RMSE. Then, for every
other model estimated on the training set with missing data, we
computed their RMSEs on test data (either missing data only, or
observed data only) and standardized them by dividing them by
the corresponding reference RMSE.

4.1.6 | Results

The standardized RMSEs of each model computed on the missing
test data are reported in Figure 3 (see Figures S2, S3, and S4 for
the observed test data) for four missing data scenarios (MCAR,
fixed MAR, increasing MAR and increasing MNAR), two rates of
dropout (30% and 60%), and the three frequencies of sparse visits.

An overall look at mixed models RMSEs shows that flexible
mixed models, those based on spline parametrization, rank
systematically among the best for every missing data scenario,
dropout rate and observation grid. As expected, virtually the
same standardized RMSE were obtained for MM and FPCA in
the MCAR case, whatever the frequency of visit and the rate
of dropout. With a fixed MAR dropout after an observation
above a given threshold, the MM relying on splines showed
the lowest standardized RMSEs. With a 30% rate of dropout,
those of FPCA were comparable or even lower when data were
denser (every year). However, with a 60% rate of dropout, the

performances of FPCA dropped, probably due to the sudden and
local loss of information. With a MAR dropout that increases
as the last observed marker value increased, the dropout is
more spread along the observation window and FPCA lead to
very competing standardized RMSEs compared to MM with
splines time trends. This is true whatever the rate of dropout,
and even provide slightly better fit for denser data and lower
rate of dropout, underlying their flexibility to capture complex
trends. With a MNAR dropout that increases as the simultane-
ous marker level increases, MM and FPCA models show larger
standardized RMSEs compared to the more appropriate JM.
However, again FPCA shows worse behavior than MM when the
rate of dropout is high (60%). The two implementations of the
FPCA gave overall the same results. We observed an expected
but very tiny improvement when targeting 99% of explained
variance rather than only 90%. The different specifications of
the components between face and fdapace gave overall the
same results in all scenarios. The fit of the spline-based FPCA (in
face) was slightly better than the one of the local-polynomial
based FPCA (in fdapace) when the dropout was systematic
after the outcome reached a certain level (fixed MAR) but the
differences remained negligible in all the other scenarios.

In summary, this simulation study suggests that, with sparsely
and irregularly measured data, FPCA behave similarly as the flex-
ible linear mixed-effect models in MCAR, MAR, and MNAR sce-
narios. In some specific situations when combining a higher rate
of dropout and very specific missing scheme (systematic dropout
above a threshold), the FPCA seemed to perform slightly worse
in capturing the entire underlying pattern. These results suggest
that FPCA may constitute a suitable alternative to MM when the
information loss is progressive, allowing the FPCA to retrieve the
underlying trend.

The results for the threshold MAR and threshold MNAR cases,
displayed in Figure S1, lead to the same conclusions.

4.2 | Robustness of FPCA to Dropout

4.2.1 | Aims

This second simulation study aimed to evaluate to which extent
the components and scores of FPCA were correctly estimated in
the presence of dropout.

4.2.2 | Data Generation Mechanism

The data generation mechanism was exactly the same as in the
first simulation study except that the samples were of size 𝑁 =

200 and the time function for the underlying marker trajectory
was generated according to a two-component FPCA rather than
a mixed model.

The generating mean function and principal components, dis-
played in the bottom-left panel of Figure 2, were chosen as those
obtained after estimating a FPCA on a dataset simulated as in
Section 4.1. For each individual, we then randomly sampled
Gaussian scores 𝜉𝑖 ∼  (0, Ξ), (with Ξ taken as the empirical
variance of the scores derived from the FPCA) and applied
Equation (3) to generate the functional data at each observed
visit time.
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FIGURE 3 | Standardized RMSEs computed on missing test data over 1000 replicates for four missing data scenarios (MCAR, fixed MAR, increas-
ing MAR and increasing MNAR from left to right), two rates of dropout (30% and 60%) and three frequencies of sparse visits (every 3, 2, and 1 year
from top to bottom). Each boxplot summarizes the RMSEs of a model relative to the one of a reference model estimated on complete data (from
left to right): LMM_quad, LMM_cub, LMM_spl_quant, LMM_spl_equi, JM (only for the MNAR case), FPCA_fdapace_fve90, FPCA_fdapace_fve99,
FPCA_face_fve99.

4.2.3 | Estimands

The quantities of interest were the estimated mean function and
the estimated functional principal components.

4.2.4 | Methods

For each setting (rate of dropout, mechanism of dropout and fre-
quency of visits), we applied a FPCA implemented in fdapace

package [33] to the observed data, fixing the number of compo-
nents to 2.

4.2.5 | Performance Measure

We evaluated the relative bias between the estimated mean func-
tion or principal components, and their true counterparts on a
fixed time grid over 1000 replicates. Additionally, we visually
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compared the empirical distribution of the estimated mean func-
tion and functional principal components to the generated ones.

4.2.6 | Results

The simulation results are reported in Figure 4 for both the
MCAR and increasing MAR scenarios when considering a mea-
sure every 2 years. As expected, in the MCAR scenarios (upper
panels), there is no bias in the estimations whatever the dropout
rate (0%, 30%, or 60%) and the estimated curves are close to the
true generated mean and principal components. In the increas-
ing MAR (lower panels) and the threshold MAR (Figure S12)
scenarios, the principal components are overall estimated with-
out bias whatever the dropout rate (0%, 30%, or 60%) and the
variability of the estimates does not substantially change with
the dropout rate. The mean function in contrast shows a small
bias at the end of the observation window that increases as the
rate of dropout increases. Indeed the mechanism of dropout
imposes a larger proportion of missing data by the end of the
observation window. These observations are further illustrated
by the 10 randomly selected estimated curves which highlight
the departure from the true mean function in the 30% and 60%
dropout cases. With a fixed MAR dropout after an observation
above a threshold, the FPCA performed poorly at the end of
the observation window as expected due to the sudden and
systematic loss of information. In the increasing and threshold
MNAR scenarios (Figures S13 and S14), the relative bias for the
mean function is overall larger and especially at the end of the
follow-up. The same results (Figures S5–S10 and S15–S20) were
observed for the other frequencies of observations.

5 | Application to Cognitive Trajectories
in Prodromal Dementia

We applied FPCA and compare it to MM to flexibly describe the
trajectories of the four cognitive functions (global functioning,
visual memory, verbal fluency, executive functioning) before
clinical dementia, and contrast them with those of matched
controls in the case-control sample nested within the 3C study.
Each cognitive function was measured by a specific score: MMSE
for global functioning, BVRT for visual memory, IST for verbal
fluency and TMTA for executive functioning. The main charac-
teristics of the nested case-control study sample are reported in
Table 1 and individual trajectories and missingness mechanisms
are plotted in Figure 1.

The analytical sample comprised 74% of women in both groups;
61% had at least finished secondary school and 25.3% were car-
riers of at least one APOE-𝜖4 allele. The median age at diagno-
sis was 84.8 (interquartile range [IQR] = 81.6 − 88.7) for cases.
The matched index age for controls was 84.8 (IQR = 81.6 − 88.8).
The four cognitive scores distribution implies a worst cognitive
condition for cases with a median systematically lower and an
interquartile range extending systematically below those of con-
trols. The number of repeated measures per participant was sim-
ilar between cases and controls and also among cognitive scores
except for TMTA, which had fewer measures.

A separate analysis was conducted among cases and controls.
For each subset and each cognitive score we estimated: a FPCA

with a targeted percentage of explained variance of 99%, and a
linear mixed-effect model in which the cognitive trajectory was
modeled with natural cubic splines with two internal knots at
the quartiles, and boundary knots at −10 and 2 years to reduce
the influence of observations beyond this range. With FPCA as
implemented in fdapace, no control was possible for reducing
the influence of time periods during which the information is
sparser. For both methodologies, 95% confidence intervals were
computed: directly from the lcmm output based on the inverse of
the negative Hessian matrix for the mixed models, and comput-
ing bootstrap confidence intervals with 500 bootstrap samples
with the function GetMeanCI for the FPCA.

The estimated marginal trajectories of the cognitive markers
obtained by the two methods in each case/control group are dis-
played in Figure 5. Overall, the estimated mean trajectories and
95% confidence intervals were very similar across methods except
for slight differences observed at the end of the observation win-
dow. The predicted mean trajectories obtained from the linear
mixed-effect model were however much smoother than those
estimated by the FPCA.

The mean trajectories of the four cognitive functions (visual
memory, verbal fluency, global functioning, and executive func-
tioning) showed very different trends for controls and cases.
Controls had a slow linear decline over time for all the cognitive
functions. Far from dementia diagnosis, cases also had a slight
linear decline, almost overlapped with the one of the controls
for global functioning, very close for visual memory, and almost
parallel but approximately 0.1 points and 5 points below for exec-
utive functioning and verbal fluency respectively. Then closer to
diagnosis, each cognitive decline showed a sharp acceleration
among cases: around 5 years before diagnosis for verbal fluency,
3 years before diagnosis for executive functioning and 2.5 years
before diagnosis for visual memory and global functioning.

6 | Discussion

Initially developed for dense and regular functional data,
FPCA has been recently extended to handle sparsity [12].
If FPCA can be used to impute missing data, the robustness of
FPCA to the presence of missing data remained uncertain. In
this manuscript, we have conducted an empirical simulation
study to evaluate the robustness of FPCA in the presence of
missing data caused by dropout. Our findings demonstrate that,
in practical applications, FPCA is well-suited for analyzing
longitudinal data, even when missing data follow a missing at
random (MAR) mechanism, exhibiting comparable performance
to linear mixed-effect models known for their robustness in
such scenarios. This observation holds true across various MAR
scenarios, observation grid densities, and dropout rates with
exception for specific scenarios with the combination of very
frequent and systematic dropout above a threshold. FPCA along
with linear mixed-effect models do not seem to be robust to miss-
ing not at random data. These results are based on two FPCA
implementations: fdapace and face, but from our experience,
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FIGURE 4 | Relative bias over 1000 replicates (left panel), and true plus 10 randomly estimations (right panel) for the mean function and each of
the two functional principal components in MCAR and MAR scenarios. The settings are a measure every 2 years for 12 years with a dropout rate of 0
(no dropout), 30% or 60%.

10 of 14 Statistics in Medicine, 2024

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10214 by U
niversité de B

ordeaux, W
iley O

nline L
ibrary on [23/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 1 | Summary statistics of demographic variables and cognitive scores in the case and control groups from the nested matched case-control
(𝑁 = 348, the 3C study cohort). Are reported count (frequency) for categorical variables and median (interquartile range) for continuous data and
number of measures.

Variable
Cases Controls

(𝑵 = 174) (𝑵 = 174)

Women 129 (74.1%) 129 (74.1%)
Index age* 84.8 (81.6 − 88.9) 84.8 (81.6 − 88.7)
Secondary school or higher 106 (60.9%) 106 (60.9%)
At least one APOE-𝜖4 allele 44 (25.3%) 44 (25.3%)
Follow-up at diagnosis (in years) 9.72 (6.78 − 12.2) 9.70 (7.08 − 12.4)
MMS score at index age 23 (21 − 25) 28 (25 − 29)
Number of individual measures of MMS 6 (4 − 7) 6 (5 − 7)
BVRT score at index age 9 (8 − 11) 11 (9 − 12)
Number of individual measures of BVRT 5 (4 − 6) 5 (4 − 7)
IST30 score at index age 28 (22 − 34) 39 (34 − 47)
Number of individual measures of IST30 5 (4 − 7) 6 (4.25 − 7)
TMTA score at index age 0.25 (0.21 − 0.35) 0.39 (0.31 − 0.48)
Number of individual measures of TMTA 4 (3 − 5) 4 (3 − 5)

*Index age corresponds to the matching age at which cases were diagnosed with dementia, and controls were still free of dementia.

FIGURE 5 | Marginal estimation from the linear mixed-effect model and mean function estimation from the functional principal component anal-
ysis (FPCA) and their 95% confidence intervals for each cognitive marker among cases and matched controls of the nested case-control study from 3C
cohort (𝑁 = 348).
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fdapace is currently the easiest implementation to use with
sparse and irregular functional data.

This empirical evaluation specifically targeted dropout, a partic-
ular category of missing data pattern wherein the absence of data
at any point implies that all subsequent visits are also missing.
The dropout scenario may induce a larger information loss than
intermittent missing data where information from the longitu-
dinal trajectory can be retrieved, even at the end of the window
time. Hence, we anticipate the robustness to dropout found in
this work to also apply to intermittent missing data. Note that it
is important to distinguish missing data due to dropout and miss-
ing data truncated by death [38, 39]. In this work, we only focused
on missing data due to dropout.

Our work was restricted to designs in which the observation times
were non-informative. This is the case in the 3C study as in most
cohort studies in which the visits are planned beforehand. When
observation times depend upon the measured outcome (e.g.,
when participants consult each time their health condition wors-
ens), specific functional data techniques have been very recently
proposed [40, 41], including the use of weights in the estimating
equations of FPCA [40]. We used the standard weighting scheme
implemented in PACE algorithm in which each observation
has equal weight [12, 42]. Alternatively, subject-specific weights
could be applied for balancing the contribution of each subject
[40] in case of informative visit times. In the presence of infor-
mative dropout, no weighting technique has been developed
so far in software to our knowledge. We leave for future works
the study of weighted versions, including notably weighting
schemes proposed in marginal models estimated by generalized
estimating equations in presence of dropout or death [39].

In our application study, without any assumption on the shape
of the cognitive trajectories, both methods (based on MM and
FPCA) showed very similar trends. Despite the absence of control
on the FPCA degree of smoothing using fdapace [33], the mean
predicted trajectories were smooth over time except for the TMTA
for which variations at the very beginning of the observation win-
dow suggested an overfitting (see Figure 5). Compared to other
scores, TMT was not collected at the second visit of the cohort
and fewer measures were available between −15 and −10 (see
last row in Figure 1).

Cognitive trajectories exhibited a linear mean trend for controls
throughout the window of interest. In contrast, the cognitive
trajectories of cases, closely resembling those of controls distant
from the diagnosis, exhibited a break with an accelerated decline
as the diagnosis approached. This two-stage trend in pathological
cognitive decline leading towards dementia had already been
identified in cognitive ageing research [43, 44]. This empirical
study highlights the usefulness of FPCA to closely describe,
summarize and predict longitudinal data. As a non-parametric
approach, it avoids dependence upon strong assumptions and
can adapt to any shape of trajectory. However, inference tools
are not straightforwardly available with FPCA contrarily to MM
which benefits from the maximum likelihood framework. For
instance, parametric change point mixed models have been
proposed to conduct inferential tasks to specifically explore this
cognitive decline two-stage trend [45, 46].

A parallel between the mixed-effect model and the FPCA frame-
works exists. The role of the individual random effects in the
mixed-effect model is very similar to the role of the individual
scores in the FPCA. They both represent individual deviations to
the mean trajectory: the marginal model in mixed-effect model
and the mean function in the FPCA. Moreover, under Gaussian
assumption, the random effect prediction for linear mixed-effect
model is based on Gaussian conditional expectation properties
and its formula is very close to FPCA score’s formula from the
PACE algorithm. Despite this parallel, FPCA and more broadly
any method from functional data analysis were initially devel-
oped for dense and regular functional data. This work joins others
that explored how to handle missing data using multiple impu-
tation techniques in functional regressions with functional data
as the covariate [47] or as the outcome [48]. All these techniques
open up possibilities regarding the utilization of functional
data analytical tools in the context of sparsely and irregularly
measured data increasingly available in health studies.
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