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Abstract
Accurate models for building thermal behavior play a
vital role in advanced control strategies of heating and
cooling systems. In this paper, a gray box (RC) model is
developed to predict the indoor air temperature of a
room under the extreme warm climate of Dubai (United
Arab Emirates). The proposed model includes the
influence of cladding on the building and contains six
thermal resistances and two capacities (6R2C). Then, the
model parameters are identified with measurement data.
The study reveals that the RC model, with consideration
of the influence of cladding, leads to the best results.
Highlights
 An artificial neural network model is used to convert

hourly values of global horizontal irradiation to
direct normal irradiation.

 Experimental data are used for training and
identification of the RC model

 A simplified method to introduce the influence of
cladding for a RC model is proposed.

Introduction
Nowadays, the increase in global energy consumption is
a vital concern. Moreover, energy and the environment
are two significant issues humans face. The electricity
consumption in Dubai increased from 43 093 GWh to 50
401 GWh between 2016 and 2021, while adding 3 417
MW electrical power capacity during the same period
from 10 000 to 13 417 MW, indicating a sharp increase
in its energy demand (DEWA 2021). The building sector
represents 30.41% of the energy consumed in Dubai,
which makes it one of the key areas in the issue of global
warming and energy transition.
One of the most effective ways to reduce building
energy consumption is to use appropriate control
strategies for heating and cooling systems. Therefore,
proposing models that can accurately predict building
thermal behavior is crucial. Models must be both simple
and reliable for real-time or predictive control
applications (Viot et al. 2015).
The modeling approaches can be classified into three
main types: white-box, black-box, and gray-box. White
box models are the most accurate, which is the approach
used by software like EnergyPlus and TRNSYS
(Berthou et al. 2014). However, white box models
require a significant amount of building information

such as architecture, materials used and their thermal
properties, and the glazing material specifications (see
(Royer et al. 2013)). Moreover, this model type is
computer power demanding, making their simulation
slow.
Contrary to the white-box models that try to predict the
building's thermal behavior based on physics, black-box
models are entirely based on historical data and
statistical analysis without parameters of physical
significance. Black-box models focus on finding the
relationships between input and output variables
independently of the building system phenomena
(Amara et al. 2015). Black box models such as artificial
neural networks (ANN) are widely used to predict
building thermal behavior (Mechaqrane & Zouak 2004)
(Afroz et al. 2017). These models can be processed
much faster than white-box models and calibrated easily
with the available data. However, black-box models are
not able to predict building behavior in the case of new
control strategies beyond the scope of their learning
phase (Berthou et al. 2014). At this point, the gray box
models are often preferred over the black box in the case
of new control strategies. These models combine the
benefit of the white and the black box models by using a
combination of simplified physics and historical data. A
grey-box energy model offers a balance between the
accuracy of a white-box model and the speed of a black-
box model. They use simpler equations than those used
in white-box models to represent building behavior and
then are calibrated with historical data, just like black-
box models. The most common gray-box model is a
resistance-capacitance (RC) or thermal-network model
(Li et al. 2021).
In recent decades, many studies have been carried out
using the RC approach to predict building thermal
behavior. (Berthou et al. 2014) compared four RC
models on their ability to predict heating and cooling
demands and indoor air temperature of a multi-zone
occupied office building. Out of all the models tested,
the two-order R6C2 model was found to be the most
efficient and able to accurately predict indoor air
temperature and thermal needs during heating and
cooling periods. The results indicated that for the R6C2
model, predicted data fit very well with the reference
(fitting above 84% and energy error below 2%). (Viot et
al. 2018) proposed an approach to obtain a suited RC
model from the physical knowledge of the building and
the systems to be controlled. A sensitivity analysis
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method (Morris) was used to reduce the number of
parameters to be identified. Their study concluded that
the 5R4C model describes well the dynamics of the
building and can be used for the predictive control of a
floor heating system on a real building. (Kuniyoshi et al.
2018) Evaluated the accuracy of a RC building model
equipped with an underfloor heating system. The
performance of the 6R4C model was compared to a
reference model implemented in EnergyPlus. The results
indicate that the RC model has sufficient accuracy after
the modifications (by changing relevant parameters) and
can be used for energy and demand-side management
applications. Yu et al. (Yu et al. 2019) investigated the
performance of RC models based on a physical
knowledge of the building to RC models using a generic
model structure and black-box models. Their
performance was evaluated on the long-term prediction
of the thermal dynamics of an unoccupied single-family
house as a test case. The model identification was based
on the measurement of the indoor air temperature.
In these studies, RC models, including the influence of
cladding on the building, still need to be well established.
Hence, this paper investigates an RC model to predict
the indoor air temperature of a room in the extreme
warm climate of Dubai, with a particular focus on the
influence of cladding.
This article is organized as follows. Section II describes
the building geometry. Section III introduces the gray
box model for modeling the studied room and explains
how to calculate the solar gain that hits the outdoor walls
and the one transmitted through the windows. Finally,

the last part presents the results of the solar gain model
and the comparison between simulated and measured
temperatures, allowing us to validate the proposed gray
box model.
Description of the living lab platform
Baitykool
The study refers to a living lab platform named
Baitykool. It is located in the sustainable city of Dubai,
UAE (25.0294°N 55.2784°E). This sustainable prototype
was developed and tested as a competition entry for the
Solar Decathlon Middle East (SDME 2018) (Figure 1-a)
(Samuel et al. 2020).
Baitykool is a single-floor building. The building is U
shaped and has a surface of 78 m² (Figure 1-b). The
house envelope works effectively to enhance the comfort
conditions and is well suited to the extreme warm
climate of the region. Note that Dubai has a hot arid,
subtropical climate, with extremely hot summers, humid
and dry, and very pleasant warm winters. The walls are
composed, from the outside to the inside, of the
following layers :
- Ultra High-Performance fiber Concrete (UHPC)
- Air gap
- Vapor/Rain/Reflective barrier
- Rigid insulation
- Semi-rigid insulation + wood vertical stiffeners
- Structural cross-laminated timber panel
- Composed mud bricks
- Acoustic tensed canvas

(a)
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(b) (c)
Figure 1: (a) Baitykool experimental living lab platform; (b) Baitykool plan; (c) Wall composition

The windows in Baitykool are double-glazed panels with
a glazing ratio of 0.28. The building has different
energetic and sustainable systems such as HVAC,
photovoltaic panels, radiative sky cooling (Aketouane et
al. 2022), aquaponic, gray water treatment, etc... More
details about Baitykool can be found in (Samuel et al.
2020).
Method
In this study, a gray box model is proposed to predict the
indoor air temperature of a room (southeast room in
Figure 1-b). Figure 2 shows the thermal network
representation of the RC model, which was developed
using models of the Modelica Standard Library. It
contains six resistances and two capacities (6R2C).
These parameters are determined from the knowledge of
the physical characteristics of the room. The choice of
the 6R2C model is motivated by the publication of
similar works involving the same order RC model
(Berthou et al. 2014). It's used for its simplicity,
replicability, and few requirements of input parameters.
The network comprises five temperature nodes,
representing respectively: Ti, the indoor air temperature
of the thermal zone; Ts, the surfaces internal side
temperature; Tw, the temperature of the wall; Th, the
surfaces external side temperature and Te, the outdoor air
temperature. For the R6C2 model, three boundary
conditions are considered; Te, Ps,e, the solar heat gain
that hits external surfaces, and Ps,i, the solar gain
entering through windows. Table 1 describes the
physical parameters of the R6C2 model. Their values are
based on the European thermal standard, the building's
technical documentation, and geometrical observations.

Figure 2: Schematic representation of the 6R2C model
Table 1: physical parameters of the R6C2 model

NAME DESCRIPTION
Ci (J/K) Internal air capacitance

Cw (J/K) Wall capacitance

Rw and Rs (K/W) Wall conductive resistance

Re (K/W) External convective resistance

Ri (K/W) Internal convective resistance

Rg (K/W) Glazing resistance

Rinf (K/W) Infiltration resistance

To implement the 6R2C model, the following
assumptions are considered:
- no air conditioning in the room
- the convective exchange coefficients are
constants. For heat exchanges inside and outside the
room, the coefficients hi and he are equal to 5 and 10
[W.m-2K-1)], respectively.
- the intermediate walls are adiabatic.
- the air infiltration is constant (fixed at 7.5 m3/h)
- the occupancy is not considered.
The proposed R6C2 model has a triple advantage. First,
two nodes are considered to represent the solar
irradiation reaching the building (Th and Ts): One hits
directly the outdoor surface wall (Th), and Ts is
transmitted through the windows. Secondly, the model
takes into account the influence of cladding. It should be
noted that the proper consideration of the reduction of
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heat gain by solar protection in front of an opaque wall
such as a cladding is relevant (Dugué 2014). Therefore,
it's crucial to include the influence of cladding on heat
gain calculation. As shown in Figure 1-a, the cladding in
front of walls differs from that of windows. The cladding
in front of windows has more holes to let the light pass
through it. So, we introduce two coefficients (a and b).
"a" (between 0 and 1) represents the part of energy
stopped by the cladding in front of the room walls, and b
(between 0 and 1) the part of energy stopped by the
cladding in front of the windows. Note that the cladding
is created by the UHPC and the air gap (Dugué 2014).
"a" and b are included in Ps,e, and Ps,i, respectively.
Finally, the air infiltration resistance and glass resistance
are separated and linked to the appropriate nodes.
After measured data post-processing, an identification
procedure allows for finding the parameter set closest to
the measured dynamics. The RC model was simulated
using OpenModelica, and the identification process was
done with Python.
The measurement campaign was carried out between the
17th to 27th of October 2019 in a passive situation (no air
conditioning). The instrumentation of the walls is
composed of hybrid temperature and hygrometry sensors
SHT85 (respectively precision ± 0.1°C and ± 1.5%).
A weather station (Vantage PRO 2® - Davis Instruments)
is placed on the roof of the building at 10 m high. It
allows recording the outdoor microclimatic conditions
[Temperature (T), relative humidity (RH), wind speed
(Wext), and global horizontal solar irradiation (Ig,h)].
Solar gain calculation
For all types of solar applications, especially buildings,
calculating instantaneous available solar gain is difficult
to obtain. The 6R2C model requires solar gain at each
instant of the day. This section proposes a model to
estimate the solar flux that hits the outdoor walls and the
one transmitted through the windows from values of
different components of solar radiation, orientation
angles, relative position to the sun, and time of the day.
To calculate the solar gain on outdoor walls, we need to
anticipate the solar radiation on the slope surface (90°).
For this purpose, we need the hourly values of solar
fluxes related to the different components of solar
radiation. The global irradiance on a sloped surface is
given as the sum of the beam (direct), diffuse, and
reflected components (Michalak 2021).

Ig,s = Ib,s+ Id,s + Ir,s (1)
Ig,s : global solar irradiance on a sloped surface, W/m2

Ib,s : direct (beam) solar irradiance on a sloped surface,
W/m2

Id,s : diffuse solar irradiance on a sloped surface, W/m2

Ir,s : solar irradiance due to ground reflection on a sloped
surface, W/m2

The global irradiance on a sloped surface can also be
calculated from input components of horizontal
irradiance by using the transposition model (Michalak
2021) :

Ig,s = Ib,hˑRb + Id,hˑRd + (Ib,h+Id,h ) ˑρˑRr (2)
Ib,h: direct (beam) solar irradiance on a horizontal surface,
W/m2

Id,h: diffuse solar irradiance on a horizontal surface,
W/m2

Rb: beam (direct) transposition factor
Rd: diffuse transposition factor
Rr: reflected transposition factor
ρ: solar reflectivity of the ground and building's
surroundings
The beam (direct) transposition factor can be calculated
as follows (Michalak 2021):

Rb = cos(θ)/cos(θz) (3)
Where θ [°] and θz [°] are, respectively, the angle of
incidence of beam irradiance and the zenith angle. Both
angles can be calculated and were discussed in detail in
(Zaaoumi et al. 2021).
θ = arccos (-cos(�s)ˑsin(�t)ˑcos(αs - αt) + sin(�s)ˑsin(�t)

(4)
θz = 90- �s (5)

The diffuse transposition factor can be calculated as
(Michalak 2021) :

Rd = (1+cos(β))/2 (6)
β: Tilt angle [°]
The reflected transposition factor is given by:
Rr = (1-cos(β))/2 (7)
It should be noted that at Baitykool's site, measurements
of direct horizontal radiation and diffuse horizontal
radiation are not available. Only data of global
horizontal radiation exist. The formula that links the
three components of solar radiation on a horizontal plane
is given:
Ig,h= Ib,h+ Id,h with Ib,h= DNIˑcos(θz) (8)

Figure 3: Architecture of the proposed ANN model.
In the following, an artificial neural network (ANN)
model is used to convert hourly values of global
horizontal irradiation to direct normal irradiation. This
model is one of the concepts of artificial intelligence and
is well suited to handle this kind of problem (Zaaoumi et
al. 2021). The three-layer MLP is the most popular type
of ANNs. The first layer is defined as the input layer,
which receives the input information and transfers the
input signal to the next layer. The second layer
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corresponds to the hidden layer that allows the inputs to
be processed using the transfer functions. The third layer
is the output layer. Figure 3 shows the architecture of the
proposed ANN model. It uses hourly data of zenith angle
for horizontal surface, time of the day, time of the year,
and global horizontal radiation as inputs to predict
hourly direct normal irradiation. The ANN model has
been developed using MATLAB software.
The solar gains that hit a building element is given by:
Ps = Ig,sˑAw (9)
As discussed before, the influence of cladding is
considered in the calculation. So, the new solar flow that
hits the walls is as follows:
Ps,e= aˑIg,sˑAw (10)
The solar gains that are transmitted through the windows
is given by:
Ps,i=bˑtrˑIg,sˑAw
(11)
Identification method of the gray box
models
Through an identification process, we try to find the
optimal set of parameters that minimizes an error
function. The chosen error function is the Mean Squared
Error (MSE). It is defined as the average squared
difference between the model indoor temperature Ti,m,
and the measured indoor temperature Ti.
MSE =(1/(1-N)) ˑƩ(Ti - Ti,m)2 (12)
The differential evolution algorithm is used for the
identification process. This algorithm is well adapted to
handle nonlinear and complex minimization problems
(Soares et al. 2017).
The accuracy of the 6R2C model is evaluated by using
three metrics: The Normalized Mean Biased Error
����, the Coefficient of Variation of Root Mean
Square Error ��(����), and the coefficient of
determination (R2)(Ruiz & Bandera 2017).
Results and Discussions
In the following, we discuss at first the results of the
ANN model. Next, we deal with the 6R2C model.
Finally, we present the results of the identification
process.
Results of the ANN model:
The ANN model was used to convert hourly values of
global horizontal irradiation to direct normal irradiation
and then to compare it with reference data. Data from
Dubai's Typical Meteorological Year (TMY) are used as
reference data.
The ANN model is a learning-based model, and data are
divided into two phases: training and validation (usually
75% of the data are used for the training process and the
remaining 25 % for the validation). In the training
process, the ANN model is provided with the data of the
inputs and output that the network will compute, and
then the errors between actual results (reference data)
and those predicted (determined by ANN) are calculated.

This process aims to reduce these errors to a minimum
and to define the structure of the ANN model (Zaaoumi
et al. 2021). The validation phase is used to estimate the
ability of the ANN model to interpolate values beyond
the scope of its learning phase.
To select input variables of the ANN model, we add
progressively new variables and observe their influence
on the model's accuracy. In this study, the selected inputs
are the time of the day, time of the year, zenith angle for
horizontal surface, and global horizontal radiation. The
output is direct normal irradiation. The parameters of the
ANN model are presented in Table 2.
Table 2 Final parameters setting of the ANN model.
Parameters Value
Number of hidden
layers

1

Number of epochs 500
Error function MSE
Train function trainlm (Levenberg-Marguardt)

Hidden layer function logsig
Output layer function tansig
Number of neurons in
the hidden layer

22

Figure 4 compares DNI values obtained from reference
TMY and ANN predictions. The R2-values for training
and validation data sets are 0.9884 and 0.9723,
respectively. These values correspond to a Relative
Mean Square Error (RMSE) of 23.04 W/m2 and 37.14
W/m2, respectively, for training and validation data sets.
Figure 5 shows the frequency distributions of the
difference between reference and ANN predicted values
of DNI. This frequency distribution test shows that
approximately 93% of the DNI deviations are less than
40 W/m2 for the training phase. This value is about 80 %
for the validation phase. This test indicates that ANN
model predictions can be considered accurate, especially
when knowing that 88% of DNI values are above 400
W/m2.
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Figure 4: Reference and ANN predictions DNI for
training (a) and validation (b) datasets.

Figure 5: Frequency distributions of the differences
between reference and predicted DNI

Results of the 6R2C model:
In this part, the results of the 6R2C model are presented.
The studied period is from the 17th to the 27th of October
2019. Data of global horizontal radiation, indoor and
outdoor air temperature are presented in Figure 6. The
outlet air temperature range is [20, 41] °C, and the inlet
air temperature range is [30, 35] °C. The global
horizontal irradiation values are in the range [0, 890]
W/m2. Note that the 6R2C model was simulated with
OpenModelica software.

Figure 7 presents a comparison between the simulation
and measurement temperature of the 6R2C model for
two cases. The first case corresponds to a model

considering the influence of cladding on solar gains
calculation, and the second to a model without it. It can
be noticed that the simulated temperature follows the
general evolution of the measured indoor temperature.
However, the simulated temperature has significantly
higher fluctuations in the second case than in the first
one. The highest relative difference value was about
5 °C for the second case and only about 1 °C for the first
case. This procedure proves the importance of taking
into account the influence of cladding for the RC model
in building solar gains calculation. To obtain an accurate
RC model, a calibration procedure of the parameters is
necessary. In the next part, only the 6R2C model with
the influence of cladding is considered.
To go further in the validation of the R6C2 model, an
identification process is presented. The goal is to identify
the parameters responsible for the influence of cladding
(a, b, and he). he is identified because cladding decreases
the heat exchanges around it. For this, we estimate the
parameters between 0.2 and 0.6 for a and b. he in an
interval of 5 W.m-2.k-1 to 15 W.m-2.k-1. Those intervals
have been chosen so that the parameters cannot be more
or less than 50% of what is believed to be their true
value. For the calibration process, data are divided into
two phases: Eight days for identification and the
remaining four days for validation.
Figure 8 shows a better agreement between the
simulated and the measurements of indoor air
temperature for the identification and validation periods.
The highest relative difference value was about 1 °C for
the identification and validation periods. Table 3 shows
the values of the NMBE, CV(RMSE), and R2 indicators
for the entire study period. The results obtained are
promising, especially compared to ASHRAE's
recommended values. For the identification period,
NMBE, CV(RMSE), and R2 are 0.11, 1.54, and 0.86,
respectively. These values are 1.39, 2.10, and 0.83,
respectively.
Table 3: Value of calibration indicators for the entire

study period.
NMBE CV(RMSE) R2

Identification (current
study) 0.108 1.536 0.862

Validation (current
study) -1.391 2.098 0.835

ASHRAE (Ruiz &
Bandera 2017), (model
Calibration criteria and
recommendation)

±10 30 > 0.75
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Figure 6: Representation of global horizontal irradiation, indoor and outdoor air temperature at Baitykool site.
October 17-27, 2019.

Figure 7: Indoor air temperature for the entire study period.
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Figure 8: Indoor air temperature for identification and validation periods
Conclusion
In this paper, an RC model is developed to predict the
thermal behavior of a room and particularly the indoor
air temperature under the extreme climate conditions of
Dubai. The proposed 6R2C model takes into account the
influence of cladding. For that, two coefficients (a and b)
were chosen to quantify the influence of cladding on the
solar gains for the walls and the window, respectively.
Results show that the influence of cladding must be
considered in developing a building gray box model. In
addition, it leads to a better evaluation of the indoor air
temperature. It was found that the maximum absolute
temperature error is 1°C and 5°C for the RC models with
and without the influence of cladding, respectively.
The selected RC model was then calibrated by
identifying the most relevant parameters. The chosen
parameters (a, b, and he) were adjusted to increase the
model accuracy. Hence, they were identified using a
differential evolutionary algorithm. The identification
results show that the RC model has an accuracy of 86%
and 83% for the training and validation datasets,
respectively. The proposed low-order gray box model,
with consideration of the influence of cladding, can be
used in predictive control for building energy
management.
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