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ABSTRACT 

In order to promote multi-storey timber building 

projects, a preliminary design methodology with 

optimisation step and decision-making support is 

proposed. The objective is to optimise building 

envelope composition taking into account trade-off 

between heating needs, summer thermal comfort, floor 

vibration comfort, global warming potential and 

embodied energy objectives. These objectives, that are 

conflicting and can implement in the same time 

continuous and discrete variables, will be then modelled 

as objective functions to be optimised in multi-objective 

manner. To obtain thermal objectives, a time consuming 

option is to couple an optimiser with a detailed 

simulation models. Another alternative is to generate 

meta-models and implement them directly to the 

optimiser as objective-functions. The multi-objective 

optimisation will be achieved using the metaheuristic 

Particle Swarm Optimisation (PSO) to determine the 

Pareto front of optimised solutions. A case-study is 

explored using two thermal meta-models. A Pareto 

front is obtained and analysed. 

 

Keywords: Multi-objective optimisation, Energy 

simulation, Meta-model, Particle Swarm Optimisation 

 

1. INTRODUCTION 

Wood is a low environmental impacts material with a 

dry and rapid implementation in the building process, 

facilitated by a potential high prefabrication level. 

However in France, timber building is still 

underdeveloped with a building incorporation rate of 

10% against 15% in Germany and 35% in Scandinavia 

and North America (Gabenisch et al. 2012). 

Furthermore, a lack of knowledge in timber building, 

especially for multi-storey slows its development 

(FCBA and CSTB 2009). To expand multi-storey 

timber building there is a need to develop design 

methods and tools with regulatory constraints 

consideration. 

Building is a complex system, subject of 

multidisciplinary design studies generally considered by 

technological fields. In order to design preliminarily 

optimised building envelope and structure composition 

considering thermal, structural and environmental 

objectives, it is necessary to increase design 

understanding trade-offs involved. This makes it a 

challenging multi-objective optimisation problem. 

To promote multi-story timber buildings with 

multidisciplinary design, a multi-objective optimisation 

method is under development. The objectives are to 

optimise the envelope and the structure composition of 

a building. Architectural geometry, location and use are 

fixed parameters. The minimising of energy needs, 

thermal discomfort, CO2-eq emission and embodied 

energy of the building and the maximizing of floor 

vibration comfort are considered objectives. Regulatory 

structural constraints are considered by preliminary 

design calculations to ensure the safety of the structure. 

In longer-term the objective functions will be completed 

by adding acoustic insulation, lighting autonomous and 

structural cost to the multi-objective optimisation 

process. 

The preliminary design methodology couples 

multi-objective optimisation to multi-criteria decision. 

First, the overall approach is to perform a search 

process through the multi-objective optimization for the 

calculation of the Pareto front of optimal compromises 

between the different objectives to be optimised. Then, 

a decision process is implemented through a multi-

criteria analysis to help decision in choosing the optimal 

compromise, from the Pareto front, to be implemented. 

Objectives and significant variables are initially 

selected. Relationships between them are then 

established and represented as influence graph. Next, 

explanation of links between variables and objectives 

which consists in assembling knowledge and 

implementing necessary research to explain the 

relationships between variables and objectives is done. 

Objective functions are then designed as explicit 

qualitative function or algorithm. Optimisation and 

multicriteria analysis process are then implemented 

consecutively.  

To explicit thermal objectives use of dynamic 

simulation model is required. However such detailed 

model easily requires more than ten minutes estimating 

thermal performance. Total simulation time may 
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quickly become important especially when several 

iterations are necessary to find a set of optimal 

solutions. Efficient methods of searching the design 

space became necessary. One promising method is the 

use of stochastic algorithms to optimise discontinuous 

and multi-objective building design problems (Attia et 

al. 2013). However, many hundreds or even thousands 

of design samples can still be necessary to converge to 

an optimum design or Pareto front. Optimisation 

processes still lead to a large computational burden, 

especially when detailed simulation models are used.  

On this work, to save valuable time during the 

optimisation process and its implementation, detailed 

simulation models are replaced by surrogate models. 

Surrogate models or meta-models express the outputs in 

terms of decision variables as an analytic function. Such 

functions represent the explanation of links between 

variables and objectives for thermal objectives. First, 

they are easy to implement into the optimisation process 

and may facilitate sensitivity analysis on decision 

variables. Finally, they may be used to perform many 

objective function evaluations without running full 

simulations each time. Such approach has already been 

used by (Eisenhower et al. 2012) that developed a 

methodology for the use of meta-models in building 

optimisation problem with over 1000 parameters. They 

optimised thermal comfort and energy use with a 

gradient based optimiser that used the derivatives 

available from the meta-model. (Tresidder et al. 2012) 

fitted a Kriging meta-model to simulation results, which 

was then optimised using a Genetic Algorithm.  

This article presents the calculation methodology 

employed to optimise the building envelope 

composition taking into account trade-off between 

heating needs, summer thermal comfort, floor vibration 

comfort, global warming potential and embodied energy 

objectives. Firstly, the thermal, mechanical and 

environmental objectives are presented. Secondly, 

explanation of links between variables and thermal 

objectives by using a surrogate model would be 

explained. Third, the optimisation process and 

implementation would be detailed and the compliance 

to the problem clarified. Finally a case study is 

presented and first results are discussed. 

 

2. OBJECTIVES OF THE DESIGN OF MULTI-

STOREY TIMBER BUILDING 

The objective is to optimise building envelope 

composition taking into account trade-off between 

heating needs, summer thermal comfort, floor vibration 

comfort, global warming potential and embodied energy 

objectives. 

 

2.1. Thermal objectives 

Two thermal objectives to optimise have been selected: 

Heating needs and summer comfort. 

 

2.1.1. Heating needs: 

It is the energy demand to keep the building at a 

setpoint temperature Tset during the winter. The 

objective F1 is to minimize the gap between the desired 

Hd and obtained heating needs Hn as (1). If the objective 

is simply to minimize the needs for heating while Hd=0. 

Hn must be less or equal to a fixed value for maximum 

heating needs, Hmax. 

 

1 : min( ( ))n dF abs H H  subject to maxnH H  (1) 

 

2.1.2. Summer comfort: 

The degree-hour DH, expressed in the EN15251 

version, measure the accumulation of the temperature 

offset from a comfort threshold per each hour (Figure 

1). It is the building thermal zone integral operative 

temperature degrees To higher than a comfort 

temperature Tc during an hourly simulation period with 

occupancy pocc (2). The comfort temperature depends 

on the type of building. The objective F2 is to minimize 

DH. DH must be less or equal to a fixed value for 

maximum degree-hour, DHmax (3).  

 

( ( ) )o c

pocc

DH T T dt    with o cT T  (2) 

 

2 : min( )F DH  subject to maxDH DH  (3) 

 

 
Figure 1: Summer comfort objective calculation 

 

To predict energy needs and thermal comfort 

dynamic thermal simulation using detailed models are 

necessary. Such models take into account all of the 

variables input at the building stage, such as the thermal 

performance of the materials, yearly weather 

information, occupation periods of the building and 

occupant use. Hn and hourly thermal zone operative 

temperature are computed directly by using EnergyPlus 

7.2 (DOE: U.S. Department of Energy) software. For a 

large scale building, as a multi-storey office building, 

the calculation time required to compute both, Hn and 

hourly thermal zone operative temperature necessary to 

compute DH, is about few minutes to hour. An 

important task is to reduce computation time required to 

get the optimal solutions from days, weeks, even 

months to less than one hour. When detailed simulation 

models are used, the issue may be addressed by meta-

modelling techniques, which approximate a simplified 

function relationship between the simulation results and 

the input variables. Such functions represent the 

explanation of links between variables and objectives 

Operative

temperature

To ( C)

Time (h)

Comfort

temperature

Tc

Period with occupancy pocc
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for thermal objectives and their generation would be 

detailed later. 

Meta-models may be used instead of main model 

for the optimisation procedure: more calculations can be 

made in the available time using a meta-model than a 

main simulation model that is more detailed. 

Nevertheless, to surrogate main simulation model, 

meta-model has to be accurate. 

In (Merheb 2013), while the main model requires 

200 second to evaluate Hn, use of meta-models allows 

to evaluate 2056 alternatives in one second. These 

figures confirm the effectiveness and interest to 

calculate a meta-model to surrogate a computationally 

expensive detailed model. 

 

2.2. Mechanical objective and constraints 

Structural and environmental objectives, F3, F4 and F5, 

may be described as follow: 

 

2.2.1. Floor vibration comfort: 

Three comfort levels 1, 2, 3 and 4 respectively, very 

good, good, acceptable and unacceptable are fixed. 

Comfort level, Fv, have to be minimized. 

 

3 : min( )vF F  and 4vF    (4) 

 

2.2.2. Mechanical constraints 

Structural and sizing constraints are: 

 

 Floor height: 

The floor height is limited to a maximum value 

defined by the variables. 

 Wall thickness: 

The wall thickness is limited to a maximum value 

defined by the variables. 

 Structural constraints: 

Solutions must meet the normative requirements of 

Eurocode 5 (AFNOR 2005a; AFNOR. 2005b) or, for 

CLT as the recommendations of FPInnovations 

(FPInnovations 2011). Preliminary design calculations 

will be performed to check the viability of solutions 

regarding to the ultimate limit state (ULS) and the 

serviceability limit state (SLS). 

 

2.3. Environmental objectives 

 

2.3.1. Global warming potential (GWP): 

The objective is to minimize de GWP related to the 

envelope during the building life cycle (Pre-Use, Use, 

Replacement and End of Life). The pre use and 

replacement emissions of the raw material extraction 

and materials manufacturing are calculated based on the 

mass of each material in the building construction. The 

end of life emission related to the demolition and 

disposal transportation to landfill and recycling centre 

are also calculated based on the mass of each material in 

the building construction. Finally the use emission 

related to the envelope is determined by first calculating 

the heating needs during the building life cycle.  

 

Then heating needs are multiplied by the efficiency 

of the heating system and the local electricity emissions 

factor. 

 

4 : min( )F GWP   (5) 

 

2.3.2. Embodied energy: 

The objective is to minimize embodied energy Em 

of the envelope during the building life cycle. It is 

determined similarly to the GWP. 

 

5 : min( )mF E   (6) 

 

3. META-MODELLING OF THERMAL 

FUNCTIONS 

 

3.1. Meta-model generation 

To generate a meta-model, three steps are required: 

 

1. Generation of an initial sampling of the 

dynamic simulation model (the main model) 

2. Meta-model calculation  

3. Meta-model validation  

 

To define the sampling it is necessary to define its 

size, parameters, and their range and distribution law for 

their variation (e.g. Gaussian, Uniform, Log-normal). 

Then the sampling is carried out by varying the 

parameters of the model within a range around their 

baseline value using Monte Carlo method, which 

randomly selects these samples. Corresponding models 

are realized and simulated preferably using parallel 

computation.  

From this sample, meta-model based on 

polynomial chaos (PC) (Wiener 1938) is build. Use of 

PC from an EnergyPlus model was done in (Merheb 

2013) to evaluate the spread of uncertainties by 

coupling with the OpenTURNS© tool, which integrate a 

PC toolbox (Dutka-Malen et al. 2009).  

Let a numerical model, f, having n input 

parameters gathered in an input vector X =(x1,x2,...xn), 

and a scalar output Y:  

 

( )Y f X   (7) 

 

X  follows the joint probability density function. 

The polynomial chaos expansion enables to 

approximate the output random variable of interest Y by 

the new output random variable of interest Ỹ. A 

truncated polynomial chaos to order kh is as follows 

 

0

( )
hk

k k

k

Y Y T X



      (8) 

 

where T is an isoprobabilistic transformation which 

maps the multivariate distribution of X  into the 

multivariate distribution μ, and Ψk is a multivariate 
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polynomial basis which is orthonormal according to the 

distribution μ and αk are the polynomial coefficients to 

compute in order to minimize the difference between 

the variable of interest Y and its polynomial 

approximation using least squares strategy.  

Two main parameters characterise PC meta-

models: 

 

 The order kh of the polynomial 

 The sampling size 

 

To determine the best order the sample is divided 

into two parts according to learning theory: learning 

base (90% of the sample) and validation base (10%). 

The meta-model calculation is done with the learning 

base and validated or rejected with the validation base.  

Mean-squared and relative errors are determined 

with the validation based, respectively (6) and (7). The 

order kh of the polynomial is gradually increased until 

mean squared decrease which means that the sample 

size is not enough to build higher polynomial order.  

 

2

2

1

1
( ) ( )

vn

i i
v i

L f X f X
n



  
     (9) 

 

( ) ( )
sup

( )

i i

i

f X f X
L

f X




  (10) 

 

After meta-model generation, it is checked on the 

main model according to the mean-squared error, 

relative error and residual which is calculated on the 

learning base (8). If errors and residual are satisfactory 

according to the designer, the sample size is adequate. 

Otherwise, sample size has to be increase to obtain a 

higher order polynomial. 

 

2

1

1
( ) ( )

ln

i i
l i

r f X f X
n



  
    

 (11) 

 

3.2. Sensitivity analysis 

Meta-models based on polynomial chaos (PC) (Wiener 

1938) have the advantage to deduct Sobol indices 

(Sobol 1993) of the output from its coefficients with 

almost no additional cost (Crestaux et al. 2009). The 

Sobol indices are used in global sensitivity analysis as a 

tool for ranking the input random variables of a model 

according to their weight in the variance of the model 

response.  

The determination of the Sobol decomposition and 

sensitivity indices is immediate as soon as the PC 

expansion of f is known. The Sobol indices Su of f are 

approximated by (Crestaux et al. 2009): 

 

2

2

u

h

k k kk k

u u

k k kk k

S S




  

 
  




 (12) 

 

When generating meta-models, it is possible to 

extract the total Sobol indices STi (10). STi express the 

responsibility of each parameter in its range of variation 

correlated with the others on the output variation.  

 

iT u

u i

S S



  (13) 

 

Non influent parameters would be fixed according 

to the designer. 

 

4. MULTI-OBJECTIVE OPTIMISATION 

 

4.1. A mixed integer non linear programming 

problem (MINLP) 

The design of building envelope composition taking 

into account trade-off between thermal, structural and 

environmental objectives is a non-linear optimisation 

problem. Many variables interact with each other and 

influence several common objectives simultaneously. 

The optimum value for a variable depends strongly to 

the value taking by other variables. Two kinds of 

variables are considered in this optimisation model: 

continuous variables as insulation thickness and discrete 

variables as kind of floor. Continuous variables are box 

constraints with boundary values and discrete variables 

give a predefined set of alternatives. Each additional 

variable makes the set of all possible alternatives (the 

design space) exponentially large. 

Metaheuristic algorithms are well adapted to carry 

out the global optimisation for multi-objective mixed-

integer non-linear programming (MINLP) problems, 

especially when the design space is large. 

Developed by Eberhart and Kennedy (1995), PSO, 

like other metaheuristic methods, finds a set of optimal 

solutions to a difficult optimisation problem. This 

method, motivated by the simulation of social 

behaviour, has proved to be very efficient in hard 

optimisation problems. The system is initialized with 

population and searches for optima by updating 

generations. Kennedy and Eberhart (1997) have 

introduced a discrete binary version of PSO (DPSO) 

that operates on binary variables (bit, symbol or string) 

rather than real number. Thus, they extend the use of 

PSO optimisation to discrete binary functions as well as 

to functions of continuous and discrete binary variables 

at the same time. Michaud et al. (2009) have 

generalized the discrete binary version of PSO to a 

discrete n-ary of PSO. Finally, the mixed-integer PSO 

(MIPSO) technique is especially and fully suitable for 

our problem where non linear functions have to be 

optimised with both, continuous and discrete decision 

variables. 
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4.2. Multi-Objective Particle Swarm Optimisation 

algorithm 

The original procedure for implementing PSO is simple 

and easy to implement six steps algorithm (Ndiaye et al. 

2009): 

 

1. Initialize a population of particles with random 

positions and velocities on n dimensions in the 

problem space 

2. For each particles calculate the fitness (the 

function to optimise in n variables) 

3. Compare particle’s fitness with the fitness of 

its best position ever visited (pbest). If current 

value is better than pbest, then it becomes 

pbest. 

4. Identify the particle in the neighbourhood with 

the best fitness; it becomes the leader of the 

neighbourhood. 

5. Change the velocity and position of particles 

according to velocity and position updating 

rules (16) and (17). 

6. Loop to step 2. Until the end condition is met, 

usually a sufficiently good fitness or a 

maximum number of iteration. 

 

For a search in an n-dimensional search space 

where the particles movements are synchronized, at the 

tth iteration, for the ith particle, the position and 

position change (velocity) vectors are respectively 

represented as (14) (15) (Eberhart and Kennedy 1995): 

 

,1 ,2 ,( , ,..., )t t t t
i i i i nX x x x   (14) 

 

,1 ,2 ,( , ,..., )t t t t
i i i i nV v v v   (15) 

 

The position  and position change (velocity) 
1

,

t

i jv 
 

updating rules are given as below: 

 
1 1

, , ,
t t t
i j i j i jx x v     (16) 

 
1

, , 1 1 , , 2 2 ,. ( ) ( )t t t t t t
i j i j i j i j j i jv wv c r p x c r g x       (17) 

 

Where i = 1,2,…p, j = 1,2,…,n,  p is the number of 

particles (the size of swarm), and n is the dimension of 

search space; 1

,1

t

ix
 is the position of the particle i and 

1

,

t

i jv
 its velocity; w is called inertia weight, it is used to 

control the impact of the previous history of velocity on 

the current one; r1 and r2 are uniformly distributed 

random numbers between 0 and 1; c1 and c2 are positive 

acceleration constants; pi,j is the value of jth dimension 

of the best position ever visited by ith particle; gj  is the 

value of jth dimension of global best position ever 

visited by all particle in the swarm. 

For discrete n-ary variables the difference is in the 

definitions of velocity updating rules where the position 

updating rule is based on logistic function as below 

(Michaud et al. 2009): 

 
1

,
t
i j kx n   if 1

1 ,( )t
k i jS v 
     

1
,
t
i j lx n   if 1

1 ,( )t
l i j lS v 
    with 1 1l k    

1
, 1
t
i jx n   if 1

1 ,( )t
i jS v    (18) 

where 

1
,

1
,

1
( )

1
t
i j

t
i j

v
S v

e









 and 1 1,..., k    are strictly ordered 

uniformly distributed random numbers between 0 and 1. 

 

With the PSO algorithm, the leader determining 

that influences the updating of a particle position 

depends on the established neighbourhood topology. In 

a multi-objective optimisation problem it is function of 

the set of leaders already founded in the search space. 

Set of leaders are stored in a specific memory called 

extended memory (Hu et al. 2003). When a particle 

dominates some leaders in the extended memory, it is 

added to the leaders set and the dominated ones are 

discarded from the extended memory. The set of leader 

is reported as the final Pareto optimal set or Pareto 

front. 

 

4.3. Multi-objective optimisation implementation 

Attia et al. (2013), Evins (2013) and Stevanović (2013) 

underline and conclude on the necessity to develop 

tools, for sustainable building design, that integrate 

both, building physic simulation and optimisation 

process. Such tools have to reduce computation time, to 

be accurate, and to support decision-making. However, 

optimisation process can lead to a large computational 

burden especially when detailed simulation models are 

used (Wang et al. 2005).  

Based on this observation, the optimisation 

framework consists to a preliminary design tool 

incorporating thermal meta-models generation, and 

optimisation process. 

The flowchart of optimisation solution toolbox 

used in this work is illustrated in the figure 2 and is 

divided into five steps: 

1. A multi-storey timber building is defined: 

architectural geometry, location and use are fixed 

parameters; constraints and decision variables are 

identified. 

2. Thermal objectives are then modelled on 

EnergyPlus 7.2 for energy and comfort simulation; 

and corresponding meta-models are generated and 

used as objective functions  

3. A sensitivity analysis is carried out on thermal 

objectives and non-influent parameters are fixed 

according to the designer. 

4. Structural and environmental objectives are 

modelled using analytic functions and then 

implemented in Ted© tool (Tool for Ecodesign). 

5. The PSO multi-objective optimisation process is 

then performed using the Ted© tool. 
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5. CASE-STUDY 

The case-study building model was made in order 

to keep calculation time as short as possible. It is a 

simple rectangular office building without sun 

protection.  

 

 

5.1. Description 

The case-study (Figure 3) is a three-storey office 

building with as objective the optimisation of the 

building envelope composition. Architectural geometry, 

location and use are fixed parameters. The surface area 

is about 168 m² and ceiling height about 2,6m. 

Variables concern the building envelope such as 

insulation level, glazing, cross laminated timber (CLT) 

section and panels’ thickness.  

The building model was built using OpenStudio 

and exported to run in EnergyPlus. Each analysis of the 

model took around 40 seconds to run in EnergyPlus. 

Using such a simple model was judged to be beneficial 

because the aim of the paper was to set up an 

optimisation solution toolbox rather than to answer 

specific building-design questions. Twenty-four 

decision variables were selected (Table 1). 

 

 
Figure 3: Case-study building 

 

 

 

 
Figure 2: Summer comfort objective calculation 
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and constraints
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Table 1: Parameters description 

xj Description Unit Main relations 

x0 Wall insulation thickness  m 0.04 ≤ x0 ≤ 0.3 

x1 Wall CLT layers number - Discrete variable x1 = {3,5,7,9} 

x2 Wall CLT thickness of longitudinal layers mm Discrete variable x2 = {20,30,40,50,60,70,80} 

x3 Wall CLT thickness of transversal layers mm Discrete variable x3 = {20,30,40} and x3 ≤ x2 

x4 Wall CLT thickness  m 0.06 ≤ x4 ≤ 0.2 and x4 = ((x1+1)*x2+(x1-1)*x3)/2000 

x5 Wall insulation conductivity W/(m.K) 0.03 ≤ x5 ≤ 0.04 

x6 Wall cover panels thickness  m 0 ≤ x6 ≤ 0.04 

x7 Cover and ceiling panels density kg/m
3
 Discrete variable x7 = {800,2200} 

x8 North windows U-value W/(m².K) 0.6 ≤x8 ≤ 2 

x9 South windows U-value W/(m².K) 0.6 ≤ x9 ≤ 2 

x10 North windows solar factor - 0.35 ≤ x10 ≤ 0.6 

x11 South windows solar factor - 0.35 ≤ x11 ≤0.6 

x12 Floor insulation thickness m Constant x12 = 0.1 

x13 CLT density kg/m
3
 350 ≤ x13 ≤ 700 

x14 Floor concrete cover density kg/m
3
 Constant x14 = 2300 

x15 Roof insulation thickness m Constant x15 = 0.2 

x16 Roof CLT thickness m Constant x16 = 0.5 

x17 Roof insulation conductivity W/(m.K) Constant x17 = 0.038 

x18 Ceiling panels thickness m 0.006 ≤ x18 ≤ 0.04 

x19 Floor CLT layers number - Discrete variable x19 = {3,5,7,9,11} 

x20 Floor CLT thickness of longitudinal layers mm Discrete variable x20 = {20,30,40,50,60,70,80} 

x21 Floor CLT thickness of transversal layers mm Discrete variable x21 = {20,30,40} and x21≤x20 

x22 Floor CLT thickness m 0.2 ≤ x22 ≤ 0.4 and x22 = ((x19 + 1) * x20 + (x19 - 1) * 

x21) / 2000 

x23 Floor concrete cover thickness m 0 ≤ x23 ≤ 0.06 

x24 Natural ventilation rate vol/h 0 ≤ x18 ≤ 4 

 

Table 2: Meta-models characterisation 

 

5.2. Results and discussion 

Meta-models have been first calculated with 

OpenTURNS® tool. DH was calculated only for the 

warmer zone during the warmer week of the year. Hn 

and DH meta-models have been based on a sampling of 

600 data sets that were enough to obtain acceptable 

second order precision (Table 2). Simulation execution 

times of 23,1s and 7,7s were necessary to respectively 

calculate Hn and DH; total times of 5 hours and 7 

minutes were required for establishing the two meta-

models using personal computer (Windows® 8, 2.53 

GHz Intel® Core™ processor, 4.00 Go RAM). 

Then, a sensitivity analysis has been done using 

Sobol indices. They where oriented according to meta-

model coefficients (Figure 4). Wall insulation thickness, 

windows U-value and windows solar factor influence 

both Hn and DH. The variations of certain parameters, 

as roof insulation thickness, do not influence the 

optimisation process and were implemented as 

constants (Table 1). 

The PSO' parameters w, c1 and c2 have been 

respectively settled to 0.63, 1.45 and 1.45. With 300 

particles and 100 iterations 38 minutes were necessary 

to the PSO' program Ted© to calculate a Pareto front of 

52 solutions (Figure 5). With this simple case-study, 

257 days would have been required to execute the same 

calculation using the detailed simulation models of the 

thermal objectives instead of meta-models. 

 

 
Figure 4: The influences of decision variable on Hn and 

DH 

 

 
Figure 5: Pareto front for Hn and DH objectives 
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With a Pareto front made from two thermal objectives 

some parameters as wall insulation conductivity, wall 

cover panels’ thickness and ceiling panels’ thickness are 

constants. By integrating others objectives these 

parameters would have taken several values. 

Table 3 illustrates three solutions in the Pareto front. 

When windows solar factor is low, insulation and CLT 

thickness are high; this compensates the deficit of solar 

gain by a best insulation. On the contrary when solar 

factor is high, insulation is lower and windows U-value 

is very low. Solutions on the Pareto front represent the 

best compromises between insulation and penetration of 

solar rays. 

 

 

Table 3: Example of solutions in the Pareto front 

Solution x0 x4 x10 x12 x14 x23 Hn DH 

a 0.3 0.2 2200 1.4 0.35 0.03 15.2 177 

b 0.25 0.18 2200 0.6 0.37 0.04 12.1 223 

c 0.22 0.14 800 0.6 0.58 0.06 9.3 429 

 

 

6. CONCLUSION 

In this paper a methodology to optimise building 

envelope composition taking into account trade-off 

between heating needs, summer thermal comfort, floor 

vibration comfort, global warming potential and 

embodied energy objectives have been presented.  

The optimisation framework which is a 

preliminary design tool incorporating thermal meta-

models generation and optimisation process has been 

developed. The use of meta-models in state of detailed 

thermal simulation modelled saves time (from several 

months to less than one day) and reduces computing 

resources. 

The multi-objective particle swarm optimisation 

(MOPSO) algorithm enables to calculate a Pareto front 

for both thermal objective functions. These functions 

use in the same time continuous and discrete variables. 

On-going work on environmental and structural 

objectives will complete the optimisation process. Also 

integration of discrete variables concerning the structure 

type has to be performed. 
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