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d Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy 
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A B S T R A C T   

The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on 
coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and eco-
toxicological tests on phylogenetically distant species were performed on leachates from the following plastic 
categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The 
bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer 
Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and 
the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal 
and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl 
phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic cate-
gories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine in-
vertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of 
evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an 
environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of 
FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the 
Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated 
approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the 
ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further 
investigated to reduce high concentrations and additive types that could impact marine ecosystem health.   

1. Introduction 

Every year around 9.5 million tons of plastic end up in the ocean (Lau 
et al., 2020). Once in the marine environment, plastics end up stranding 
on beaches, making these ecosystems a major final sink for plastic, 
including small fragments, known as microplastics (MPs; Pannetier 
et al., 2019; Lefebvre et al., 2021). 

Plastics are formulated with additives (i.e. plasticizers, stabilizers, 
flame retardants) to impart beneficial properties (Bridson et al., 2021). 
Plastic fragmentation and degradation in MPs may facilitate the release 
of both additive and adsorbed chemicals (i.e. polycyclic aromatic hy-
drocarbons (PAHs), polychlorinated biphenyls (PCBs), metals, etc.) in 
the surrounding environment and the transfer to organisms (Pannetier 
et al., 2019). Most of additives and adsorbed chemicals are hazardous to 
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the marine biota (Oliviero et al., 2019; Gunaalan et al., 2020; Le Bihanic 
et al., 2020). Considering that global plastic pollution in the ocean is 
expected to increase (Jambeck et al., 2015), a load of tons of additives 
are estimated to be released into the marine ecosystems (Gallo et al., 
2018). Therefore, there is an urgent need to assess the impact that 
substances leached from plastics may exert on marine ecosystems. 
Increasing our understanding of the chemical composition and effects of 
plastic leachates represents a significant step to evaluate plastic pollu-
tion consequences and to identify low-impact and safe plastic formula-
tions, potentially useful to the plastic industry to replace harmful 
additives (Almeda et al., 2023). 

Toxicity of leachates from plastics have been found across a wide 
range of organisms including bacteria, phytoplankton, zooplankton and 
fish (Bejgarn et al., 2015; Hamlin et al., 2015; Li et al., 2016; Oliviero 
et al., 2019; Lehtiniemi et al., 2021; Schiavo et al., 2021; Focardi et al., 
2022; Paganos et al., 2023). Adverse effects on survival, growth, 
development, behaviour and DNA damage were correlated with dose, 
polymer type, particle size, additive composition and plastic weathering 
(Gunaalan et al., 2020; Schiavo et al., 2021; Bridson et al., 2021; Seuront 
et al., 2021; Delaeter et al., 2022). However, most of the aforementioned 
literature reports the ecotoxicity of leachates from pristine plastic - 
lacking environmental relevance - rather than in field collected plastics. 
The assessment of leachate effects using beached plastics is critically 
important, since the effects observed in aquatic biota exposed to 
leachates from virgin plastics can not be directly extrapolated to the 
environmental risks associated with plastic pollution (Pannetier et al., 
2020; Alimi et al., 2022; Menicagli et al., 2022). For instance, high toxic 
effects were observed in mussel development after leachate exposure 
from beached versus virgin pellets, due to a more complex mixture of 
contaminants adsorbed on the beached-pellets (Gandara e Silva et al., 
2016). Conversely, other studies reported reduced leachate toxicity after 
plastic weathering, likely due to the loss of additives (Sarker et al., 
2020). 

Plastic is the largest category within beached marine litter (Laglba-
uer et al., 2014), being commonly found in the Mediterranean Sea and 
the Atlantic Ocean (Cózar et al., 2015; Constant et al., 2019; Giovacchini 
et al., 2018; Monteiro et al., 2018). The highest plastic accumulation has 
been reported on Atlantic beaches in the industrial areas (Antunes et al., 
2018) and Mediterranean beaches (Turner and Holmes, 2011; Laglbauer 
et al., 2014). Despite the high plastic abundance in these areas, the ef-
fects of beached plastic leachates are still poorly explored. Cormier et al. 
(2021) reported leachate toxicity from MPs stranded on Atlantic beaches 
towards early stages of aquatic organisms. In this study, we evaluated 
the potential ecotoxicity of leachates obtained from micronized plastics 
collected in Mediterranean and Atlantic beaches. Plastic micronization 
allows to obtain small size fractions (<250 μm) for aquatic bioassays 
(Oliviero et al., 2019; Beiras et al., 2019), comparability among mate-
rials, increasing particle surface, facilitating the release of additive and 
adsorbed chemicals, most of which are not covalently bound to the 
polymers and are prone to leach into the environment (Almeda et al., 
2023). 

In this study, we aimed at providing insights on the impact of 
leachates from in-field collected plastics on aquatic organisms, by 
mimicking an environmentally realistic mixture of plastic particles. 
With this aim, we performed a chemical characterization of the leach-
ates obtained from different plastic categories (fishing ropes, hard 
plastics, pellets, fishing nets, plastic bottles) - commonly found on 
beaches and whose polymers are the most abundant in the marine litter 
(i.e. polyethylene terephthalate (PET), polyethylene (PE), poly-
propylene (PP); Iñiguez et al., 2017). The toxicity of micronized plastic 
leachates towards aquatic organisms belonging to different trophic 
levels was assessed. Specifically, the bacterium Alivibrio fischeri, the 
crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Bra-
chionus plicatilis, the sea urchin Paracentrotus lividus, the jellyfish Aurelia 
sp. and the medaka Oryzias latipes were selected. Ecotoxicological results 
were analyzed within a quantitative Weight of Evidence (WOE) model to 

integrate and weight data from ecotoxicological line of evidence (LOE) 
based on 13 responses. This model provides synthetic hazard indices for 
each data (Regoli et al., 2014), before their integration in an environ-
mental risk index for each plastic typology. 

2. Materials and methods 

2.1. Sampling collection, chemical characterization and grinding process 

Stranded plastics were collected from six beaches of the Mediterra-
nean Sea (Ligurian and Adriatic Sea, Italy) and Atlantic Ocean (Biscay 
Bay, France) in 2022 (Suppl. Fig. S1). The following plastic categories 
were collected: rapido trawling rubber (RTR), hard plastics (HP), pellets 
and fragments (pellets), fishing nets (FN), plastic bottles (PET; Supple-
mentary Table S2). Specifically, FN, HP containers and RTR were 
collected in the Adriatic Sea, while plastic bottles in the Ligurian Sea. 
Pellets, HP, and a mixture of FN and oyster bags were collected in the 
Biscay Bay. Except for pellets, plastic items were cut by scissors into 1 
cm2 fragments. All plastic categories were characterized by using a 
Fourier Transform Infrared Spectroscopy (FT-IR) spectrometer. The 
spectra of the polymers were compared to reference spectra through 
libraries, with a >70% similarity threshold (Suppl. Table S2). 

Plastics were then inserted into a rotatory mill filled with liquid ni-
trogen and ground to obtain MPs with a size <250 μm. 

2.2. Leachate preparation 

After grinding, 1 g of MPs was added to 1 L glass bottles with 
seawater (SW) to use 1 g/L solid/liquid ratio. Although this concentra-
tion exceeded the environmental ones (up to μg/L), it was selected on 
the basis of previous studies on aquatic bioassays, demonstrating that 
this ratio maximizes the sensitivity in detecting potential toxicity relased 
from the plastic (Beiras et al., 2019; Almeda et al., 2023). 

The bottles were closed and incubated in a rotating wheel (2 rpm 
speed) for 24 h at 20 ◦C in darkness to obtain leachates (Beiras et al., 
2019; Almeda et al., 2023). Plastic particles were removed from the 
bottles by using a vacuum filtration system equipped with microfiber 
filters (Whatman GF/F filters 0.8 μm). Undiluted leachates (1 g/L) were 
stored refrigerated in glass bottles before being used. As a blank, natural 
or artificial SW was used for chemical analyses and ecotoxicological 
bioassays (salinity = 35.1 ppt ± 0.2 for zooplankton and chemical an-
alyses, 20 ppt for bacteria, 10 ppt for fish; Temperature = 20 ◦C, pH =
8.1 ± 0.1, O2> 90% saturated air). All parameters were checked before 
and during the experiments. More details are reported in the Supporting 
information. 

2.3. Chemical analysis 

A total of 2000 mL of leachates (equivalent to 2 g plastics) was 
extracted. The Oasis HLB glass cartridges were first conditioned with 10 
mL hexane, dichloromethane, methanol and 15 mL ultrapure water. The 
leachate for each plastic was extracted; the sorbents were then washed 
in ultrapure water and dried for 30 min. The cartridges were closed, put 
in 50 mL tubes and stored at − 20 ◦C until the analyses. Detailed infor-
mation is provided in the supporting information (Supplementary 
Tables S3–S6). Prior to elution internal standards of PAHs, organo-
phosphorous Flame Retardants (OPFRs), benzophenone (BP), bisphenol 
A (BPA) and tetrabromobisphenol A (TBBPA) were added. The HLB 
cartridges were eluted with hexane:dichloromethane (1:1), hexane: 
acetone (1:1) and split into a liquid chromatography (LC) and a gas 
chromatography (GC) fraction. The solvents were evaporated, trans-
ferred to vials and evaporated to 100 μL of acetonitrile and toluene, 
respectively. For further characterization of the most polar compounds, 
the cartridges were also eluted with 8 mL of methanol. Batch standards 
with native PAHs, PCBs, 2,2′4,4′-tetrabromodiphenyl ether (PBDE-47), 
dichlorodiphenyldichloroethylene, OPFR, BP, dibutyl phthalate and 2,4- 
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Diisocyanatotoluene (2,4-TDI) were prepared in 100 μL toluene. Per-
ylene-D12 was added as recovery standard to the toluene extracts prior to 
analysis on a GC Orbitrap® mass spectrometer. Helium was used as the 
carrier gas. Batch standards with native bisphenols, TBBPA, b-HBCD, 
triclosan, polyfluoroalkyl substances (PFAS), UV-328, 6 PPD quinone 
and 1-phenyl-4-(1-phenylethyl)tetralin were prepared in 100 μL of 
acetonitrile and 100 μL of methanol. Acetonitrile and methanol extracts 
were diluted in ultrapure water (1:1) and an internal standard mix was 
added before injection on an Acquity ultra-performance LC (UPLC) I- 
class coupled to a Xevo G2-XS quadrupole time of flight (QTOF) mass. 
Detailed information is provided in supporting information. 

GC data analysis was conducted by using openly available software. 
Raw profile data were converted to centroided mzML format (Chambers 
et al., 2012); data were processed uing MS-DIAL software version 4.9 
(Tsugawa et al., 2015) for high resolution mass spectrometry (HRMS) 
matching. HRMS spectral library (Price et al., 2021) combined with an 
in-house library were used for suspect screening. Representative spectra 
from the aligned peak list were also exported in msp format and matched 
against the NIST14 library. The area of the quantification ion was used 
to represent each detected compound. For identification NIST’s sug-
gested general guidelines for Match Factor scores were used by 
considering >900 an Excellent Match, 800–900 a Good Match, 700–800 
a Fair Match, and <600 a poor match. Only match factors above 700 
were considered (above 600 if the RI was within 1.5%). 

The LC data was processed using UNIFI 1.9.4. Processing settings are 
detailed in supporting information. The library developed by Fries and 
Sühring (2023) and an in-house library were used for suspect screening. 
Information on compound fragmentation pattern was collected either by 
injection of the analytical standard, retrieved on the MassBank database 
(Horai et al., 2010), or predicted with the in silico fragmenter MetFrag. 
To assign confidence to the GC-orbitrap data by Koelmel et al. (2022) 
system was used. Here, Level 1 implies confirmed identification using 
in-house library, Level 2 the Probable structure or close isomer using 
external libraries, Level 3 Tentative using external library; alternatively, 
RI match with accurate mass fragment matches. 

For the LC-HRMS suspect screening it was used the identification 
confidence levels suggested by Schymanski et al. (2014). Briefly, iden-
tification at level 2 gives a probable structure by a) library spectrum 
match or b) diagnostic evidence in contrast to level 1 that gives a 
confirmed structure by a reference standard. 

2.4. Ecotoxicological analysis 

Undiluted leachate (1 g/L) and dilutions in SW were directly used for 
ecotoxicological analysis (Table 1), according to those proposed by 
Beiras et al. (2019). 

2.4.1. Aliivibrio fischeri 
The toxicity of plastic leachates was analyzed with Microtox test, a 

standardized toxicity test, using the bioluminescent marine bacteria 
A. fischeri (ISO 11348-3). Bioluminescence emission was measured using 
the M500 Toxicity Analyzer device (Modern Water). A blank (NaCl, 2%) 
and a negative control (Instant Ocean, 20 PSU) were carried out. 
Negative control and leachates were tested undiluted, and diluted to 50, 
25 and 12.5% in 2% NaCl. Four replicates were carried out on each 

sample. 

2.4.2. Amphibalanus amphitrite 
Nauplii of the barnacle A. amphitrite were exposed to leachates. They 

were obtained from laboratory cultures at CNR (Italy) and maintained in 
beakers with FSW to a concentration of 10–15 larvae/mL (Piazza et al., 
2016). Nauplii were transferred into each well containing 1 mL of un-
diluted and diluted leachates at 1/3 (0.33 g/L), 1/10 (0.1 g/L) and 1/30 
(0.033 g/L) of each plastic category. Four replicates – including the 
control – were performed. They were incubated in the dark, for 48 h, at 
20 ◦C. After exposure, immobility was checked under a stereomicro-
scope. Swimming Speed Alteration (SSA) percentage was also evaluated 
by using a Swimming Behavioural Recorder (SBR) system (Faimali et al., 
2006). Swimming behaviour was monitored for 3 s in dark conditions. 
The resulting images were analyzed and the average swimming speed 
(mm/s) was measured for each test population. Data were expressed as 
SSA percentage normalized to controls’ swimming speed, according to 
Faimali et al. (2006). 

2.4.3. Acartia tonsa 
A. tonsa was obtained from the laboratory stock cultures at the 

ULPGC (Spain). Early copepod nauplii were exposed to undiluted (1 g/L) 
and diluted leachates at 1/3, 1/10 and 1/30 of each plastic category and 
to FSW (negative control). Three replicates were carried out. To obtain 
nauplii, adults were separated from the stock culture using a 200 μm 
mesh sieve and incubated in a glass beaker with FSW and food for 48 h. 
Adults were removed and nauplii were collected with 40 μm-mesh sieve 
and placed in a 100 mL beaker with FSW. Nauplii were sorted with glass 
pipettes under a stereomicroscope and distributed in groups of 20 in 
petri dishes. They were transferred to bottles containing 5 mL of the 
exposure media and incubated for 48 h at 20 ◦C in the dark. After 
exposure, mortality was determined by using a stereomicroscope and 
the survival percentages were calculated in all replicates. 

2.4.4. Brachionus plicatilis 
Rotifer of B. plicatilis were obtained from dehydrated cysts (Micro-

BioTests Inc., Belgium), following the Rotoxkit M protocol. About 15–20 
organisms were placed in 24 well-plates containing 1 mL per well of 
undiluted and diluted leachates (1/3, 1/10, 1/30) of each plastic cate-
gory. A negative control (FSW) was performed. Plates were incubated at 
25 ◦C in dark conditions for 48 h. Each treatment was prepared in 
quadruplicates. After exposure, the percentages of immobility and SSA 
were evaluated, as reported for barnacle nauplii. 

2.4.5. Paracentrotus lividus 
Adults of P. lividus were collected in the Ligurian Sea (Italy) and 

brought to CNR laboratories (Italy). They were induced to spawn by oral 
administration of KCl (0.5 M). Dry sperm were collected from the genital 
pores, while the eggs were collected in SW at 18 ◦C and diluted to a final 
concentration of 1000 eggs/mL. Fertilization was carried out by adding 
10 μL of pooled diluted sperm to egg suspension. Then, four sub-samples 
were observed under a stereomicroscope to check fertilization success. 
About 1000 fertilized eggs/mL were added to each well containing un-
diluted and diluted leachates (1/3, 1/10, 1/30) of each plastic category. 
Six replicates were performed for each treatment, including negative 

Table 1 
Summary of experimental set up used in the ecotoxicological bioassay.  

Test organism Exposure time Endpoint Reference 

A. fischeri 30 min Inhibition of bioluminescence ISO 11348-3: 2019 
A.amphitrite 48 h Immobility, Behaviour (Swimming Speed Alteration) Piazza et al., 2016 
B.plicatilis 48 h Immobility, Behaviour (Swimming Speed Alteration) Garaventa et al., 2010 
P. lividus 72 h Developmental anomalies, Behaviour (Swimming Speed Alteration) Gambardella et al., 2013; Morgana et al., 2016 
Aurelia sp. 48 h Immobility, Behaviour (Alteration of frequency of pulsations) Costa et al., 2020 
Oryzias latipes 96 h Survival, malformations, cardiac activity Bedrossiantz et al., 2023 
Acartia tonsa 48 h Survival ISO 14669: 1999  
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controls (SW). Eggs were allowed to develop in darkness at 18 ◦C for 72 
h. Then, larval SSA and developmental anomalies percentages were 
investigated. The SSA was recorded by the SBR system as described for 
barnacle nauplii. To assess development, larvae were fixed with 4% 
paraformaldehyde and observed under a stereomicroscope. to deter-
mine developmental anomalies percentage. 

2.4.6. Aurelia sp 
Colonies of polyps of Aurelia sp. were obtained from th Aquarium of 

Genoa (Italy), and transported to CNR laboratories (Italy). Strobilation 
was induced by thermic shock; the resulting ephyrae were used for the 
toxicity test. The ephyrae were placed into wells containing 2 mL of 
undiluted and diluted leachates (1/3, 1/10, 1/30) of each plastic cate-
gory. Three replicates were prepared, each containing 8 ephyrae indi-
vidually placed in each well. A negative control (SW) was also 
performed. Plates were kept at 20 ◦C in darkness for 48 h. Then, the 
immobility and alteration of the frequency of pulsations (AFp) were 
calculated for each dilution compared to controls, according to Faimali 
et al. (2006). The ephyrae ability to perform any kind of movement in 5 s 
was considered as immobility percentage, while the recording pulsa-
tions number made by the ephyrae in 1 min was used to calculate the 
AFp. 

2.4.7. Oryzias latipes 
The 24 h embryos of O. latipes were provided by INRAe (LPGP, 

France). They were placed in Petri dishes containing egg rearing solu-
tion 1X medium (ERS 1X) at 22 ◦C and 13L:11D photoperiod. Every 24 h 
until peak hatching, the embryos were checked using a microscope to 
remove the dead and half of the ERS 1X medium was renewed. Once 
hatched, the larvae were exposed to undiluted leachate (at 10 PSU) for 
96 h at 22 ◦C and 13L:11D photoperiod. About 18–20 larvae were 
distributed in glass beakers containing 20 mL of leachate. Three repli-
cates were carried out for each sample. Every 24 h, the dead larvae were 
counted, removed and half of the exposure medium was renewed. 
Larvae with spinal malformations were also recorded. Seventy hours 
after the start of the exposure, 8 larvae per replicate were collected, 
anesthetized and fixed dorsally in a 3% methylcellulose gel. Cardiac 
activity was recorded for each larva (24 larvae per condition) at 22 ◦C 
using a magnifying glass connected to a camera and the OBSstudio 
software (29.1.1). Heartbeats were measured using Ethovision software 
from a 60s video. 

2.4.8. Statistical analysis and weight of evidence (WOE) 
Ecotoxicological results reported the arithmetic mean ± standard 

error. Statistical analysis was conducted by using the program R 3.2.2 (R 
Development Core Team, 2015). Normality was tested with the 
Shapiro-Wilk test and homogeneity of variances with Levene’s test. 
When the data were normally distributed and homogeneous, statistical 
differences between the leachate and corresponding controls were 
calculated by using one-way ANOVA. Mann-Whitney test was used for 
data with non-normal distribution and when homogeneity of variances 
was not achieved. Data were considered significantly different when p 
< 0.05. The Lowest Observed Effect Concentrations (LOEC) were also 
determined. The median Effective Concentrations (EC50: median 
effective dilution of leachate resulting in 50% immobility, mortality (as 
not survived copepod nauplii), developmental anomaly, SSA and AFp 
effect in the organisms and related 95% Confidence Limits (CL) were 
calculated using Trimmed Spearman–Karber analysis (Finney, 1978) 
after 48 h and 72 h exposure. 

Ecotoxicological results were elaborated within a quantitative WOE 
model that provides a synthetic hazard index based on a specific algo-
rithm and mathematical procedures (d’Errico et al., 2021). The assess-
ment criteria were set on specific thresholds (15%) and weights 
(survival 3, bioluminescence inhibition 2.4, immobility/deve-
lopment/cardiac activity 1.9, behaviour 1), assigned to each bioassay. 
The criteria depends on the ecotoxicological endpoint, tested matrix and 

exposure time (Regoli et al., 2019; d’Errico et al., 2021). In this LOE, the 
cumulative hazard quotient (HQBattery) was obtained by the sum of all 
weighted effects. Five classes of hazard (Absent, Slight, Moderate, 
Major, Severe) were assigned depending on HQBattery result. 

Multivariate principal component analysis (PCA) of ecotoxicological 
(in term of HQ specific) and chemical results was applied to visualize the 
relationships among micronized plastics collected in different 
geographical areas. 

3. Results 

3.1. Chemical analysis 

A broad range of additive organic chemicals were identified in the 
leachates of the different plastic categories. A list of compounds (n = 31) 
identified at confidence level 1 (confirmed structure) and level 2 
(probable structure) using literature and in-house LC- and GC-HRMS 
libraries is compiled in Table 2. Of these 31 compounds, 16 were 
identified by GC-HRMS data, 9 by LC- HRMS data and 6 by both GC and 
LC-HRMS data. Quality control parameters, compounds identified at 
confidence level 3 and detailed information of identified compound data 
are presented in the supporting information. Benzothiazole, 2,2,4-tri-
methyl-1H-quinoline, 2-(methylthio)benzothiazole, 1,2-dyphenylguani-
dine and 1,2-benzisothiazolin-3-one were only identified in the RTR 
leachate, while diphenylamine and N,N-dimethylaniline only in FN and 
RTR. The additives identified in all categories were benzophenone (BP), 
benzyl butyl phthalate (BBP) and ethylparaben. Tinuvin 770, dimethyl 
phthalate, tributyl phosphate and 4-methylbenzophenone were identi-
fied in almost all plastic leachates. Acetyl tributyl citrate was identified 
in all plastic leachates except RTR and triclosan in all except PET. Tris 
(nonylphenyl)phosphite was identified in all plastic leachates except for 
HP from the Adriatic Sea and dimethyl phthalate in all except for the FN. 
BPA was identified in FN, HP and Pellet, whereas bisphenol S was 
detected only in FN. Substances identified infrequently were 2,4-TDI, 
triphenyl phosphate, 6:2 diPAP (HP), UV-327 (HP), dinoseb (PET, Pel-
let) 4-tert-Octylphenol (FN, PET), and oxybenzone (Pellet). Analytical 
standards were available for several of the identified compounds, 
allowing quantification and semi-quantification. The concentrations 
ranged from 8 ng/g plastic to 2196 ng/g, lowest levels for benzyl butyl 
phthalate and highest levels for tris(2-chloroethyl) phosphate (Suppl. 
Table S6). 

3.2. Leachate toxicity 

The ecotoxicological results on the exposure of marine vertebrates 
and invertebrates to undiluted (1 g/L) leachates of each plastic category 
are reported in Fig. 1. 

Exposure to leachates from different plastic categories never affected 
bacteria bioluminescence, with the exception of pellets, and immobility 
of early stages of marine organisms. Conversely, survival, development, 
behaviour and cardiac activity were impaired in many species exposed 
to leachates from different plastic categories. The toxicity was calculated 
in terms of EC50 values in the marine invertebrates after exposure to 
RTR, HP and FN collected in both Mediterranean Sea and Atlantic Ocean 
(Table 3). Specifically, exposure to RTR was toxic for sea urchin devel-
opment, barnacle nauplii and jellyfish ephyrae behaviour (Suppl. 
Fig. S7). The leachates of FN sampled in the Adriatic Sea induced a toxic 
effect measurable by means of EC50 values on copepod survival, jelly-
fish behaviour in term of AFp and sea urchin development; the latter was 
also observed after exposure to HP (Suppl. Fig. S8). Regarding plastic 
categories collected in the Atlantic Ocean, the leachates of FN and HP 
induced toxic effects in sea urchin development and copepod survival 
(Suppl. Fig. S9). Although severe toxic effects were not observed for all 
leachates of beached plastics in the different geographic areas, LOEC 
values were reported for several endpoints in the marine organisms 
(Table 3). 
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3.3. Weight of evidence and relationship between chemical and 
ecotoxicological analyses 

All ecotoxicological data were used in a LOE able to assess the 
probability and magnitude of environmental hazard due to each of the 
plastic categories. According to the magnitude of variations observed for 
ecotoxicological responses, the statistical significance of such differ-
ences and the ecotoxicological relevance of each biological endpoint, 
the WOE mode was used. The hazard indices elaborated for ecotoxico-
logical data depending on HQBattery outcome (Suppl. Fig. S10) resulted in 
a WOE effect classified as “absent” for marine vertebrates and in-
vertebrates exposed to leachates of pellets, PET, RTR and FN from the 
Biscay Bay. A “Slight” effect was found for the ecotoxicological battery 
exposed to HP from the Adriatic Sea, while a “Moderate” effect was 
observed for HP collected in Biscay Bay and FN collected in Adriatic Sea 
(Fig. 2). 

PCA analysis (Supplementary Fig. S11) provided two-dimensional 
patterns of separation among micronized plastics, always explaining 
60% of the total variance, confirming the sampling site separation. 

4. Discussion 

The potential toxicity related to leachates from beached-plastics was 
investigated in several aquatic organisms belonging to different trophic 
levels. To our knowledge, this is the first study reporting leachate eco-
toxicity from beached plastics in the Mediterranean and Atlantic on 
decomposers, primary and secondary consumers. Among them, the de-
composers were the less sensitive organisms to all plastic categories, 
since A. fischeri was only affected by the exposure to one plastic leachate 
(pellet) out of seven. The low sensitivity of marine bacteria towards 
plastic leachates is confirmed by literature based on virgin plastics. 
Indeed, PET leachate did not significantly affect the bioluminescence of 
A. fischeri (Piccardo et al., 2020) and the growth of marine heterotrophic 
bacteria (Romera-Castillo et al., 2018). Regarding pellets, bacteria 

bioluminescence inhibition was observed after exposure to virgin pellets 
of several polymers (PP, PE, PS; Schiavo et al., 2018) and to 
beached-plastics as reported in the present study, showing a sensitivity 
of bacteria for this plastic category. 

Primary consumers were affected by the leachates of beached- 
plastics in a different manner, depending on zooplankton species. 
Thus, the rotifers were less sensitive to all beached-plastic leachates in 
comparison to crustaceans, echinoderms and cnidarians, since no 
toxicity was found for any plastic category. Rotifers are one of the most 
dominant zooplankton, occupying an important ecological niche in the 
food web (Jurgens et al., 1999). Only recently the toxicity of the 
leachates from virgin plastics (i.e. tyre-wear particle) was demonstrated 
in B. plicatilis, affecting the survival (Shin et al., 2022). Conversely, we 
did not observe any effect on immobility and behaviour by exposing 
rotifers to a wide range of beached-plastic leachates, including the RTR 
with a polymer composition similar to tyre-wear particles. Such findings 
suggest that leachate origin (i.e. virgin versus beached-plastics) of 
similar plastic categories may induce different ecotoxicological re-
sponses in the marine rotifers. 

Crustaceans play a key role in the aquatic food webs, being an 
important link in the pelagic food web (Szaniawska, 2018). Among 
them, A. tonsa and A. amphitrite are ecologically relevant species in the 
marine environment and the impact of plastic leachates has been 
demonstrated so far (Li et al., 2016; Koski et al., 2021; Bournaka et al., 
2023). In the present study, the larval stages of these species showed a 
different sensitivity according to the plastic category. Thus, FN from the 
Adriatic Sea and HP collected in the Biscay Bay induced a high toxicity 
in term of LC50 values on copepod survival, while RTR significantly 
impaired barnacle nauplii swimming. Lethal and sub-lethal effects were 
also observed in several copepod species and in A. amphitrite nauplii 
exposed to leachates of different plastics (i.e. PE bags, rubber from 
recycled car tires, PP storage containers; Li et al., 2016; Lehtiniemi et al., 
2021), suggesting that the impact of plastics on crustaceans may depend 
on the polymer type and species. 

Table 2 
Compounds identified at confidence level 1 (confirmed structure) and level 2 (probable structure) using litterature and in-house libraries on GC and LC-HRMS data.  

Compound Cas-nr Uses Apparatus Leachates 

1,2-Benzisothiazolin-3-one 2634-33-5 Preservative LC RTR 
1,2-diphenylguanidine 102-06-7 Vulcanizing agent of rubber LC RTR 
2-(Methylthio)benzothiazole 615-22-5 Fungicide GC RTR 
2,2,4-trimethyl-1H-quinoline 147-47-7 Rubber antioxidant GC RTR 
2,4,7,9-Tetramethyl-5-decyn-4,7-diol 126-86-3 Paints, adhesives, and dyes GC HP Adriatic & Biscay/Pellet 
2,4-Diisocyanatotoluenea 584-84-9 Chemical intermediate GC FN Adriatic/HP Biscay/Pellet 
2,6-Diisocyanatotoluenea 91-08-7 Chemical intermediate GC FN Adriatic/HP Biscay/Pellet 
4-Methylbenzophenone 134-84-9 UV absorber GC/LC FN Biscay/HP Adriatic & Biscay/Pellet/RTR 
4-tert-Octylphenol 140-66-9 Chemical intermediate GC FN Adriatic/PET 
6:2 diPAPa 57677-95-9 PFAS, food packaging materials LC HP Biscay 
Acetyl tributyl citrate 77-90-7 Plasticizer GC FN Adriatic & Biscay/HP Adriatic & Biscay/PET/Pellet 
Benzophenonea 119-61-9 UV absorber GC All 
Benzothiazole 95-16-9 Antimicrobial, rubber accelerator GC RTR 
Benzyl butyl phthalate 85-68-7 Plasticizer GC/LC All 
Bisphenol Aa 80-05-7 Chemical intermediate LC FN Adriatic/HP Adriatic & Biscay/Pellet 
Bisphenol S1 80-09-1 Chemical intermediate LC FN Adriatic & Biscay 
Dibutyl phthalatea 84-74-2 Plasticizer GC PET 
Dimethyl phtalate 131-11-3 Plasticizer GC HP Adriatic & Biscay/PET/pellet/RTR 
Dinoseb 88-85-7 Herbicide LC PET/Pellet 
Diphenylamine 122-39-4 Antioxidant, stabilizer, fungicide GC/LC FN Biscay/RTR 
Ethylparaben 120-47-8 Preservative LC All 
N,N-Dimethylaniline 121-69-7 Paints, adhesives, and dyes LC FN Adriatic & Biscay/RTR 
Oxybenzone 131-57-7 UV absorber GC Pellet 
Phthalic anhydride 85-44-9 Chemical intermediate GC HP Adriatic & Biscay 
Tinuvin 770 52829-07-9 UV stabilisers LC FN Adriatic & Biscay/HP Adriatic & Biscay/PET/Pellet 
Tributyl phosphatea 126-73-8 Flame-retardant, plasticizer GC FN Biscay/HP Adriatic & Biscay/PET/Pellet/RTR 
Triclosana 3380-34-5 Antimicrobial, fungicide GC/LC FN Adriatic & Biscay/HP Adriatic & Biscay/Pellet 
Triphenyl phosphatea 115-86-6 Flame-retardant, plasticizer GC FN Adriatic/HP Biscay/Pellet 
Tris(2-chloroethyl) phosphatea 115-96-8 Flame-retardant, plasticizer GC/LC FN Adriatic/HP Biscay/Pellet 
Tris(nonylphenyl)phosphite 16784-72-8 Stabilizer GC FN Adriatic & Biscay/HP Biscay/PET/Pellet 
UV-327 3864-99-1 UV absorber GC/LC HP Adriatic & Biscay  

a Confirmed structure with analytical standard. 
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Fig. 1. Percentage of effect of the ecotoxicological responses of each biological species (Aliivibrio fischeri, Aurelia sp., Paracentrotus lividus, Brachionus plicatilis, 
Amphibalanus amphitrite, Acartia tonsa, Oryzias latipes) exposed to undiluted (1 g/L) leachates of the following plastic category: Rapido Trawling Rubber (RTR), hard 
plastics (HP) and Fishing Nets (FN) collected in the Adriatic Sea, bottles (PET) from the Ligurian Sea, HP, FN and pellets from the Biscay Bay. Asterisks indicate 
differences between treated samples and controls (*p < 0.05). 
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Table 3 
Leachate toxicity obtained from <250 μm beached-plastics on aquatic organisms. Lowest observed effect concentration (LOEC) refers to leachate dilutions obtained 
using a solid/liquid ratio of 1 g/L. EC50: leachate dilution producing a 50% effect compared to the control. CL confidence limits. EC50 values are expressed in g/L. Dev. 
Anomalies: developmental anomalies.  

Geographic area Plastic typology Organism Endpoint LOEC EC50 and CL 

Mediterranean Sea Rapido Trawling Rubber (RTR) A.fischeri Bioluminescence inhibition >1 >1 
Aurelia sp. Immobility 

Behaviour 
>1 
0.1 

>1 
0.37 (0.29–0.47) 

P. lividus Dev Anomalies 
Behaviour 

1 
1 

0.82 (0.69–0.92) 
>1 

B.plicatilis Immobility 
Behaviour 

>1 
1 

>1 
>1 

A.amphitrite Immobility 
Behaviour 

>1 
0.033 

>1 
0.66 (0.45–0.96) 

A.tonsa Survival >1 >1 
O. latipes Survival/Dev. Anomalies/Cardiac activity >1 >1 

Hard plastics (HP) A.fischeri Bioluminescence inhibition >1 >1 
Aurelia sp. Immobility/Behaviour >1 >1 
P. lividus Dev. Anomalies 

Behaviour 
0.33 
1 

0.64 (0.48–0.85) 
>1 

B.plicatilis Immobility 
Behaviour 

>1 
0.33 

>1 
>1 

A.amphitrite Immobility/Behaviour >1 
0.033 

>1 
>1 

A.tonsa Survival 1 >1 
O. latipes Survival/Dev. Anomalies/Cardiac activity >1 >1 

Fishing nets (FN) A.fischeri Bioluminescence inhibition >1 >1 
Aurelia sp. Immobility 

Behaviour 
>1 
1 

>1 
0.38 (0.31–0.47) 

P. lividus Dev. Anomalies 
Behaviour 

0.1 
>1 

0.23 (0.16–0.32) 
>1 

B.plicatilis Immobility 
Behaviour 

>1 
0.33 

>1 
>1 

A.amphitrite Immobility 
Behaviour 

>1 
0.1 

>1 
>1 

A.tonsa Survival 1 0.90(0.80–0.99) 
O. latipes Survival/Dev. Anomalies/Cardiac activity >1 >1 

Plastic bottles A.fischeri Bioluminescence inhibition >1 >1 
Aurelia sp. Immobility/Behaviour >1 >1 
P. lividus Dev. Anomalies/Behaviour >1 >1 
B.plicatilis Immobility 

Behaviour 
>1 
1 

>1 
>1 

A.amphitrite Immobility 
Behaviour 

>1 
0.1 

>1 
>1 

A.tonsa Survival >1 >1 
O. latipes Survival/Dev. Anomalies 

Cardiac activity 
>1 
≤1 

>1 
>1 

Atlantic Ocean Hard plastics (HP) A.fisheri Bioluminescence inhibition >1 >1 
Aurelia sp. Immobility/Behaviour >1 >1 
P. lividus Dev. Anomalies 

Behaviour 
0.33 
1 

0.51 (0.24–1) 
>1 

B.plicatilis Immobility 
Behaviour 

>1 
0.1 

>1 
>1 

A.amphitrite Immobility 
Behaviour 

>1 
0.033 

>1 
>1 

A.tonsa Survival 0.033 0.44 (0.36–0.52) 
O. latipes Survival/Dev. Anomalies/Cardiac activity >1 >1 

Fishing nets + Mussel nets (FN) A.fischeri Bioluminescence inhibition >1 >1 
Aurelia sp. Immobility 

Behaviour 
>1 
1 

>1 
>1 

P. lividus Dev. Anomalies 
Behaviour 

1 
1 

0.43 (0.37–0.54) 
>1 

B.plicatilis Immobility 
Behaviour 

>1 
1 

>1 
>1 

A.amphitrite Immobility 
Behaviour 

>1 
0.1 

>1 
>1 

A.tonsa Survival >1 >1 
O. latipes Survival/Dev. Anomalies 

Cardiac activity 
>1 
<1 

>1 
>1 

Pellets A.fischeri Bioluminescence inhibition 1 >1 
Aurelia sp. Immobility/Behaviour >1 >1 
P. lividus Dev. anomalies 

Behaviour 
1 
>1 

>1 
>1 

B.plicatilis Immobility/Behaviour >1 >1 
A.amphitrite Immobility 

Behaviour 
>1 
0.033 

>1 
>1 

A.tonsa Survival >1 >1 
O. latipes Survival/Dev. Anomalies/Cardiac activity >1 >1  
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Cnidarians were used to assess the toxicity of beached-plastics, since 
jellyfish was proposed as innovative bioindicator in ecotoxicology due 
to its key role in the trophic chain and high sensitivity to pollutants, 
including plastics and MPs (Faimali et al., 2006; Costa et al., 2020; 
Macali and Bergami, 2020). In this study, jellyfish were never affected 
by plastic leachates in term of immobility, while the behaviour was 
impaired by FN and RTR leachates collected in the Adriatic Sea. These 
data confirm those reported by Cormier et al. (2021), showing AFp but 
not acute effects after exposure to beached-plastic fragments and fibers 
leachates. 

Echinoderms have been deeply investigated in plastic pollution. The 
embryonic development and the growth of different sea urchin species 
(i.e. P. lividus, Lytechinus variegatus) were affected after exposure to the 
leachates of virgin and beached-plastics (i.e. Nobre et al., 2015; Martí-
nez-Gómez et al., 2017; Piccardo et al., 2020; Cormier et al., 2021). In 
this study, sea urchin development was the most affected endpoint if 
compared to other aquatic organisms’ responses. Thus, sea urchin 
developmental impairment was found in five plastic leachates out of 
seven (i.e. RTR, HP and FN from Biscay Bay and Adriatic Sea). Similar 
findings were reported in sea urchins exposed to leachates from 
beached-plastics composed by PE and PP mixture (Cormier et al., 2021), 
a similar polymer composition to that in the HP from both geographic 
areas. Likewise, the exposure to car tyres leachates has been found to 
affect the development of three sea urchin species, including P. lividus 
(Rist et al., 2023). 

In the present study the ecotoxicological effects of leachates from 
beached-plastics were investigated in the fish O. latipes as secondary 
consumer. None of the studied plastic leachates affected the survival and 
the development; however, leachates of FN from the Biscay Bay and PET 
bottles from the Ligurian Sea induced a significant increase of heart-
beats. Recently the exposure to aquaculture-derived plastic leachates (i. 
e. FN, fishing ropes) was found to affect the endocrine system, growth, 
reproduction and immunity process of several fish, including medaka 
(Lin et al., 2023). Regarding O. latipes, both aqualculture-derived plastic 
leachates and virgin/aged plastic leachates altered the reproductive 
system, inducing vitellogenin gene transcription, influencing oocytes 
development, spermatogenesis and offspring sex ratio (Knorr and 
Braunbeck, 2002; Na et al., 2002; Horie et al., 2020; Qiu et al., 2023). 

We did not observe any toxicity in terms of survival and development, 
suggesting that such endpoints were not sensitive enough to the five 
studied plastic categories (FN, PET bottles, HP, RTR, pellets) to cause an 
ecotoxicological effect. Nevertheless, more studies should be addressed 
on fish cardiac activity, since a significant hearbeat increase was 
observed after PET and FN exposure. 

In this study, micronization was used to prepare leachates, since it is 
a useful tool to obtain particles that mimic environmental MP for rele-
vant ecotoxicity tests (Almeda et al., 2023). However, micronization 
process may also produce nanoparticles (Gardon et al., 2022). The latter 
may be responsible for the toxicity due to several plastic leachates on 
zooplankton, such as echinoderm larvae and crustaceans (Li et al., 2022; 
Manzo and Schiavo, 2022). Therefore, future research addressing the 
potential presence of these small particles is needed to confirm this 
hypothesis. 

The WOE approach is used to integrate information to estimate the 
probability and magnitude of hazard in the environment (Environment 
Canada, 2012). Although the WOE has been widely applied for sediment 
quality assessment (Chapman, 2007; Regoli et al., 2014), its use has 
been only recently proposed for plastic contamination assessment in the 
aquatic environment. Thus, Teng et al. (2021) used the biomarker LOE 
on the oysters exposed to virgin PE and PET to provide MP hazard in the 
marine environment. To date, no studies are available on the WOE 
approach to beached-plastic leachates. In the present study, the WOE 
integration applied on 13 ecotoxicological responses as LOE displayed a 
“moderate” environmental hazard for leachates from FN and HP and an 
“absence” of environmental hazard for the other leachates (PET, RTR, 
Pellet). The index obtained for PET and Pellet is consistent with the 
ecotoxicological results, where no toxicity was observed for the different 
endpoints. Regarding RTR, no hazard was estimated by the WOE, 
although high HQ specific values (i.e. crustacean, cnidarian, echino-
derm behaviour and development) were highlighted by the WOE model. 
The latter did not consider the worst result but it integrated the effects 
on all bioassays; conversely, by following the “worst result” approach 
based on single bioassays, the ecotoxicological classification of RTR 
leachates would have been conditioned, likely overestimating the eco-
toxicological hazard. 

A slight environmental hazard of HP from Adriatic beached plastics 
was observed while a moderate effect was found in HP from Biscay Bay 
and FN from the Adriatic Sea. By considering each single bioassay, the 
toxic effects can only be measured in zooplankton species (crustaceans, 
echinoderms, cnidarians) by evaluating different responses (survival, 
behaviour, development). These responses, measured at the organism 
level and quantified by means of toxicity indices, seem to mostly 
contribute to the environmental hazard, as indicated by the high specific 
HQ value (Suppl. Fig. S10). Thus, the biological relevance of such 
endpoints together with the threshold derived from the sensitivity of 
these species are responsible for the slight and moderate hazards. 
Noticeably, zooplankton seem to mainly affect the WOE rather than 
decomposers and secondary consumers, as previously observed in the 
contaminated marine sediments assessment (Manfra et al., 2021). 
Moreover, all the investigated endpoints were impaired aside from the 
selected species, suggesting that primary consumers may have an 
important role in estimating the environmental hazards due to plastic 
leachates. 

The impact of plastic leachates on aquatic organisms may vary 
depending on the tested materials and species. Moreover, the toxicity of 
certain plastic categories may be related to the presence of specific 
compounds released after leaching, that were not found in control 
samples. Thus, RTR exposure induced a high toxicity – in term of EC50s - 
towards many invertebrate species (i.e. jellyfish, crustaceans, sea ur-
chins), probably due to the release of several toxic compounds and, 
among them, benzothiazole and its derivatives, 1,2-dyphenylguanidine 
and 2,2,4-trimethyl-1H-quinoline. These compounds were the only ones 
found in the leachate of RTR but not in other plastic categories. Ben-
zothiazoles and their derivates are heterocyclic compounds; together 

Fig. 2. Summary of the ecotoxicological hazard level of the following plastic 
category: Rapido Trawling Rubber (RTR), hard plastics (HP) and Fishing Nets 
(FN) collected in the Adriatic Sea, bottles (PET) from the Ligurian Sea, HP, FN 
and pellets from the Biscay Bay. The level of ecotoxicological was estimated by 
the value of the Hazard Quotient (HQ) of the ecotoxicological battery. 
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with dyphenylguanidine are used as accelerators in rubber production 
(Fishbein, 1991; De Wever and Verachtert, 1997). These compounds 
were detected in car tyre rubber leachates (Unice et al., 2015; Capolupo 
et al., 2020, 2021), inducing toxicity in fish and crustaceans (Sheftel, 
2000; Chibwe et al., 2021; Halle et al., 2021; Bournaka et al., 2023). The 
2,2,4-trimethyl-1H-quinoline is a common tyre antioxidant, responsible 
for a high toxicity in aquatic organisms (Wang et al., 2023). The pres-
ence of benzothiazoles and other organic antioxidants associated with 
rubber pollution may pose a risk to the marine ecosystem, as suggested 
by zooplankton ecotoxicological results. However, despite the presence 
of antimicrobials, rubber accelerators and antioxidants in RTR leachates 
that are likely to affect sub-lethal effects in primary consumers, the WOE 
based on 13 responses did not estimate any environmental hazard for 
RTR. Changes in the structure of biological communities are indicators 
of natural and anthropic impacts, affecting environmental quality 
assessment (Mouillot et al., 2011). Single ecotoxicological bioassays 
may overestimate the ecological effects of plastic leachates that occur in 
the field, conversely to the elaboration procedure using WOE model. The 
latter is based on different weighted criteria and may offer a more 
realistic scenario, by providing simple interpretation of complex data. 

Exposure to HP leachates from both the Mediterranean Sea and 
Atlantic Ocean did not affect behaviour, cardiac activity and bacteria 
bioluminescence, conversely to copepod survival and sea urchin devel-
opment. In this case, it was possible to estimate a similar effect in sea 
urchins after exposure to HP from both geographic areas, mainly formed 
by PE and PP. Likewise, abnormal development has been reported in 
P. lividus and in the oysters exposed to PE and a mixture of PE and PP 
leachates of virgin and beached-plastics (Martínez-Gómez et al., 2017; 
Gardon et al., 2020; Cormier et al., 2021). In addition, the similar 
toxicity level estimated by means of EC50s on sea urchin development 
after HP exposure from the Atlantic and Mediterranean areas are likely 
to depend on the release of similar compounds (i.e. phthalic anhydride, 
BPA, triphenyl phosphate, UV-327; Table 2), that impact echinoderm 
early stages. Although similar results were obtained in sea urchin 
development in terms of toxicity index and HQ specific, the survival of 
A. tonsa was only affected by leachates of HP collected in Biscay Bay. 
Marine copepods are sensitive to leachates from PP and PE weathered 
products (Bejgarn et al., 2015). The difference of toxicity observed in the 
leachates of both geographic areas could be ascribed to copepod sensi-
tivity to the additives released during the leaching process and to their 
potential cocktail effects. For instance, PFAS and some flame-retardants, 
plasticizers and stabilizers were the only compounds measured in HP 
from Biscay Bay, not present in the same plastic category of the Adriatic 
Sea. In addition, the levels of 2,4 and 2,6-TDI, tris(2-chloroethyl) 
phosphate and 4-methylbenzophenone were higher in HP from Biscay 
Bay than those found in the Adriatic. Although no literature is available 
on the toxicity of these compounds towards copepods, their presence 
and concentrations may be responsible for the difference of toxicity in 
the leachates from HP collected in the two geographic areas. 

Leachate toxicity might differ from beached and/or virgin plastics 
due to differences in composition, polymer type, aging conditions and 
additive presence and quantity (Gunaalan et al., 2020). Leachate 
toxicity may have strong differences between the virgin and beached 
plastics, caused by fugacity diffusion gradients due to the concentration 
of additives and the surrounding environment. Thus, additives have a 
higher fugacity in the plastic phase rather than in the surroundings 
which promotes their release (Kwon et al., 2017). Most environmental 
plastic are highly weathered and the 90% is estimated to have been in 
the environment for more than 2 years (Koelmans et al., 2016). In the 
present study, plastics collected in the beaches of Mediterranean and 
Atlantic areas may have been subjected to different aging times, leading 
to different additives that may be responsible for inducing different 
ecotoxicological effects. 

Leachate toxicity is likely to depend on the cocktail of additives and 
pollutants released during plastic leaching process (Nobre et al., 2015; 
Halsband et al., 2020). Such cocktail at different levels or with different 

composition may be responsible for the absent or moderate impact of FN 
leachates. Chemical analyses revealed that BPA and its derivates 
(bisphenol S, BPS) were only measured in FN from the Adriatic Sea and 
not present in Biscay Bay FN. Bisphenols are plasticizers present in the 
natural environment with an endocrine disrupting activity. Many 
aquatic organisms - including zooplankton and fish - are affected by 
bisphenols (Gunaalan et al., 2020). In the present study most of the 
ecotoxicological effects on the marine organisms were similar in term of 
HQ specific after FN exposure from both geographic areas, conversely to 
copepod survival. Copepod life-cycle is affected by BPA in term of sur-
vival and reproduction (Dahms et al., 2017; Tato et al., 2018). The 
presence of both bisphenols (BPA, BPS) and chemical compounds only 
detected in FN of the Adriatic Sea may explain the different hazard for 
this plastic category in the two geographic areas. 

Moreover, other additives and compounds not detectable or not 
analyzed with the extraction method reported in the present study could 
have affected FN, as previously demonstrated (Oliviero et al., 2019). In 
non-target analysis (NTA) workflow sample processing and data analysis 
steps influence chemicals types that can be detected and identified. 
Therefore, it is difficult to assess whether the analyte non-detection in an 
NTA method is due to a true absence in a sample or to a false negative 
driven by limitations of the workflow (Black et al., 2023). Although the 
current method covered a wide range of substances by using both GC 
and LC, undetected substances may have had an impact on the observed 
toxicities. Considering that about 90% of plastic is estimated to have 
been in the environment for more than 2 years (Koelmans et al., 2016) 
and that environmental factors (i.e. UV irradiation, pH, salinity, tem-
perature) play an important role on plastic leachability (Kedzierski 
et al., 2018; Chen et al., 2019; Gunaalan et al., 2020; Dhavamani et al., 
2022), it is difficult to distinguish between additives from the polymer 
itself and those adsorbed from the environmental contamination 
(Delaeter et al., 2022, Rani and Shanker, 2023). Therefore, we cannot 
exclude that the ecotoxicological effects observed in this study likely 
related to additives may be due to polymer fabrication rather than 
environmental contamination. 

5. Conclusions 

We report the ecotoxicity of leachates from beached-plastics on 
aquatic species of different trophic levels: decomposers, primary and 
secondary consumers. Our results show that certain leachates are toxic 
to marine biota, with hazard indices ranging from slight to moderate, 
depending on plastic category and sampling location. The latter in-
dicates that the additive composition and processes experienced in the 
environment may notably influence the toxicity of plastics debris. An 
integrated approach based on WOE on a large set of bioassays is rec-
ommended to get a more reliable assessment of the ecotoxicity of 
beached-plastic leachates. In addition, some additives leached from 
plastics (i.e. FN, HP) should be further monitored to reduce high con-
centrations that could impact marine ecosystem health. 
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