
Measurement 234 (2024) 114885

Available online 10 May 2024
0263-2241/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Generalized multi-point interpolated DTFT frequency and damping factor 
estimators of real-valued damped sinusoids 

Daniel Belega a,*, Dario Petri b, Dominique Dallet c 

a Department of Measurements and Optical Electronics, Politehnica University Timişoara, Bv. V. Pârvan, Nr. 2, 300223 Timişoara, Romania 
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A B S T R A C T   

In this paper a generalized multi-point interpolated Discrete-Time Fourier Transform (DTFT) is proposed for 
frequency and damping factor estimation of real-valued damped sinusoids. The acquired data are weighted by a 
Maximum Sidelobe Decay (MSD) window and the interpolation function is defined as the ratio between two 
linear combinations of DTFT samples located one bin apart, which is generalized exploiting a tuning parameter. 
Analytical expressions for the estimated parameter errors due to the interference of the fundamental image 
component are derived. Leveraging on these expressions an improved version of the algorithm is also proposed 
and optimized by selecting a suitable value for the tuning parameter. The developed theory is applied to both a 
three-point and a four-point interpolated Discrete Fourier Transform (IpDFT) estimators published in the liter-
ature and the achieved accuracy improvements are verified through simulations.   

1. Introduction 

Damped sinusoids have a crucial role in many application areas such 
as radar, nuclear magnetic resonance, optics, and mechanics [1–5]. The 
unknown signal parameters can be estimated through either parametric 
or non-parametric algorithms. The parametric algorithms such as the 
Prony algorithm, the Steiglitz-McBride algorithm (iterative Prony al-
gorithm), and the Matrix Pencil algorithm [4,6,7] provide accurate 
parameter estimates, but require a high processing effort since they 
imply computationally expensive matrix operations. Conversely, non- 
parametric algorithms operate in the frequency-domain and may re-
turn accurate parameters estimates with low computational effort. Thus, 
they are usually preferred in real-time applications. Among these algo-
rithms, the so-called Interpolated Discrete-Time Fourier Transform 
(IpDTFT) algorithms are often employed due to their relative simplicity 
[3,5,8–18]. According to these algorithms, accurate frequency and 
damping factor estimates are obtained by interpolating two or more 
relevant Discrete-Time Fourier Transform (DTFT) samples of the 
analyzed signal, so compensating the picket-fence effect due to the finite 
number of analyzed samples [3,5,8–18]. However, when only a few 
cycles of real-valued damped sinusoids are processed, the effect of the 
fundamental image component on estimation accuracy can be 

significant. To reduce that contribution two approaches have been 
proposed in the literature. The first one consists in interpolating more 
than two DTFT samples [3,11,12], while the second one is based on the 
compensation of the image component contribution [13–18]. In [3] the 
accuracies of the frequency and the damping factor estimates returned 
by some three-point and four-point IpDFT (3p-IpDFT and 4p-IpDFT) 
algorithms have been analyzed. In [11] a 3p-IpDFT algorithm pro-
posed for the parameter estimation of real-valued undamped sinusoid 
[21] has been extended to damped sinusoids and a damping factor 
estimator has been derived when either the rectangular or the Hann 
windows are applied. The accuracy of the multi-point IpDFT algorithms 
has been investigated in both [3] and [11] through computer simula-
tions, but the case when only a few signal cycles are available has not be 
considered. In [13–18] two-point IpDFT (2p-IpDFT) and 3p-IpDFT al-
gorithms have been proposed to compensate the detrimental effect of 
the fundamental image component on the estimated parameters. The 
algorithms proposed in [13] and [14] consider a rectangular windowing 
and several analytical expressions must be evaluated to obtain an esti-
mation of the unknown parameters. In addition, the zero-padding is 
used in [14] to achieve accuracies higher than those of the algorithm 
proposed in [13]. Conversely, in [15] the algorithm proposed in [5] for 
rectangular window is extended to the Maximum Sidelobe Decay (MSD) 
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windows [19] and then the contribution of the fundamental image 
component on the estimated parameters is compensated. It is worth 
noticing that the MSD windows allow a great reduction of the effect on 
the estimated parameters of the possible interfering spectral tones due to 
their high spectral leakage suppression capability [20]. The 3p-IpDFT 
algorithms proposed in [16] and [17] are based on the rectangular 
window and the compensation of the fundamental image component 
contribution is quite computationally expensive. In [17] also a more 
accurate version of the algorithm obtained through zero-padding is 
proposed. However, neither [16] nor [17] analyze the effect of possible 
spurious tones on parameter estimation accuracy. In [18] a well-known 
complex-valued undamped sinusoid 3p-IpDFT frequency estimator 
[22–24] has been extended to real-valued damped sinusoids weighted 
by a generic MSD window and analytically simple estimators have been 
derived. Moreover, the analysis of the impact of the fundamental image 
component on the estimated parameters enabled the derivation of a new 
computationally inexpensive 3p-IpDFT algorithm capable to provide 
more accurate estimates than the published one when only short ob-
servations are available. 

In this paper a generalized multi-point IpDTFT frequency and 
damping factor estimator of real-valued damped sinusoid is proposed. 
The acquired data are weighted by an MSD window and the interpola-
tion function is defined as the ratio between two linear combinations of 
DTFT samples located one bin apart, which is generalized through a 
tuning parameter. Analytical expressions for the estimated parameter 
errors due to the interference from the fundamental image component 
are derived. Leveraging on the derived expressions a more accurate 
version of the algorithm is then proposed and optimized by a suitable 
choice of the tuning parameter value. The obtained results are applied to 
already published 3p-IpDFT and 4p-IpDFT algorithms so improving 
their estimation accuracy. Thus, the main contributions of this work are 
as follows:  

- proposal of an approach that allows to increase the accuracy of any 
multi-point IpDFT algorithm based on an interpolation function 
defined as the ratio between two linear combinations of DTFT sam-
ples located one bin apart;  

- signal weighting by MSD windows so ensuring a high rejection of the 
contribution of possible spurious tones on the estimated parameters. 

The remaining part of this paper is organized as follows. In Section 2 
the generalized multi-point interpolation function is presented. Ex-
pressions for the related frequency and damping factor estimation errors 
due to the interference from the fundamental image component are 
derived and an algorithm that compensates these detrimental contri-
butions is proposed and optimized. In Section 3 the developed theory is 
applied to the 3p-IpDFT and the 4p-IpDFT algorithms proposed in [18] 
and [12]. Accuracies comparison with two state-of-the-art multi-point 
algorithms is performed in Section 4 through computer simulations 
considering either noisy and noisy and harmonically distorted damped 
sinusoids. Some conclusions are finally presented in Section 5. 

2. Analysis of the generalized multi-point IpDTFT algorithm 

The analyzed discrete-time noisy damped sinusoid, obtained by a 
sampling with rate fs a continuous-time noisy damped sinusoid, is 
expressed as: 

y(m) = Ae−
1
fs βmcos

(

2π f
fs

m+ϕ
)

+ ζ(m)

= Ae−
2π
M αmcos

(
2π ϑ

M
m+ϕ

)
+ ζ(m) = x(m)+ ζ(m),m

= 0,1, 2,⋯,M − 1 (1)  

where x(•) is the noise free damped sinusoid of amplitude A, frequency f, 
phase ϕ, and damping factor β, while ζ( • ) is an additive white Gaussian 

noise with zero mean and variance σ2
n . M is the acquisition length. The 

Signal-to-Noise Ratio (SNR) of the signal (1) is defined as SNR = A2

2σ2. In 
(1) ϑ≜M f

fs and α≜M
2π

β
fs represents the normalized frequency and the 

normalized damping factor, respectively. Their definition enables the 
achievement of simple expressions for the related IpDTFT estimators. 

The normalized frequency represents the number of analysed signal 
cycles, and it can be expressed as: 

ϑ = l+ δ, (2)  

where l is the rounded value of ϑ, and δ (− 0.5 ≤ δ < 0.5) is the rounding 
error, which corresponds to the inter-bin frequency location; δ = 0 if 
coherent sampling occurs. The value of l is usually estimated as the 
location of the peak of the squared DFT module [5,8,15]. Thus, the 
frequency estimation problem can be solved by determining the frac-
tional frequency δ. 

To reduce the spectral leakage contribution due to the fundamental 
image component (and possible spurious components) on the frequency 
and the damping factor estimates, the acquired signal is multiplied by 
the H-term MSD window defined as: 

w(m) =
∑H− 1

h=0
( − 1)hahcos

(
2πhm

M

)

,m = 0, 1,⋯,M − 1 (3)  

where a0 =
CH− 1

2H− 2
22H− 2 and ah =

CH− 1− h
2H− 2

22H− 3 , h = 1, 2,⋯, H − 1, with Ck
n = n !

(n− k) ! • k !

are the window coefficients [25]. Thus, the analyzed signal becomes 
yw(m) = y(m) • w(m). 

The DTFT of the noise free weighted damped sinusoid xw(m) =

x(m) • w(m), is given by: 

Xw(λ) =
A
2

W

⎛

⎝e
2π
M (α + j(λ − ϑ) )

⎞

⎠ejϕ +
A
2

W

⎛

⎝e
2π
M (α + j(λ + ϑ) )

⎞

⎠e− jϕ

= X̃w(λ)+ X̃iw(λ), λ ∈

[

0,
M
2

)

,

(4)  

where 

W

⎛

⎝e
2π
M (α + jν)

⎞

⎠ ≅
(2H − 2)!

22H− 1
M
π

1 − e− 2π(α+jν)

α + jν
1

∏H− 1
h=1

[
(α + jν)2

+ h2
],

(5)  

is the z-transform of (3) [15], while X̃w(λ) and X̃iw(λ) are the transforms 
of the fundamental component of xw(m) and of its image, respectively. 
The related expressions can be written as: 

X̃w(λ) ≅ ψ(α+ j(λ − ϑ) )ejϕ, λ ∈ [0,M/2), (6.a)  

X̃iw(λ) ≅ ψ(α+ j(λ + ϑ) )e− jϕ, λ ∈ [0,M/2), (6.b)  

where; 

ψ(θ)=def(2H − 2)!
22H

AM
π

1 − e− 2πθ

θ
∏H− 1

h=1
(
θ2 + h2

), (7)  

where θ is a complex-valued variable used to represent either α + j(λ −
ϑ) or α + j(λ + ϑ). 

The inter-bin frequency location and the damping factor can be 
estimated by the following generalized multi-point interpolation func-
tion: 

hr = δ̂ − r+ jα̂ =

∑K1
p=− K1

apYw(l + r + p)
∑K2

q=− K2
bqYw(l + r + q)

, (8)  

where K1 and K2 are integers, {ap} p = − K1, − K1 + 1,…, K1, and {bq}, q 
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= − K2, − K2 + 1,…, K2, are set of integers of integers, r (− 1 < r < 1) is a 
real-valued fractional frequency shift, and Yw(•) is the DTFT of the 
windowed version of signal (1). The variable r acts as a tuning parameter 
and its value can be selected so to optimize the accuracy of the frequency 
and the damping factor estimates returned by (8). Observe that (8) is a 
ratio of two linear combinations of DTFT samples taken one bin apart 
and located around the index l of the discrete spectrum peak. Observe 
also that, with a suitable choice of the values of the coefficients, (8) can 
express different IpDTFT algorithms proposed in the literature 
[3,5,12,18]. 

The following Theorem holds (see the proof in the Appendix A): 

Theorem. When the analyzed damped sinusoid is weighted by the H-term 
MSD window, the contributions of the fundamental image component on the 
inter-bin frequency and damping factor estimators (8) are: 

Δδ+ jΔα ≅ − 2(l+ δ)
δ − r + jα

− (δ + 2l + r) + jα
f(α + j(2l + δ + r) )

f(α − j(δ − r) )
e− j2ϕ,

(9.a)  

Δδ+ jΔα ≅ − 2(l+ δ)
g(α + j(2l + δ + r) )

g(α − j(δ − r) )
e− 2jϕ, (9.b) 

where f(ν) =def ∑K1
p=− K1

apψ(ν+jp) and g(ν) =def ∑K2
q=− K2

bqψ(ν+jq).

Either (9.a) or (9.b) can be used for the computation of the funda-
mental image component contributions. In practice the choice of the 
expression to be used depends on the analytical complexity of the 
functions f(•) or g(•) in the specific case at hand. From (9) it follows that 
the estimation errors Δδ and Δα are two almost equal amplitude, in 
quadrature sinusoids with respect to the signal phase ϕ. Moreover, 
simulations show that the error amplitude decreases as ϑ increases. 

The above Theorem enables the compensation of the image 
component contribution, so that an improved accuracy IpDTFT algo-
rithm can be defined, whose application is advantageous especially 
when a few signal cycles are acquired. For a generic, but known, value of 
the fractional frequency shift r, that new algorithm, hereafter called 
corrected IpDTFT (IpDTFTc) algorithm, requires to perform the 
following steps: 

Multi-point IpDTFTc algorithm: 

Step 1: acquire M samples of the signal y(m) 
Step 2: compute the DFT of the windowed signal yw(m) = y(m)•w(m), 
where w(m) is the H-term MSD window 
Step 3: determine the integer part l of the number of acquired signal cycles 
as the location of the peak of the DFT squared module 
Step 4: determine an initial estimate for the inter-bin frequency location 
and the damping factor by applying (8) with a predefined value of r: δ̂ =

r+Re{hr} and α̂ = Im{hr}. 

Step 5: compute ϕ̂ = angle

⎧
⎨

⎩

( α̂− j(̂δ− r) )
∏H− 1

h=1 [( α̂− j(̂δ − r) )2+h2 ]
1− e− 2π( α̂− j(δ̂− r) ) Yw(l)

⎫
⎬

⎭
, 

which is derived from (4) and (5) by neglecting the contribution of the 
image component in (4) 

Step 6: determine the estimation errors Δδ and Δα by applying (9) using 
the obtained estimates for α̂, δ̂, and ϕ̂ 

Step 7: compute the compensated estimates δ̂c = δ̂ − Δδ and α̂c =

α̂ − Δα.

Simulations showed that the RMSE of the parameters estimated by 
the IpDTFTc algorithm depends on the value of the fractional frequency 
shift r and that there exists a specific value ̃r for which the RMSE of both 
unknown parameters reach a minimum. Simulation results showed that 
the optimum value of r is such that the processed DTFT samples are 
located symmetrically with respect to the normalized signal frequency ϑ. 
Thus, it depends on the fractional frequency δ and the adopted 

interpolation function (8), while it is almost independent of the damping 
factor α. It was determined a-priori by simulations, so that an optimal 
IpDTFTc (IpDTFTc-o) algorithm can be implemented as follows. 

Multi-point IpDTFTc-o algorithm: 

Steps 1–3: the same as Steps 1–3 of the IpDTFTc algorithm 
Step 4: determine an initial estimate for the inter-bin frequency location 
by applying (8) with r = 0: δ̂ = Re{hr}. 

Step 5: determine a new estimate for the inter-bin frequency location and 
the damping factor by applying (8) with r = r̃: δ̃ = r̃+Re

{
hr̃
}

and α̃ =

Im
{
hr̃
}
. 

Step 6: compute ϕ̃ = angle

⎧
⎨

⎩

( α̃− j(̃δ− r̃) )
∏H− 1

h=1 [( α̃− j(̃δ− r̃) )2+h2 ]
1− e− 2π( α̃− j(δ̃− r̃) ) Yw(l)

⎫
⎬

⎭
, which 

is derived from (4) and (5) by neglecting the contribution of the image 
component in (4). 

Step 7: determine the estimation errors Δδ and Δα by applying (9) using 
the obtained estimates for α̃, δ̃, and ϕ̃. 

Step 8: compute the compensated estimates ̃δc = δ̃ − Δδ and ̃αc = α̃ − Δα.

It is worth noticing that any value for the parameter r (− 1 ≤ r ≤ 1) 
can be used in Step 4. The value r = 0 is proposed since in this case the 
DTFT samples involved in (8) have been already computed in Step 2, so 
reducing the required processing effort. 

3. The three-point and four-point IpDTFTc-o algorithms 

In this Section the theory developed in Section 2 is applied to both 
the 3p-IpDFT algorithm proposed in [18] and the 4p-IpDFT algorithm 
proposed in [12]. The MSD windows are considered. 

3.1. The three-point IpDTFTc-o algorithm 

Assuming K1 = 1, K2 = 1, a-1 = − H, a0 = 0, a1 = H, b-1 = 1, b0 = − 2, 
and b1 = 1, the generalized interpolation function (8) becomes: 

δ̂ − r+ jα̂ = H
Yw(l + r + 1) − Yw(l + r − 1)

Yw(l + r − 1) − 2Yw(l + r) + Yw(l + r + 1)
. (10) 

In particular, when r = 0 the 3p-IpDFT algorithm based on the H- 
term MSD window is obtained [18,22–24]. 

By using (4) and (6), after some algebra it follows that: 

g(ν) = −
2H(2H − 1)

ν2 + H2 ψ(ν). (11) 

By replacing (11) in (9.b) and exploiting (7) it results: 

Δδ+ jΔα ≅ − 2(l+ δ)
1 − e− 2π(α+j(δ+r) )

1 − e− 2π(α− j(δ− r) )
α − j(δ − r)

α + j(2l + δ + r)
∏H

h=1

[
(α − j(δ − r) )2

+ h2
]

∏H
h=1

[
(α + j(2l + δ + r) )2

+ h2
]e− 2jϕ.

(12) 

Fig. 1 shows the values of the estimation errors Δδ and Δα obtained 
through simulations and by applying (12) for the 3p-IpDTFT algorithm 
as a function of the signal phase ϕ when r = − 0.2 and r = 0.5. The signal 
phase varies in the range [0, 2π) rad with a step of π/20 rad and a noise 
free damped sinusoid with A = 1 p.u., ϑ = 3.3 cycles and α = 0.5 is 
considered. Both the rectangular and the two-term MSD (or Hann) 
windows are used, and M = 512 samples are processed. As we can see, 
simulation and theoretical results are very close to each other. Also, the 
estimation errors related to the Hann window are smaller due to the 
lower spectrum sidelobe level of that window. It is worth noticing that 
the same behaviour as in Fig. 1 is achieved when the frequency shift r ∈
(− 1, 1), the damping factor α ∈ (0, 2), and M ≥ 64 samples. 
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For the 3p-IpDTFTc-o algorithm, performed simulations showed that 
the optimal value r̃ of the fractional shift is equal to the estimate δ̂ 
returned by the 3p-IpDTFT algorithm. For example, the Root Mean 
Square Errors (RMSEs) of the inter-bin frequency and damping factor 
estimates returned by the 3p-IpDTFTc and the 3p-IpDTFTc-o algorithms 
based on the rectangular and the Hann windows are reported in Fig. 2 as 
a function of r, which varies in the range (− 1, 1) with a step of 0.1. The 
number of cycles of the analyzed noisy damped sinusoids is equal to ϑ =
3.6 or 4.4 cycles when the rectangular window is considered, and ϑ =
2.6 or 3.4 cycles when the Hann window is applied. The damped sinu-
soid amplitude is A = 1 p.u., the damping factor is α = 0.5, and SNR =
40 dB; 10,000 runs of M = 512 samples acquired with signal phase at 
random have been processed for each value of r. Fig. 2 confirms that, for 
both windows, the inter-bin frequency and the damping factor estimates 
achieve minimum RMSE values when ̃r is close to δ. The same result was 
returned by simulations when considering different observation signal 
lengths when ϑ is greater than 2 or 3 cycles for the Hann and the rect-
angular window, respectively. Under these constraints, the accuracy of 
the initial parameter estimates enables the 3p-IpDTFTc-o algorithm to 
provide high accuracy estimates, as shown in the following. 

Fig. 3 shows the RMSEs of the parameters estimated by the 3p-IpDFT 
algorithm [18], the 3p-IpDTFTc algorithm with r = − 0.4, r = 0, and r =
0.4, and the 3p-IpDTFTc-o algorithm as a function of the number of 
acquired signal cycles ϑ, which varies with a step of 0.1 cycles. A noisy 
damped sinusoids with A = 1 p.u., damping factor α = 0.5 and SNR = 40 
dB is considered. Both the rectangular (Fig. 3(a), (b)) and the Hann 
(Fig. 3(c), (d)) windows are applied. 10,000 runs of M = 512 samples 
have been performed for each value of ϑ by varying the signal phase at 
random. 

Fig. 3 shows that the 3p-IpDTFTc algorithm applied with r = − 0.4, 0, 
or 0.4 exhibits a minimum RMSE value when the selected value of r is 
close to δ. In addition, Fig. 3 shows that the 3p-IpDTFTc-o algorithm 
provides more accurate parameter estimates than the 3p-IpDFT algo-
rithm [18], and the IpDTFTc algorithm applied using r = − 0.4, 0, and 
0.4 when ϑ is greater than about 2 or 3 cycles for the Hann or the 

rectangular window, respectively. Specifically, under the above con-
straints, the IpDTFTc-o algorithm provides the minimum estimation 
RMSEs ensured by the IpDTFTc algorithm. 

Conversely, for short observations (i.e., ϑ smaller than 2 or 3 cycles, 
respectively), the 3p-IpDTFTc algorithm applied with r = 0.4 may 
exhibit a bit better accuracy than the 3p-IpDTFTc-o algorithm. That 
behaviour occurs since in these conditions the accuracy of the initial 
parameter estimates returned by the 3p-IpDTFTc algorithm is poor due 
to the significant contribution of the fundamental image component. 

It is also worth remarking that, when at least about 2 or 3 cycles are 
analysed in the case of the Hann or the rectangular window, respec-
tively, the RMSE values returned by the IpDTFTc-o algorithm are almost 
constant since the effect of wideband noise largely prevails over the 
interference from the fundamental image component, which is well 
compensated by the algorithm. Conversely, RMSE fluctuations occur if 
the 3p-IpDTFTc algorithm is adopted due to both the effect of noise and 
the residual contribution of the fundamental image component. RMSE 
behaviors very similar to those reported in Fig. 3 were obtained by 
applying the IpDTFTc algorithm using different values of the fractional 
shift r in the range (− 1, 1). 

Fig. 4 shows the RMSEs of the parameters estimated by the 3p-IpDFT 
algorithm, the 3p-IpDTFTc algorithm applied with r = − 0.4, 0, or 0.4, 
and the 3p-IpDTFTc-o algorithm as a function of the damping factor α, 
which varies in the range [0.05, 2] with a step of 0.05; ϑ = 3.3 cycles are 
processed. The remaining simulation parameters are like those in Fig. 3. 

The obtained results confirm those obtained in Fig. 3 when ϑ = 3.3 
cycles. Moreover, the RMSEs of the unknown parameters increase as the 
damping factor α increases. 

3.2. The four-point IpDTFTc-o algorithm 

A 4p-IpDFT algorithm based on the rectangular window has been 
proposed in [12]. The following Proposition extends that algorithm to 
the MSD windows (see the proof in the Appendix B). 

Proposition. A 4p-IpDFT estimator for the frequency and the damping 

Fig. 1. Pure damped sinusoid: estimation errors Δδ (a) and Δα (b) obtained through simulations and (12) for the 3p-IpDTFT algorithm versus the signal phase when r 
= − 0.2 and r = 0.5. Sinusoid amplitude A = 1 p.u., ϑ = 3.3 cycles, damping factor α = 0.5, M = 512 samples. The rectangular or the Hann windows are applied. 
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factor of a damped sinusoid based on the H-term MSD window can be ob-
tained by the following expression: 

h= δ̂+jα̂=
− (H+1)Yw(l − 2)+(H+2)Yw(l − 1)+(H − 1)Yw(l)− HYw(l+1)

Yw(l − 2)− 3Yw(l − 1)+3Yw(l)− Yw(l+1)
.

(13)  

The estimator (13) can be obtained as a particular case of (8) 
assuming r = 0, K1 = 2, K2 = 2,a-2 = − (H + 1), a-1 = H + 2, a0 = H – 1, a1 
= − H, a2 = 0, b-2 = 1, b-1 = − 3, b0 = 3, b1 = − 1, and b2 = 0. The related 
generalized interpolation function (8) is:  

From (B.3.b) it follows that: 

g(ν) = −
2H

(
4H2 − 1

)
j

(
ν2 + H2

)
(ν − j(H + 1) )

ψ(ν). (15) 

By replacing (15) in (9.b) and exploiting (7) it results: 

Fig. 2. Noisy damped sinusoids: simulation results for the RMSEs of the inter-bin frequency and the damping factor estimators returned by the generalized 3p- 
IpDTFTc and the 3p-IpDTFTc-o algorithms versus the fractional frequency shift r. Rectangular window (a), (b) and Hann window (c), (d). Sinusoid amplitude A 
= 1 p.u., damping factor α = 0.5, and SNR = 40 dB. ϑ = 3.6 and 4.4 cycles (a), (b) and ϑ = 2.6 and 3.4 cycles (c), (d). 10,000 runs of M = 512 samples each with 
signal phase chosen at random. 

hr = δ̂ − r+ jα̂ =
− (H + 1)Yw(l + r − 2)+(H + 2)Yw(l + r − 1) + (H − 1)Yw(l + r)− HYw(l + r + 1)

Yw(l + r − 2) − 3Yw(l + r − 1) + 3Yw(l + r) − Yw(l + r + 1)
. (14)   
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Δδ+ jΔα≅− 2(l+δ)
1 − e− π(α+j(δ+r))

1 − e− π(α− j(δ− r))

(α − j(δ − r))(α − j(δ − r)− j(H+1))
(α+ j(2l+δ+r))(α+ j(2l+δ+r) − j(H+1))

×

∏H
h=1

[
(α − j(δ − r))2

+h2
]

∏H
h=1

[
(α+ j(2l+δ+r))2

+h2
]e− 2jϕ.

(16) 

Fig. 5 shows the values of the estimation errors Δδ and Δα obtained 
through simulations and (16) for the 4p-IpDTFT algorithm as a function 
of the signal phase ϕ. The simulation parameters are the same as in Fig. 1 
and the rectangular or the two-term MSD windows are adopted. As ex-
pected, simulation and theoretical results are very close to each other. It 
is worth noticing that behaviours similar to those reported in Fig. 5 are 
achieved when the frequency shift r ∈ (− 1, 1), the damping factor α ∈ (0, 
2), and at least M = 32 samples are analysed. 

In the 4p-IpDTFTc-o algorithm, the value ̃r selected for the fractional 
shift is equal to 0.5 + δ̂, which almost corresponds to the minimum 
RMSE values, as shown in Fig. 6, in which the RMSEs of the inter-bin 
frequency and the damping factor estimates returned by the 4p-IpDTFTc 
and 4p-IpDTFTc-o algorithms are reported as a function of r. Both the 
rectangular and Hann windows are considered, and the signal parame-
ters are the same used in Fig. 2. 

In Fig. 6 clearly shows that, for both windows, the minimum RMSE 
values of the inter-bin frequency and the damping factor estimates are 
obtained when ̃r is close to 0.5 + δ. The same result was obtained when 
considering different observation signal lengths if ϑ is greater than about 
1.9 or 2.6 cycles when the Hann or the rectangular window are applied, 
respectively. Under these constraints, the accuracy of the initial 
parameter estimates enables the 4p-IpDTFTc-o algorithm to return high 
accuracy estimates, as shown in the following. 

Fig. 7 shows the RMSEs of the parameters estimated by the 4p-IpDFT 

Fig. 3. Noisy damped sinusoids: simulation results for the RMSEs of the inter-bin frequency and the damping factor estimators provided by the 3p-IpDFT algorithm 
[18], the generalized 3p-IpDTFTc algorithm with r = − 0.4, 0, or 0.4, and the 3p-IpDTFTc-o versus the number of analyzed cycles. Rectangular window (a), (b) and 
Hann window (c), (d). Sinusoid amplitude A = 1 p.u., damping factor α = 0.5, and SNR = 40 dB. 10,000 runs of M = 512 samples each with signal phase chosen 
at random. 
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algorithm (13), the IpDTFTc algorithm applied with r = − 0.4, r = 0, and 
r = 0.4, and the 4p-IpDTFTc-o algorithm as a function of the number of 
acquired signal cycles ϑ, which varies with a step of 0.1 cycles. Both the 
rectangular (Fig. 7(a), (b)) and the Hann (Fig. 7(c), (d)) windows are 
applied and the same simulation parameters as in Fig. 3 are considered. 
Observe that at least 2 signal cycles have been considered in order to 
ensure that the frequencies related to all the DTFT samples appearing in 
(13) are positive. As we can see, the 4p-IpDTFTc algorithm provides the 
minimum estimate RMSE values for both considered windows when r is 
close to 0.5 + δ. Also, Fig. 7 shows that the proposed 4p-IpDTFTc-o al-
gorithm outperforms the others in almost all considered situations. As 
expected, the 4p-IpDTFTc algorithm with r = 0 exhibits a better accu-
racy than the 4p-IpDFT algorithm (13) only when a few signal cycles ϑ 
are analyzed. Moreover, the 4p-IpDTFTc-o algorithm ensures almost 

constant RMSE values when at least about 3 or 2 cycles are observed and 
the rectangular or the Hann windows are employed, respectively. Sim-
ulations confirm that these values coincide with the minima of the 
estimation RMSE provided by the IpDTFTc algorithms for different 
values of the fractional shift r in the range (− 1, 1). It is also worth 
remarking that the variations of the RMSE returned by the 4p-IpDTFTc 
algorithm when ϑ is greater than about 2 or 3 cycles and the Hann or the 
rectangular window is used, respectively, are due to both the effect of 
noise and the residual contribution of the fundamental image 
component. 

Fig. 8 shows the RMSEs of the parameters estimated by the 4p-IpDFT 
algorithm (13), the 4p-IpDTFTc algorithm with r = − 0.4, 0, or 0.4, and 
the 4p-IpDTFTc-o algorithm as a function of the damping factor α, which 
varies in the range [0.05, 2] with a step of 0.05, when ϑ = 3.3 cycles. The 

Fig. 4. Noisy damped sinusoids: simulation results for the RMSEs of the inter-bin frequency and the damping factor estimators provided by the 3p-IpDFT algorithm 
[18], the generalized 3p-IpDTFTc algorithm with r = − 0.4, 0, or 0.4, and the 3p-IpDTFTc-o versus the damping factor. Rectangular window (a), (b) and Hann 
window (c), (d). Sinusoid amplitude A = 1 p.u., number of analyzed cycles ϑ = 3.3 cycles, and SNR = 40 dB. 10,000 runs of M = 512 samples each with signal phase 
chosen at random. 
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same simulation parameters as in Fig. 3 have been used. As we can see, 
the RMSEs of the unknown parameters confirm the results obtained in 
Fig. 7 when ϑ = 3.3 cycles and they increase with the damping factor α. 

4. Performance comparison with state-of-the-art multi-point 
IpDTFT algorithms 

In this Section the RMSE of the proposed 3p-IpDTFTc-o and 4p- 
IpDTFTc-o algorithms and the 3p-IpDTFT algorithms proposed in [3] 
and [16] are compared to each other through Monte Carlo simulations. 
The IpDTFT algorithm proposed in [16], already discussed in the 
Introduction and called here the Wang algorithm, is a 3p-IpDTFT algo-
rithm based on the rectangular window and it removes the contribution 
of the fundamental image component on the returned estimates. The 
RVCI-1 algorithm proposed in [3] is a 3p-IpDFT algorithm based on the 
Hann window. Noisy damped sinusoids and noisy and harmonically 
distorted damped sinusoids are considered in the comparison. They are 
characterized by amplitude A = 1 p.u. and damping factor α = 0.5. For 
each value of the number of cycles ϑ, 10,000 runs of M = 512 samples 
each are processed; the signal phase ϕ is selected at random in the in-
terval [0,2π) rad. Eventually, the processing efforts required by the most 
accurate of the considered algorithms are determined and compared 
with each other. 

4.1. Noisy damped sinusoids 

Fig. 9 shows the RMSEs of the inter-bin frequency and the damping 
factor estimates as a function of the number of analysed signal cycles ϑ in 
the case of damped sinusoids corrupted by noise so that the SNR = 40 dB 
(Fig. 9(a), (b)) or SNR = 60 dB (Fig. 9(c), (d)), respectively. The Wang 
algorithm, the RVCI-1 algorithm, and the proposed 3p-IpDTFTc-o al-
gorithms based on the rectangular or the Hann windows are considered. 
The square root of the asymptotic Cramér-Rao Lower Bound (CRLB) for 
unbiased parameter estimators [26] is also shown in Fig. 9 in order to 
enable a visual assessment of the algorithm statistical efficiency. 

As we can see, thanks to a more effective removal of the contribution 
of the fundamental image component, the Wang algorithm outperforms 
the others when a few signal cycles are observed. Indeed, in this situa-
tion the accuracies of the IpDTFTc-o algorithms suffer of the poor initial 
parameters estimates due to the strong contribution of the fundamental 
image component. Conversely, when the observation duration increases, 

the noise contribution dominates, and the IpDTFTc-o algorithm based on 
the rectangular window ensures the best accuracy. Good results are 
returned also by the IpDTFTc-o algorithm based on the Hann window, 
but the effect of noise on the estimated parameters increases due to the 
higher window equivalent noise bandwidth (ENBW) parameter. Simu-
lations showed that the value of ϑ above which the IpDTFTc-o algorithm 
based on the rectangular window outperforms the others increases with 
the SNR and the damping factor. This behaviour occurs since for high 
SNR values the effect of the fundamental image component dominates 
also for relatively long observation intervals. 

Moreover, estimation errors increase with the damping factor (as 
shown in Fig. 4) so longer observation intervals are needed to ensure 
that the effect of noise prevails. The RVCI-1 algorithm exhibits poor 
inter-bin frequency location accuracy when short observation intervals 
are analysed, and poor damping factor estimates. That occurs since this 
algorithm does not compensate the contribution of the fundamental 
image component. Fig. 9 also shows that the RMSE of the IpDTFTc-o 
algorithm based on the rectangular window is almost close to the 
CRLB if enough long observations are considered. 

4.2. Noisy and harmonically distorted damped sinusoids 

In the performed simulations the noisy signals considered in the 
previous subsection has been corrupted with a second and a third har-
monics of amplitudes 0.1 p.u., 0.05 p.u., and damping factors 0.375, 
0.25, respectively. Only low order harmonics were considered since 
their effect on the estimated parameters usually overcomes that due to 
the higher order ones [27]. 

Fig. 10 and Fig. 11 show the RMSEs of the inter-bin frequency and 
damping factor estimates returned by the Wang, the 3p-DTFTc-o, and 
the 4p-IpDTFTc-o algorithms based on the rectangular (Fig. 10) or the 
Hann (Fig. 11) windows as a function of the number of analyzed signal 
cycles ϑ when SNR = 40 dB or SNR = 60 dB. The square root of the 
asymptotic CRLB is also shown in order to provide a reference for the 
estimation accuracy. 

As expected, the Wang algorithm is less robust to spectral interfer-
ence from harmonics than the 3p-IpDTFTc-o and the 4p-IpDTFTc-o al-
gorithms, which outperform the former algorithm in all considered 
simulation conditions, except when less than about 1.5 or 2.5 cycles are 
analysed and the rectangular or the Hann window are used, respectively. 
This occurs because the unknown parameter estimates are significantly 

Fig. 5. Pure damped sinusoid: estimation errors Δδ (a) and Δα (b) obtained through simulations and (16) for the 4p-IpDTFT algorithm versus the signal phase when r 
= − 0.2 and r = 0.5. Sinusoid amplitude A = 1 p.u., ϑ = 3.3 cycles, damping factor α = 0.5, M = 512 samples. The rectangular or the Hann windows are applied. 
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affected by the interference from the harmonics, especially when the 
rectangular window is used. Observe also that the IpDTFTc-o algorithms 
outperforms the RVCI-1 algorithm in most considered conditions. When 
SNR = 60 dB, the 4p-IpDTFTc-o algorithm often outperforms the 3p- 
IpDTFTc-o algorithm if the rectangular window is used (see Fig. 10(c) 
and (d)), while their accuracies are very close when the Hann window is 
used. It is worth noticing that the unknown parameter RMSEs increase 
when the damping factors of the fundamental and harmonics increase. 
However similar behaviours as those in Figs. 10 and 11 are obtained if 
the damping factor ratios (i.e., 1:0.75:0.5) and the amplitude ratios are 
preserved. 

4.3. Computational complexity comparison 

The processing efforts required by the considered algorithms have 
been compared to each other. The number of analyzed sample M has 
been selected to be a power of 2 so that the classical FFT algorithm can 

be employed to determine the signal DFT by performing Mlog2M 
complex-valued additions and 0.5Mlog2M complex-valued multiplica-
tions [28], which require 3Mlog2M real-valued additions (RVAs) and 
2Mlog2M real-valued multiplications (RVMs). In all parameter estima-
tors, the integer part of the number of analyzed signal cycles, l, is 
determined through a peak search procedure applied to the DFT square 
module, which implies M RVAs and 2M RVMs. The calculation of the 
DTFT of an M-length real-valued data sequence implies (2M − 2) RVAs 
and 2 M RVMs. Further M RVMs are needed when data windowing is 
applied. The overall number of real-valued additions and multiplica-
tions required by the Wang, the 3p-IpDTFTc-o, and the 4p-IpDTFTc-o 
algorithms based on the rectangular window are reported in Table 1. 
The computational complexity required by further processing per-
formed in each algorithm does not significantly affect the whole pro-
cessing effort, so it is neglected. 

Table 1 shows that the Wang algorithm requires a lower processing 
effort than the 3p-IpDTFTc-o and the 4p-IpDTFTc-o algorithms. For 

Fig. 6. Noisy damped sinusoids: simulation results for the RMSEs of the inter-bin frequency and the damping factor estimators returned by the generalized 4p- 
IpDTFTc and the 4p-IpDTFTc-o algorithms versus the fractional frequency shift r. Rectangular window (a), (b) and Hann window (c), (d). Sinusoid amplitude A 
= 1 p.u., damping factor α = 0.5, and SNR = 40 dB. ϑ = 3.7 and 4.3 cycles (a), (b) and ϑ = 2.7 and 3.3 cycles (c), (d). 10,000 runs of M = 512 samples each with 
signal phase chosen at random. 
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Fig. 7. Noisy damped sinusoids: simulation results for the RMSEs of the inter-bin frequency and the damping factor estimators provided by the 4p-IpDFT algorithm 
(13), the generalized 4p-IpDTFTc algorithm with r = − 0.4, 0, or 0.4, the and 4p-IpDTFTc-o versus the number of analyzed cycles. Rectangular window (a), (b) and 
Hann window (c), (d). Sinusoid amplitude A = 1 p.u., damping factor α = 0.5, and SNR = 40 dB. 10,000 runs of M = 512 samples each with signal phase chosen 
at random. 
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example, when M = 512 samples the 3p-IpDTFTc-o algorithm based on 
the rectangular window requires 21% more RVAs and 30% more RVMs 
than the Wang algorithm. However, the related processing effort is such 
that the IpDTFTc-o algorithm can surely implemented in most low-cost 
hardware platforms for real-time applications, thus ensuring significant 
advantages in terms of estimation accuracy when short observation in-
tervals are of concern. 

5. Conclusions 

In this paper a generalized multi-point interpolated DTFT based on 
an MSD window has been proposed for frequency and damping factor 
estimation of real-valued damped sinusoids. The frequency-domain 
interpolation function is defined as the ratio between two generic 
linear combinations of DTFT samples located one bin apart, which is 

generalized exploiting a tuning parameter. Analytical expressions for 
the estimated parameter errors due to the interference of the funda-
mental image component have been derived. The obtained expressions 
enabled the compensation of that contribution and the derivation of a 
multi-point IpDTFT algorithm – called the IpDTFTc algorithm – which 
ensures a significant accuracy improvement when only a few signal 
cycles are analysed. In addition, a version of that algorithm – called the 
IpDTFTc-o algorithm – that provides minimum estimation RMSE has 
been proposed. 

The developed theory has been applied to IpDTFT algorithms based 
on three or four interpolation points. Simulations showed that the pro-
posed 3p-IpDTFTc-o and 4p-IpDTFTc-o algorithms can provide a better 
accuracy than state-of-the-art 3p-IpDFT estimators like the RVCI-1 [3] 
and the Wang [16] algorithms. Specifically, while the proposed 
IpDTFTc-o estimators outperforms the RVCI-1 algorithm, the Wang 

Fig. 8. Noisy damped sinusoids: simulation results for the RMSEs of the inter-bin frequency and the damping factor provided by the 4p-IpDTFTc-o versus the 
damping factor. Rectangular window (a), (b) and Hann window (c), (d). Sinusoid amplitude A = 1 p.u., number of analyzed cycles ϑ = 3.3 cycles, and SNR = 40 dB. 
10,000 runs of M = 512 samples each with signal phase chosen at random. 
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Fig. 9. Noisy damped sinusoids: simulation results for the RMSEs of the inter-bin frequency and the damping factor estimators versus the number of analyzed cycles 
when SNR = 40 dB (a), (b) and SNR = 60 dB (c), (d). Wang algorithm [16], RVCI-1 algorithm [3], 3p-IpDTFTc-o algorithm based on the rectangular and Hann 
windows. The asymptotic 

̅̅̅̅̅̅̅̅̅̅̅̅
CRLB

√
is also shown. Sinusoid amplitude A = 1 p.u. and damping factor α = 0.5. 10,000 runs of M = 512 samples each with signal phase 

chosen at random. 

D. Belega et al.                                                                                                                                                                                                                                  



Measurement 234 (2024) 114885

13

Fig. 10. Noisy and harmonically distorted damped sinusoids: simulation results for the RMSEs of the inter-bin frequency and the damping factor estimators versus 
the number of analyzed cycles when SNR = 40 dB (a), (b) and SNR = 60 dB (c), (d). Wang algorithm [16] and proposed 3p-IpDTFTc-o and 4p-IpDTFTc-o algorithms 
based on the rectangular window. The asymptotic 

̅̅̅̅̅̅̅̅̅̅̅̅
CRLB

√
is also shown. Sinusoid amplitude A = 1 p.u. and damping factor α = 0.5. 2nd and 3rd harmonics with 

amplitudes 10 % and 5 % of fundamental and damping factors 0.375 and 0.25. 10,000 runs of M = 512 samples each with signal phase chosen at random. 
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algorithm may return more accurate estimates only for very short 
observation intervals, a situation where the contribution of the inter-
ference from the fundamental image component largely dominates the 
effect of wideband noise. Conversely, if the damped sinusoid is distorted 
by significant harmonics, the IpDTFTc-o algorithms based on either the 
rectangular window, or the Hann window outperforms the Wang 

algorithm in almost all considered simulation conditions. Thanks to 
their simple implementation and the low processing effort required, the 
proposed multi-point IpDTFTc-o algorithms can be employed in real- 
time low-cost hardware platforms for frequency and damping factor 
estimation of damped sinusoids. 
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Fig. 11. Noisy and harmonically distorted damped sinusoids: simulation results for the RMSEs of the inter-bin frequency and the damping factor estimators versus 
the number of analyzed cycles when SNR = 40 dB (a), (b) and SNR = 60 dB (c), (d). Wang algorithm [16], RVCI-1 algorithm [3], and proposed 3p-IpDTFTc-o and 4p- 
IpDTFTc-o algorithms based on the Hann window. The asymptotic 

̅̅̅̅̅̅̅̅̅̅̅̅
CRLB

√
is also shown. Sinusoid amplitude A = 1 p.u. and damping factor α = 0.5. 2nd and 3rd 

harmonics with amplitudes 10 % and 5 % of fundamental and damping factors 0.375 and 0.25. 10,000 runs of M = 512 samples each with signal phase chosen 
at random. 

Table 1 
Overall computational complexity required by the considered algorithms 
expressed in terms of number of RVAs and RVMs. Rectangular window.  

Frequency estimator RVAs RVMs 

Wang 3Mlog2M + M 2Mlog2M + 2M 
3p- IpDTFTc-o 3Mlog2M + 7M − 6 2Mlog2M + 8M 
4p- IpDTFTc-o 3Mlog2M + 9M − 8 2Mlog2M + 10M  
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Appendix A 

Proof of the Theorem 
Assuming (as often occurs in practice) that the SNR is enough high so that the contribution of wideband noise can be neglected, the interpolation 

multi-point function (8) becomes: 

δ̂ − r+ jα̂ ≅

∑K1
p=− K1

apXw(l + r + p)
∑K2

q=− K2
bqXw(l + r + q)

. (A.1) 

Using (6), (A.1) can be written as: 

δ̂ − r+ jα̂ ≅

∑K1
p=− K1

apψ(α − j(δ − r) + jp )ejϕ +
∑K1

p=− K1
apψ(α + j(2l + δ + r) + jp )e− jϕ

∑K2
q=− K2

bqψ(α − j(δ − r) + jq )ejϕ +
∑K2

q=− K2
bqψ(α + j(2l + δ + r) + jq )e− jϕ

=
f(α − j(δ − r) )ejϕ + f(α + j(2l + δ + r) )e− jϕ

g(α − j(δ − r) )ejϕ + g(α + j(2l + δ + r) )e− jϕ, (A.2)  

where f(ν) =def ∑K1
p=− K1

apψ(ν+jp), and g(ν) =def ∑K2
q=− K2

bqψ(ν+jq).
From (A.2) it follows: 

δ̂ − r+ jα̂ ≅
f(α − j(δ − r) )
g(α − j(δ − r) )

1 +
f(α+j(2l+δ+r) )

f(α− j(δ− r) ) e− j2ϕ

1 +
g(α+j(2l+δ+r) )

g(α− j(δ− r) ) e− j2ϕ
. (A.3) 

Since 
⃒
⃒
⃒
⃒
g(α+j(2l+δ+r))

g(α− j(δ− r) )

⃒
⃒
⃒
⃒≪1, when l is not too small, using the approximation (1 + x)− 1

≅ 1 − x, which holds when |x| ≪ 1, and observing that the cross- 

product term can be neglected since it is much smaller than the others, it results: 

δ̂ − r+ jα̂ ≅
f(α − j(δ − r) )
g(α − j(δ − r) )

[

1+
f(α + j(2l + δ + r) )

f(α − j(δ − r) )
e− j2ϕ −

g(α + j(2l + δ + r) )
g(α − j(δ − r) )

e− j2ϕ
]

. (A.4) 

Let’s consider now the expression of ψ( • )given by (7). Since, in the considered conditions, the contribution of the image frequency component on 
f(α − j(δ − r) ) and g(α − j(δ − r) ) can be neglected, we have f(α− j(δ− r) )

g(α− j(δ− r) ) = δ − r + j. Similarly, if the contribution of the fundamental component on 

f(α+j(2l + δ + r) ) and g(α+j(2l + δ + r) ) is negligible we have f(α+j(2l+δ+r) )
g(α+j(2l+δ+r) ) = − (δ+2l+r) +jα. By dividing the equalities above we obtain: 

g(α + j(2l + δ + r) )
g(α − j(δ − r) )

=
δ − r + jα

− (δ + 2l + r) + jα
f(α + j(2l + δ + r) )

f(α − j(δ − r) )
(A.5) 

By replacing f(α− j(δ− r) )
g(α− j(δ− r) ) = δ − r+jα and the ratio (A.5) into (A.4) after simple algebra it follows: 

δ̂ − r+ jα̂ ≅ δ − r+ jα − 2(l+ δ)
δ − r + jα

− (δ + 2l + r) + jα
f(α + j(2l + δ + r) )

f(α − j(δ − r) )
e− j2ϕ (A.6.a)  

or 

δ̂ − r+ jα̂ ≅ δ − r+ jα − 2(l+ δ)
g(α + j(2l + δ + r) )

g(α − j(δ − r) )
e− j2ϕ (A.6.b) 

From (A.6.a) and (A.6.b), (9.a) and (9.b) can be easily derived. 

Appendix B 

Proof of the Proposition 
If the number of observed signal cycles and the SNR are not too small, the contributions of the fundamental image component and noise to DFT 

samples employed in (13) can be neglected. Thus, (13) can be written as: 

h ≅
− (H + 1)X̃w(l − 2)+(H + 2)X̃w(l − 1) + (H − 1)X̃w(l)− HX̃w(l + 1)

X̃w(l − 2) − 3X̃w(l − 1) + 3X̃w(l) − X̃w(l + 1)
. (B.1) 

By using (6), after some algebra the following equalities are achieved: 

X̃w(l − 2) =
(α − jδ + j(H − 1) )(α − jδ + j(H − 2) )

(α − jδ − jH)(α − jδ − j(H + 1) )
X̃w(l), (B.2.a)  

X̃w(l − 1) =
α − jδ + j(H − 1)

α − jδ − jH
X̃w(l), (B.2.b) 
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X̃w(l+ 1) =
α − jδ − j(H − 1)

α − jδ + jH
X̃w(l). (B.2.c) 

By using the above equalities, after tedious calculation we obtain: 

− (H + 1)X̃w(l − 2)+(H + 2)X̃w(l − 1)+ (H − 1)X̃w(l)− HX̃w(l+1) =
2H

(
4H2 − 1

)
(α − jδ)

(α − jδ − jH)(α − jδ + jH)(α − jδ − j(H + 1) )
, (B.3.a)  

X̃w(l − 2) − 3X̃w(l − 1)+ 3X̃w(l) − X̃w(l+1) = −
2H

(
4H2 − 1

)
j

(α − jδ − jH)(α − jδ + jH)(α − jδ − j(H + 1) )
. (B.3.b) 

By replacing (B.3.a) and (B.3.b) into (B.1) we have: 

h ≅ δ+ jα. (B.4) 

Thus, (B.4) shows that (13) is the interpolation function of a 4p-IpDFT algorithm based on the H-term MSD window. 
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