
HAL Id: hal-01883868
https://hal.science/hal-01883868

Submitted on 4 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

(A)KDD for Structuring Destrured Documents
Jacques Pere-Laperne

To cite this version:
Jacques Pere-Laperne. (A)KDD for Structuring Destrured Documents. 2018 International Conference
on Artificial Intelligence ICAI’18, Jul 2018, Las Vegas, NV. 89, United States. �hal-01883868�

https://hal.science/hal-01883868
https://hal.archives-ouvertes.fr


(A)KDD for Structuring Destructured Documents

Jacques Péré-Laperne
1A3I , ESTIA, University of Bordeaux, LaBRI-CNRS, F-64210 Bidart, France , j.perelaperne@gmail.com

Abstract— The worldwide volume of digital data doubles
every 9 months. Over 75% of these data are unstructured.
This paper concerns structuring the graphic information
contained in vector files, including PDF (Portable Document
Format) files, which represent a very significant share of
all these vector files. We say these data are destructured
because they are today produced by software. When there
are stored or exchanged, (for example in PDF Files) only
graphic information is kept and the data structure use to
create the document is lost.

To structure these data, we use Knowledge Discovery in
Databases (KDD). The following two issues arise:

• Can the KDD method be adapted to “Structuring
Destructured Documents”?

• If so, what points need adapting or highlighting in the
method to solve the issue of structuring essentially graphic
documents?

The answer to the questions is “YES” with the human
in the loop. This is why we talk about the Anthropocentric
Knowledge Discovery in Database method, abbreviated to
(A)KDD.

Keywords: Data Minning, CHI, PDF, KDD, Graphic reconstruc-
tion, Pattern recognition

1. Introduction
1.1 Context

It is worth remembering just 3 figures. The first is that the
volume of digital data doubles every 9 months. The second
is the fact that this volume of data will represent 7 to 8
Terabytes per inhabitant on the planet in 2020. Finally, over
75% of these data will be destructured.

1.2 Real industrial need
For over 30 years software has produced destructured

documents. There were two aims of producing destructured
documents. The first was to enable these data to cross time
and different environments. PDF files are a concrete example
of this aim. The second, more or less clearly stated, was to
provide information that could not be exploited, modified or
extracted.

The data present in destructured files are visible: They
are human-readable but not machine readable. The data can
be printed, sent and archived, but they cannot be used or
modified and information cannot be extracted from them,
and, more generally, they are inoperable. Any mechanism

enabling these data to be structured and used represents an
extraordinary benefit for the owners of these data. These
destructured documents do not necessarily need to be fully
structured. Often partial reconstruction is sufficient. It is the
user who decides on the level of reconstruction and the items
to be structured.

In 2003 Tombre and Lamiroy [1] made the following
observation : “Grassroots users, as well as large companies,
have a huge amount of information at their disposal, but
this information is available in very “poor” formats: paper
documents, or low-level, poorly structured digital formats
such as Postscript, PDF or DXF. The challenge is therefore
to convert this poorly structured information into enriched
information which can be used within an information sys-
tem”. This is the aim of this article.

1.3 Case study, example of application
There are very many cases of application. For example,

the possibility of modifying an existing diagram stored in
a destructured form. This concerns electrical, hydraulic,
pneumatic, electronic and PID (Process and Instrumentation
Diagram) diagrams, as well as all types of plans, including
buildings and heating/air-conditioning systems. The second
case of application is to carry out Reverse Engineering on
these types of existing documents in businesses or from
other environments. The third is the possibility to almost
automatically introduce all the graphic information from old
software into new software, for different reasons, the main
one being that the old software is no longer used or has
become obsolete

Today, for all these operations, the only solution is to fully
and manually re-input information in software. This solution
is very time-consuming and costly. Furthermore, it is also the
source of numerous errors. A copy-paste is not a solution, by
this way, only the graphical information is copy and not the
structure, without structure the information cannot be used
by a CAD software.

1.4 Our vision
When we began work on structuring destructured doc-

uments, we applied the KDD method defined by Usama
Fayyad and others. We broke down each task to be carried
out, in all around twenty, into 5 main sub–tasks of the
KDD method. These 5 main sub-tasks are: 1 – selecting
data, 2 – preparing and cleaning data, 3 – Coding data,
4 – Data-mining, 5 – Presenting results to users. The



authors underlined, the KDD process is both complex and
comprehensive.

After structuring, the information is produced in XML
format and DXF/DWG format, a graphic format usable
by most Computer-Aided Drafting, Computer-Aided Design
and Desktop Publishing tools.

The first question to be asked is: why are convolution
neural networks not used since they are becoming increas-
ingly efficient? These convolution neural networks (Lecun,
Bengio 2006 [2]) cannot be used to structure destructured
documents for two main reasons: Firstly, the small amount of
information available in companies (we shall explain why the
volume of input data is sometimes very small) and secondly,
the difficulty in gathering learning data. When a company
wishes to structure a piece of information, it will have
between 1 and 100 files, each with 20 to 100 pages. This is
clearly a long way from the number of examples required
for convolution neural networks. Our approach differs from
this work on neural networks: as we said above, it is very
close to the KDD method and places the user at the heart
of the extraction process.

The user is present throughout all the structuring phases.
Why? Because it is much cheaper and more efficient for the
user to intervene throughout the process rather than at the
end to validate and/or correct any errors. The fact that the
user has to take decisions (which takes just a few seconds
according to the Human-Machine Interface used) consider-
ably reduces, and in some cases even cancels, the rate of
errors for each task. The aim of structuring is to obtain a
100% exact result. The results produced by structuring must
be 100% exact. Users of information produced by structuring
will never accept a rate of only 70% or even 80%.

In the structuring process, there are around twenty tasks
to be carried out. If each task and their sequencing is full
automated, with each task having an error rate of 2 to 3%
, we will at the end point, after carrying out 20 tasks,
observe that validation by the user will require decisions
on information with between 40% and 60% errors. Such an
error rate leads the user to reject the system. In such cases,
during the validation phase, the user will have to modify,
reclassify or cancel over 40% of all results. If a destructured
datum contains 10 000 basic pieces of information, the user
will have to modify 4 000 pieces of information. These
corrective tasks will take a considerable amount of time,
which is inacceptable in the world of industry. The aim
of many works is to automate tasks as much as possible,
therefore reducing the user’s intervention. In our case, it is
exactly the opposite. The user will have to intervene in all
tasks and their sub-tasks very quickly, so the exact result is
100%. Our aim is to structure data with on the end-user.

This paper is organized as follows:
• In paragraph 2, we look at the state of the art.
• In paragraph 3, we look at the constraints imposed by

small volumes of KDD input data.

• In Paragraph 4, we introduce the incremental nature of
structuring using the KDD method.

• In paragraph 5, we introduce ontologies in the KDD
method.

• In paragraph 6, we define the anthropocentric nature of
the KDD method.

• We then conclude and highlight upcoming works.

2. State of the art
We carried out a comprehensive start of the art on

structuring documents in the paper presented at Smart 2017.
Research has been carried out: (1) to structure press articles,
(2) to structure tables and forms, (3) to extract scientific
papers and PDF files from graphs and curves. The only
work close to ours is that of the Mnémosyne team at INRIA
Bordeaux [3].

In conclusion, very little research work has aimed to
structure graphic information present in unstructured docu-
ments.There are three main reasons why structuring unstruc-
tured documents has not been the subject of much research
work.

The first is that, as highlighted by Usama Fayyad and
his co-authors, the KDD process to be implemented is a
comprehensive and complex process. A single task is not
enough to solve it. All the tasks need to be undertaken and
solved.

The second is the volume of data. A great deal of work
on KDD deals with the issues of very large amounts of data
and their scaling up for a solution.The amount of input data
may be very small. We talk about MEDIUM-DATA (for
large groups) and SMALL-DATA (for ETI’s and SME’s),
compared to BIG-DATA present in many works on KDD.
The third reason is the need to place the user at the heart of
the issue and that goes against a lot of research whose aim
is to automate tasks as much as possible in order to take
humans out of the equation..

3. The KDD method on medium-
data&small-data

Indeed, data structuring can be applied to a very small
amount of data, for example, to structure an electric folder
available as a single PDF file.

This folder contains, for example, 40 pages or sheets.
Each page consists of 1 000 to 4 000 graphic objects.
After structuring these graphic objects, there are around a
hundred symbols per page. Out of these 100 symbols, 20 are
standard electric symbols (contacts, breakers, motors, etc.),
40 are equipotentials and equipotential numbering symbols,
30 are crossed-reference information and the remaining 10
are various different types of symbols. Thus, in the 40
page folder, there are 1 600 equipotentials with numbering,
almost the same volume of crossed references and around
800 electric symbols which belong to a set of 80 different



symbols. This means that the same symbol is present on
average 10 times in the file. The underlying idea is that a
structuring symbol appear just once in all the input data and
that, on average, it will be present more than 10 times in the
data, and a thousand times according to the volume of input
data (around fifty folders).

The data-mining we are developing to structure graphic
data has to find repetitive patterns and cluster them, as
well as non-repetitions of patterns, which can represent a
symbol because if they are neither equipotentials nor already
identified symbols, they are certainly “free” symbols or
drawings which only exist once in the input data.

4. Our (A)KDD method’s incremental
aspect
4.1 The KDD method

The way structuring works is quite simple. We search for
(Data-mining part) “Graphemes” (as understood by Jacques
Bertin, 1967 and 2005 [4]), which are repeated in the same
types of document. We saw above the repetitive nature of
a pattern can vary from 1 (in this case it is unique) to N,
(according to the volume of data to be processed).

It is worth highlighting the fact that with regard to KDD
methods applied to data-mining in databases, the user knows
EXACTLY what should be obtained after restructuring,
whereas with “classic” KDD methods the user is not too sure
of the final result. The (A)KDD method we have developed
is simply there to accelerate structuring. Indeed, we can take
the example of a folder with 40 sheets. If the user has to
re-enter all the information, he/she will mentally structure it
to introduce it into new software. This will take around 8
hours per sheet (according to the amount of information to
be input), ie. a total of 320 hours. Our aim is for structuring
the entire folder to take between 1 and 2 hours, ie. 300 to
150 times faster, even if the user only has one folder.

After searching and grouping into families of graphemes
by the machine, the user validates, or not, all or part of
these graphemes. After validation or non-validation, the
graphemes are introduced into the ‘’Knowledge Base”.
In reality, “The” knowledge base consists of a series of
knowledge bases, each of which corresponds to a type
of document or sub-type of document, connected to one
or several ontologies. Graphemes are entries of ontology
objects. The entries and ontologies are in “The” knowledge
base, and the graphemes are also stored in a graphic base in
DXF/DWG format.

After validation, a new search and new “Clusterisation”
are performed. This repetition is the Iterative aspect, with
the user representing the Interaction aspect. Introduction into
“The” knowledge base is the Integration aspect. Here we can
see the KDD’s 3 “I”s described by Usama Fayyad and his
co-authors in 1996 [5]: Iterative, Interaction & Integration.

4.2 The incremental aspect
In our case, the principle of reconstruction is Incremental

((A)KDD’s 4th “I”). When basic graphemes are recognised,
we search for “Super Graphemes” which are the association
of graphemes and basic graphic objects. In turn, they are
proposed to the user and integrated in the knowledge bases
and the graphic base. This process is recursive, until all the
knowledge being searched for in the destructured documents
is obtained. This is an example of the incremental aspect,
which we shall describe in greater detail below.

It is worth remembering that each of the method’s tasks is
sub-divided into sub-tasks where we can find, 1 – Selecting
data, 2 – Preparing and cleaning data, 3 – Coding data, 4 –
Data-mining, 5 – Presenting results to users. We represent
this set of tasks in the form of a double ring: the first
rings shows the direction in which tasks are carried out and
the second ring, the dotted line, shows the possibility of
returning to any previous task. The ring’s shape represents
the method’s Iterative aspect, with, of course, after the
validation sub-task, the possibility of stopping the method’s
Iterative aspect.

The method’s incremental aspect, which we propose, con-
sists of stacking these rings on top of each other and enabling
the user to be able to (1) Iterate the task’s performance, or
(2) Move on to the next task. This is the Incremental aspect,
or (3) Return to the performance of one of the previous
tasks because the results obtained do not match the expected
results.

4.3 Stages of (A) KDD method
In the previous paper we identified the 7 following steps:
• Step 1: Structuring lines
• Step 2: Structuring letters



• Step 3: Structuring words
• Step 4: Structuring basic symbols
• Step 5: Structuring complex symbols
• Step 6: Structuring complex symbols
• Step 7: Structuring the folder
To explain the incremental aspect, we shall look at the

first 4 steps in greater detail.
Step 1: Structure lines: Define the type of lines and

identify them based on their composition (lengths of lines
and spaces).

The aim of this step is to reduce the number of graphic
objects by trying to group them together more holistically.
For example, if we take the dotted line or with dashes,
graphically it consists of a range of lines, each of which
corresponds to the visible part of the dash or dotted line.
Grouping them together reduces the number of graphic
objects, for instance, from 50 graphic objects to one single
graphic object.

Another example: All the conic shapes, like circles, el-
lipses, circle arcs or ellipsis arcs are made up of graphic
objects which are segments. For a circle, according to its
size, it can be broken down into 360 segments. In this case,
each segment corresponds to a 1 degree corde d’un angle.
NB. Circles or ellipses may be in dotted lines, which further
increases the number of graphic objects making up the conic
shape.

All these notions about the type of lines and type of conic
shapes are defined in the ontology and the appearance of
these notions in input data are instances of these notions.

Likewise, if you have a shape filled in, it is often shown
by very narrow segments which give the impression of being
filled in. There can be several thousand segments to be filled
in in an area (like, for example, a logo).

Therefore step 1 can be broken down into 6 tasks:
• 1A: Reconstructing dotted lines, dashes, axes,. . .
• 1B: Validating dotted lines, dashes, axes,. . .
• 1C: Reconstructing conic shapes.
• 1D: Validating conic shapes.
• 1E: Reconstructing fillings.
• 1F: Validating fillings.
Why structure this information? There are three reasons:
1) After structuring it will be easier to identify “Symbols”

which contain these graphic objects.
2) This is to reduce calculation times. Indeed, most of

the algorithms used for data-mining are NP, N2 or N3
algorithms.. This means that if we wish to reduce the
number of graphic objects represented by the letter
N by 10 or 100, we can immediately see the impact
which that can have on algorithm execution times. If
we divide by 10 the number of graphic objects and the
algorithm is N3, the time will be divided by 1000. We
go from 10 minutes calculation time to 0.6 seconds.
It should not be forgotten that the user is present

throughout the entire process and it is ESSENTIAL
that processing times are compatible with a user’s
waiting time which is close to a second.

3) By breaking down structuring into basic tasks focussed
on a single graphic structure, we simplify and reduce
the user’s intervention time to validate or correct the
results obtained by data-mining algorithms.

Step 2: Structuring letters: certain software packages draw
letters directly in the form of filled in poly lines (cf. task 1E
above) in order to, for example, trace on a tracer. Structuring
letters involves defining the font, size, style, direction and
letters which associate one or several graphics, for example
“e”, “é”, “ë”, a type of font (Arial, Courrier, ISO, etc).

We break down this step into two tasks: The first is the
“Massive” recognition of graphics and letters. In the previous
paper, we described information coding techniques enabling
us to identify graphics, whatever the size and direction.
Graphics are identified and “Clusterised” taking into account
a distance function.

After “clusterisation”, the grapheme is automatically
recognised so as to identify it. This identification begins by
searching in the knowledge base whether the same grapheme
or one which is very close has already been instantiated
(during reconstruction of a previous folder) in the knowledge
base. If this is the case, the letter representing the grapheme
is found. If this is not the case, the same search is carried
out with regard to the fonts defined in the ontology.

The same letter can be present in the same folder with
several different sizes (in general 3 sizes) and several direc-
tions (generally 3: horizontal, vertical, 45°). Given the large
number of letters, the “Massive” recognition of letters is very
weak (almost the same algorithms as used for symbols). On
the other hand, it poses certain problems like, for example,
capital “O”, small “o” and according to the font, the number
“0”, or even a capital “I”, small “l” and the number “1”. This
is why we add an additional task consisting of presenting
the user all these problematic cases in order to attract their
attention to particular cases. In any case, it may holistically
validate the results provided by “Massive” recognition and
make any necessary corrections in the second control task
for particular cases.

Therefore, step 2 can be divided into 2 tasks:
• 2A: “Massive” recognition of letters
• 2B: Control particular cases
Step 3: Structuring words: This involves grouping to-

gether letters identified to create words, then text (series
of words). For folders containing more text, like assembly
instructions, we have to identify phrases and paragraphs.

This step can be divided into several tasks. The first is
to identify words. It is worth remembering that writing can
be in different directions: horizontal, vertical and inclined.
A word is made up of 1 to N letters, N generally being
between 3 and 5 since most words have less than 5 letters. In
data-mining, algorithms used for associating letters in words



take into account the space between letters and the direction
in which a word is written. Once the words have been
identified, they are presented to the user for validation. Next,
the control task for particular cases of letters is relaunched,
but this time with words. For example, identifying a capital
“O” and small “o” or the number “0” is easier and faster
within a word. The list of words is presented and the
user simply validates, or not, the word and therefore the
letter. During the control phase, words are displayed either
alphabetically or with a word recognition trust index (cf.
below).

When words are identified, dictionaries of words and word
structures are defined in the field’s ontology. For example,
the word “MOTOR” can be pre-recorded in the ontology
as an illustration of an existing word for the field. If the
word “MOTOR” is not an entry and it is present in the
folder and validated by the user, it becomes an entry in
the dictionary and its frequency will help when checking
because the word “MOTOR” will have a more or less high
trust index according to the number of times it appears.

This is also the case for word structures. For instance,
in electrical diagrams, the name “power contactors" begins
with 2 letters 2 “KM” and are followed by 1 to 3 figures, for
example, “KM21”. We can see that by using these structures
we can raise any doubt, if necessary, about the figure “1”
and the letters “I” o’ “l”. These structures are created and
recorded in the ontology and entries are recorded in the
knowledge base. Thus, we can use the same trust index for
structures.

Next, words with the same font (size and direction) are
grouped together to form phrases. The phrases detected are
controlled by the user and then, in turn, grouped together
into paragraphs to be controlled. Therefore step 3 can be
divided into 6 tasks:

• 3A: Word identification
• 3B: Word controls
• 3C: Phrase identification
• 3D: Phrase controls
• 3E: Paragraph identification
• 3F: Paragraph controls
Step 4: Structuring basic symbols: Defining these symbols

and associating basic graphic items and text. In the ontology,
families and categories of symbols are defined. For each
category, we also specify the attributes which make up these
categories. In general, these attributes correspond to areas
of text close to the symbol and the connection points of
these symbols with equipotentials (in the event of electrical
diagrams). Data-mining searches for graphemes are repeated
inside input data. These graphemes take into account struc-
turing already carried out, like, for example, dotted lines,
hatches or words. Then, the distance is calculated like with
letters in order to “Clusterise” them.

This step is highly iterative. First, the graphemes which
are most present in the input data are proposed. The user

validates, or not, the detection of these graphemes as sym-
bols. If the user validates them, they become ontology
entries in the knowledge base. As with letters, but based
on a slightly different principle, after “Clusterisation”, data-
mining attempts to find in the knowledge base whether an
identical or similar grapheme has already been identified. If
so, this grapheme becomes a symbol entry in the knowledge
base.

Therefore, step 4 is divided into 2 tasks:
• 4A: “Massive” recognition of letters
• 4B: Controls for particular cases
With the description of all these tasks we can observe

that reconstructing destructured documents is an incremental
task. We start by identifying types of lines, then conic
shapes, then fillings, then letters, words, paragraphs and
symbols.

By breaking down structuring into basic, but incremental
tasks, the user’s work is made lighter since it is no longer
necessary to focus on a specific task and this task only
concerns a single feature of objects. However, we can also
see that the user’s intervention and ontology are essential to
our approach. This is the subject of the next two chapters.

5. Ontology & the (A)KDD method
Since the beginning ontologies have been considered as

enabling the KDD method to be more precise and efficient.
Usama Fayyad and the co-authors state in the paragraph
“Concluding Remarks: The Potential Role of AI in KDD”
that “Knowledge representation includes ontologies, new
concepts for representing, storing, and accessing knowledge.
Also included are schemes for representing knowledge and
allowing the use of prior human knowledge about the
underlying process by the KDD system”.

The “Semantic Data Mining: A Survey of Ontology-based
Approaches” paper provides a comprehensive overview of
the role of ontologies in data-mining.

Ontology is the explicit specification of conceptualisation
and a formal way to define the semantics of knowledge and
data. The formal structure of the ontology makes it a natural
way to code the field’s knowledge to use data exploration.

Structuring documents is highly prioritised. It is described
by an ontology. The major lines of the ontology are given
to the user. However, in the current state of affairs, it



is impossible to give the final user an ontology which
corresponds exactly to the problem. Therefore, the user must
be able to select the parts of the ontology to be activated, and,
also, remove or complete certain parts of selected ontologies.

We have seen that an ontology to reconstruct electrical
diagrams is different from an ontology for structuring the
plans of a building. Activating both in the same knowledge
base would certainly lead to more analysis and reconstruc-
tion errors.

The ontology is developed throughout the (A)KDD pro-
cess. The ontology must adapt to what the user wants to
structure, making structuring more precise and efficient.

Moreover, by making knowledge bases and the graphic
base as close as possible to the sub-nature of documents,
we obtain better structuring rates. The knowledge base
contains the ontologies and instances of graphemes for
ontology objects. The graphic base contains the graphemes
of entries. Reconstruction information provided to the user
is more reliable. Although the basic symbols to be structured
are almost always the same for AutoCad, Elec’view and
See, (which are 3 design software packages for electrical
diagrams), this is also the case for cartridges, entry and exit
badges, switches, specific maps, etc. We can consider that all
graphic data differ from one software package to the next.
This is why it is important to be able to manage knowledge
bases in terms of the sub-features of documents.

6. The user’s essential role in the struc-
turing process

The authors of the KDD method insist on the fact that
knowledge should be extracted with the user’s help.In 2003,
during a KDD conference, it was observed that many works
on KDD did not include the user. The user only intervenes
in the final step (Fayyad, 2003 [6]).

In “Recherche anthropocentrée de règles d’association
pour l’aide à la décision” (Chevrin, 2007 [7]) the authors
place the user at the heart of the method. They insist on
the user’s role and it is one of the first times the term “An-
thropocentric” has been given such importance in the KDD
method. This is our observation today in 2018. In most works
dealing with structuring destructured documents, the user is
almost absent. These works are not “Anthropocentric” with
regard to the user, but should be. The aim of many works
about knowledge extraction is to automate this extraction as
far as possible. This is certainly possible where there is a
large amount of data to be processed, but in our case it is
impossible.

Users wishing to structure data do not have enough data to
fully and reliably automate the structuring process. However,
the KDD method can be applied, even when the volume of
data is small, provided that, as we have seen, an incremental
and guided process is implemented by an ontology.

It is the user who pilots structuring with the help of the
computer for reasons of cost, efficiency and to ensure the

system does not reject it. But the question is how can the
user pilot structuring? This is the subject of the following
paragraph.

In the reconstruction process, there are some twenty tasks
made up of 5 sub-tasks. This means that the user will interact
with the system in 100 different sub-tasks. In this case, the
human-machine interface is one of the major points in terms
of acceptance or rejection of the system by the user. “One of
the key words in HMI is user-centred. User-centred design
(Norman & Draper 1986 [8]) is a paradigm which defines
12 key principles which place the user at the heart of the
development process”. This is the paradigm described by
Dupuy-Chessa (2011, [9]), which we use to define our user
and system tasks, and which we described in the previous
paper.

Structuring, like when implementing the KDD method, is
long and complex. Data structuring must be 100% exact.
It must even, wherever possible, correct any errors which
are present in the folder. Indeed, we can observe that many
electrical diagrams do not match terminal board diagrams
, for example. This is a general problem when extracting
knowledge from databases. Input data are sometimes inexact
and the results obtained must not be biased by the inaccu-
racies.When reconstructing diagrams, this is also the case.

We have only described in detail the first 4 steps of struc-
turing. In the final steps where complex symbols, functions,
the folder and coherence controls to be carried out should
enable this type of coherence to be detected, and in the
event of divergence, it is the user who will determine which
information is accurate or not.

One of the issues in Human-Machine Interfaces is the
volume of data to be visualised. The main questions are as
follows:

• How to visualise them?
• How to browse these data?
• How to validate information or not?
The problem’s statement is simple, but the solution

is more complex. In the previous paper we stated that
the solution is a combination of the two methods:
“Overview+Detail” and “Zooming+Panning”. We shall take
the example of visualising letters.

This is the interface of task 2A for the user to validate
letter recognition. We shall only present the visualisation and



browser interface inside the information displayed.
The screen is divided into 4 parts: 3 horizontal areas and

one vertical area. The 3 horizontal areas relate to input data.
The vertical area contains ontology information with regard
to fonts and letters. The first horizontal area is to visualise
Clusters identified by data-mining. The cursor present above
this area enables the grapheme distance calculation inside
a single cluster to be adjusted: the further right the cursor
and the smaller the distance, the greater the number of
clusters (NB. the same letter may be present several times).
The further right the cursor and the greater the distance
between graphemes, the smaller the number of clusters. The
second horizontal area from the top displays all the different
graphemes which have been grouped together in the cluster
and the third area at the bottom displays all the occurrences
of graphemes inside the input data. The “+” and “-“ buttons
to the left of each of the horizontal areas enable more or less
information to be seen by displaying it on one or several
lines. The “ScrollBar” enables informaiton to be scrolled
through. “Splitters” enable an area to be enlarged compared
to another area.

The 3 horizontal areas have the “Overview+Detail” func-
tions starting from clusters as far as grapheme entries. The
“Zooming+Panning” functions are provided by the “+” and
“-“ buttons and the Scroll Bars.

All the interfaces presenting data must be worked on with
equal care. And every time the user intervenes, it must be
ergonomic, fast and very precise.

7. Conclusion

In this paper we have described the incremental aspect of
the (A)KDD method in detail. We have seen the importance
of ontologies for obtaining a more efficient and precise re-
sult. And, above all, we have repeated the FUNDAMENTAL
role of the user for small volumes of input data.

Developing the KDD method is both complex and long. It
requires the implementation of many techniques, data mining
algorithms, coding techniques, stringology algorithms ap-
plied to coding, clusterisation algorithms based on grapheme
distance calculations. And, above all, a highly user-friendly,
high-performance and simple interface, and very fast al-
gorithms because their response time must be less than a
second so that any time is acceptable to the user.

This is the direction of our work.
Next year, we shall, if possible, present at KDD 2019

in “Call for Applied Data Science Papers” the full imple-
mentation of “STRUCTURING DESTRUCTURED DOC-
UMENTS”. This presentation will conclude our PhD work
on this subject and will demonstrate that the (A)KKD user-
based KDD method enables knowledge to be extracted for
data sets, even when for small input volumes.

References
[1] K. Tombre and B. Lamiroy, “Graphics Recognition – from Re-

engineering to Retrieval,” in 7th International Conference on Document
Analysis and Recognition. Edinburgh, Scotland, UK: IEEE Computer
Society Press, Aug. 2003, pp. 148–155, invited talk. Colloque avec
actes et comité de lecture. internationale.

[2] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards ai,” in
Large Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and
J. Weston, Eds. Cambridge, MA: MIT Press.

[3] I. Chraibi Kaadoud, N. P. Rougier, and F. Alexandre, “Implicit
knowledge extraction and structuration from electrical diagrams,” in
The 30th International Conference on Industrial, Engineering, Other
Applications of Applied Intelligent Systems, Arras, France, June 2017.
[Online]. Available: https://hal.inria.fr/hal-01525028

[4] J. Bertin and M. Barbut, Sémiologie graphique: les diagrammes,
les réseaux, les cartes. Gauthier Villars, 1973. [Online]. Available:
https://books.google.fr/books?id=F4weAAAAMAAJ

[5] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “Advances in
knowledge discovery and data mining,” U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, Eds. Menlo Park, CA, USA:
American Association for Artificial Intelligence, 1996, ch. From Data
Mining to Knowledge Discovery: An Overview, pp. 1–34. [Online].
Available: http://dl.acm.org/citation.cfm?id=257938.257942

[6] U. M. Fayyad, G. Piatetsky-Shapiro, and R. Uthurusamy, “Summary
from the kdd-03 panel: data mining: the next 10 years.” SIGKDD
Explorations, vol. 5, no. 2, pp. 191–196, 2003.

[7] V. CHEVRIN, O. COUTURIER, and E. MEPHU, “Recherche anthro-
pocentrée de règles d’association pour l’aide à la décision,” vol. 8,
p. 30, 2007.

[8] D. A. Norman and S. W. Draper, User Centered System Design; New
Perspectives on Human-Computer Interaction. Hillsdale, NJ, USA:
L. Erlbaum Associates Inc., 1986.

[9] S. Dupuy-Chessa, “Modélisation en interaction homme-machine et
en système d’information : à la croisée des chemins,” Thèses et
habilitations, 2011, habilitation à diriger des recherches, Université de
Grenoble.


