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Summary
Background Characterizing Post-Acute Sequelae of COVID (SARS-CoV-2 Infection), or PASC has been challenging
due to the multitude of sub-phenotypes, temporal attributes, and definitions. Scalable characterization of PASC
sub-phenotypes can enhance screening capacities, disease management, and treatment planning.

Methods We conducted a retrospective multi-centre observational cohort study, leveraging longitudinal electronic
health record (EHR) data of 30,422 patients from three healthcare systems in the Consortium for the Clinical
Characterization of COVID-19 by EHR (4CE). From the total cohort, we applied a deductive approach on 12,424
individuals with follow-up data and developed a distributed representation learning process for providing
augmented definitions for PASC sub-phenotypes.

Findings Our framework characterized seven PASC sub-phenotypes. We estimated that on average 15.7% of the
hospitalized COVID-19 patients were likely to suffer from at least one PASC symptom and almost 5.98%, on
average, had multiple symptoms. Joint pain and dyspnea had the highest prevalence, with an average prevalence
of 5.45% and 4.53%, respectively.

Interpretation We provided a scalable framework to every participating healthcare system for estimating PASC sub-
phenotypes prevalence and temporal attributes, thus developing a unified model that characterizes augmented sub-
phenotypes across the different systems.
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Research in Context

Evidence before this study
The World Health Organization offers a widely accepted
definition of PASC, stating that it involves ongoing or
recurring symptoms that persist for three months after the
initial acute infection, and cannot be attributed to an
alternative diagnosis. Over 10,500 articles in the NCBI hub,
which provides current research updates on COVID-19, have
covered topics related to Post-Acute Sequelae of SARS-CoV-2
(PASC), discuss various clusters of symptoms observed in
patients infected with the virus, such as anosmia, myocarditis,
and fatigue. Within this collection of literature, both
prospective and retrospective cohort studies have tracked the
progression of persistent PASC symptoms and estimated their
prevalence in individuals.

Added value of this study
The presented framework enhances PASC definition via a
deductive framework that integrate current literature, clinical
knowledge and machine learning algorithms. A distributed

learning approach based on EHR longitudinal data provides a
robust temporal characterization of PASC sub-phenotypes
and their symptoms with a fine temporal granularity.

Implications of all the available evidence
The systematic characterization of PASC sub-phenotypes will
assist researchers in identifying specific groups for further
investigation. By estimating the temporal distribution of
PASC symptoms, interventions can be implemented promptly
and effectively, enabling clinicians to identify evolving sub-
phenotypes of PASC and provide personalized patient care.
This will also aid healthcare providers in planning treatment
and management plans tailored to the unique symptoms and
traits of each sub-phenotype. Implementing a scalable
approach to characterize PASC sub-phenotypes can empower
public health officials to identify risk factors and develop
strategies aimed at preventing or reducing the impact of
PASC in the broader population.
Introduction
The lingering long-term effect of SARS-CoV-2 infection,
known as the post-acute sequelae of SARS-CoV-2
(PASC), commonly referred to as “long COVID”, is an
important area of investigation in the scientific com-
munity. Early in the pandemic it was discovered that a
large proportion of COVID-19 patients had wide-
ranging, persistent symptoms after the acute phase,1

including effects on cardiovascular, musculoskeletal,
psychiatric, respiratory, and neurological systems.2–4 The
impact of this growing cohort of patients on the
healthcare system and broader society has yet to be fully
realized. Despite its highly variable impact on patients,
PASC healthcare processes are poorly documented.
Since October 2021, the Centers for Disease Control and
Prevention has proposed the International Classification
of Diseases (ICD-10-CM) diagnosis code U09.9 to
document unspecified post-COVID-19 conditions. The
use of the U09.9 code encompasses an array of condi-
tions pertaining to post-acute conditions.5

Robust validated frameworks for defining PASC sub-
phenotypes (see Appendix Glossary) are lacking,
resulting in inconsistent definitions of patient cohorts in
studies and ambiguities for health authorities in patient
screening and resource allocation. Scalable frameworks
for screening patients who might be suffering from
PASC problems, with higher precision diagnostics than
are currently available, would enable public health au-
thorities to improve resource allocations and preventive
interventions, and researchers to identify risk factors for
developing specific PASC sub-phenotypes.

Electronic health records (EHRs) hold valuable
structured and unstructured patient data. Despite po-
tential noise and errors, structured EHR data offer low-
cost and feasible solutions for developing screening
tools for PASC.6 By appropriately processing and
analyzing structured EHR data, valuable insights can be
obtained. These methodologies can be easily imple-
mented and validated across diverse patient populations
and healthcare settings due to the widespread avail-
ability of structured EHR data.7

The Consortium for the Clinical Characterization of
COVID-19 by EHR (4CE)8 has established an interna-
tional platform that enables EHR data-driven studies to
inform clinicians, epidemiologists, and the general
public about COVID-19 using data acquired through the
healthcare process. This study leverages the 4CE
framework, which provides its members with common
data models, extract-transform-load (ETL) procedures,
and data quality checks to extract standardized EHR
datasets for secondary analysis.

Since the first clinical observations, several efforts
have been made to define PASC, understand its epide-
miology, and provide unambiguous phenotyping with
www.thelancet.com Vol 64 October, 2023
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use of comprehensive data. However, the exact defini-
tions of PASC are still evolving. One widely used defi-
nition from the World Health Organization defines
PASC as ongoing or recurrent symptoms three months
after the initial acute infection that cannot be explained
by an alternative diagnosis and that has an impact on the
patient’s life.9 The definition includes a wide range of
symptoms; however, this definition may become further
refined.

Since April 2020, the literature hub for tracking up-
to-date published research on COVID-19 has reported
PASC-related topics coverage by over 10,500 articles
[https://www.ncbi.nlm.nih.gov/research/coronavirus/].
More than 40 percent of these articles describe
symptom clusters observed in patients infected with
SARS-CoV-2 after fixed periods, including anosmia,
myocarditis, and fatigue among those with the highest
occurrence in the literature (Figure S1). While the key
aspects of PASC and its prevalence have been defined,
some important aspects remain undefined, such as
actual boundaries of symptom constellations, and its
similarity to other viral and non-viral diseases.10

Prospective and retrospective cohort studies tracked
the progression of persisting PASC symptoms and
estimated prevalence among individuals that likely have
another respiratory infection.11 International studies
identified robust conditions associated with PASC,
emphasizing cardiovascular and neurological phenotype
profiles of PASC.12 Studies based on a prospective
cohort of patients gave insight about the evolution of
symptoms of post COVID-19 and offer insight into the
etiologies and mechanisms underlying this disease.
This study13 depicts the slow recovery from the acute
infection and indicates that the prevalence for most
symptoms decreased over time before plateauing be-
tween six and eight months after onset.

National studies14 exploited primary care cohorts and
used ontological methods to create PASC phenotypes
that can be shared and inform further research.

Despite progress in understanding the PASC disease
spectrum, the majority of current studies still lack evi-
dence from EHR data to validate clinical observations
and assumptions and support unambiguous PASC
phenotyping, and to identify how PASC clusters of
symptoms evolve over time. Thygesen et al.15 charac-
terized COVID-19 trajectories, and defined and vali-
dated 10 phenotypes on the basis of the integration of
eight linked National Health Service datasets for people
in England. Comparable attempts to define and validate
PASC phenotypes through EHR data, supported by
informatics analytic frameworks, are still very limited.
In16 a method for computationally modeling PASC
phenotype data based on EHRs was presented. A US-
based cohort of more than 2000 COVID-19 patients
was analyzed with unsupervised clustering approaches,
from which authors defined six clusters of symptoms
suggesting PASC. These features, however, were not
www.thelancet.com Vol 64 October, 2023
longitudinally analyzed as “evolving symptoms in time”
nor was a deductive schema (see Appendix Glossary) for
defining clinically relevant PASC sub-phenotypes pro-
vided. In17 authors exploited EHR data across the UK
and Hong Kong to assess consistently higher risk of
diseases involving multiple-organ systems, cardiovas-
cular, and all-cause mortality amongst patients with
COVID-19 and provided robust evidence on PASC risk
and potential delayed sequelae of which clinicians
should be informed.

Identifying sub-phenotypes of PASC can help
healthcare providers tailor treatment and management
plans based on the specific symptoms and characteristics
of patients’ sub-phenotype. It can also help improve our
understanding of the PASC underlying mechanisms and
the development of targeted and effective treatments.
Scalable characterization of PASC sub-phenotypes can
enable public health officials to identify risk factors and
develop strategies to prevent or mitigate the impact of
PASC in the general population. The estimate of the
onset time of specific PASC symptoms and the temporal
distribution of each phenotype can reveal deep charac-
teristics of the PASC sub-phenotypes, supporting
adequate, timely, and efficient interventions. Our work
contributes to developing robust time-based criteria to
increase the specificity of the diagnosis of PASC and it
provides an evaluation of the temporal distribution of
data elements for each PASC sub-phenotype.
Methods
In this retrospective, multi-database observational
cohort study, inpatient electronic medical records were
retrieved from three hospital systems from the 4CE sites
that participated in this study. We developed a distrib-
uted learning process (see Appendix Glossary) that ap-
plies a validated ML pipeline, MLHO,18 for modeling
health outcomes with clinical data from structured EHR
data from multiple 4CE sites, to provide augmented
definitions for seven PASC sub-phenotypes. The
implemented deductive pipeline constructs PASC sub-
phenotype definitions, based on clinical knowledge,
thanks to a distributed ML framework applied to lon-
gitudinal EHR data of 30,422 multinational patients
within the 4CE.

Data source
We conducted the study using the 4CE informatics
framework for distributed analysis, facilitated by a
common data extract with quality checks, and the
computing environment to support the execution of
analytic code at individual participating sites [https://
github.com/covidclinical]. The 4CE sites extract struc-
tured EHR data from patients hospitalized for COVID-
19 confirmed by a polymerase chain reaction (PCR)
test. A detailed description of the 4CE federated EHR-
based study is provided in Weber et al. (see Fig. 419).
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Each participating institution stored its data on institu-
tional servers, where local analysts run R packages to
perform analytics. The patient-level data included de-
mographics, clinical course, diagnosis, medications, and
laboratory orders, they were summarized as counts and
percentages as shown in Table 1.

Study design
This study is divided into two phases: Phase 1 focused
on defining PASC sub-phenotypes with structured EHR
data using distributed learning. Phase 2 used the
derived definitions for meta-analysis to provide popula-
tion prevalence estimates and evaluate the temporal
distribution of each of the PASC sub-phenotypes.

Defining PASC sub-phenotypes with structured EHR data
using distributed learning (Phase 1)
To define PASC sub-phenotypes, we applied a deductive
approach in which we augmented clinical knowledge
using an iterative data-driven approach (Fig. 1).
Number of patients Total

(n = 30,422)

Mean Age, years (SD) 62.3 (21.04)

Median Age, years (IQR) –

Era of Diagnosis Count (%)

2020Q1 372 (1.2)

2020Q2 2777 (9.1)

2020Q3 1229 (4.0)

2020Q4 6605 (21.7)

2021Q1 4481 (14.7)

2021Q2 2147 (7.1)

2021Q3 3260 (10.7)

2021Q4 6251 (20.5)

2022Q1 3300 (10.8)

Sex Count (%)

Men 15,296 (50.3)

Women 15,124 (49.7)

Comorbidities Count (%)

Hypertension 13,504 (44.4)

Diabetes 7410 (24.4)

Cardiovascular diseases 8679 (28.5)

Neurological diseases 3093 (10.2)

Malignant tumor 734 (2.4)

Chronic pulmonary disease 6029 (19.8)

Chronic kidney disease 4953 (16.2)

Number of patients with at least one observation
after 90 days

12,424

Mean Time of PASC Observation, days (SD) 312.67 (136.67

Median Time of PASC Observation, days (IQR) –

Minimum and Maximum Time of PASC Observation, days 90–852

aData are n (%), n/N (%), or median (IQR). The differing denominators indicate missin
hospitals, but the results were censored due to the number being low.

Table 1: Characteristics of patients from the three healthcare systems.a
We employed clinical expertise to curate an initial list
of structured data elements that would be available in
the EHR that can then be used to define PASC sub-
phenotypes, which we identified and validated in the
clinical literature. PASC involves a number of symp-
toms that need to be identified through an electronic
phenotyping algorithm that discovers EHR markers
represented as ICD diagnosis and procedures, LOINC
laboratory tests codes, and ATC and RxNorm medica-
tion codes required to characterize each specific sequela.
The initial data elements were dubbed core features (see
Appendix Glossary). The goal of compiling this initial
list was to create a broad criterion for defining cohorts of
patients with PASC sub-phenotypes. If a core feature
was recorded in the medical record for the first time at
90 days or longer after the initial acute COVID-19 hos-
pitalization, a patient record was flagged as possibly
having a PASC sub-phenotype. The set of core features
that serve as a starting point for labeling patients as
having PASC is reported in Table S1).
Hospital system 1 Hospital system 2 Hospital system 3

(n = 1952) (n = 8344) (n = 20,126)

51.7 (22.0) 61.2 (19.6) 63.8 (21.2)

56 (36–68) 63 (48–76) 68 (54–79)

– 305 (3.65) 67 (0.33)

44 (2.3) 2330 (27.9) 403 (2.0)

80 (4.1) 329 (3.94) 820 (4.1)

206 (10.6) 1625 (19.5) 4774 (23.7)

200 (10.2) 1576 (18.9) 2705 (13.4)

118 (6.0) 559 (6.70) 1470 (7.3)

745 (38.1) 551 (6.60) 1964 (9.8)

559 (28.6) 1011 (12.1) 4681 (23.3)

– 58 (0.70) 3242 (161.)

899 (46.1) 4279 (51.3) 10,118 (50.3)

1051 (53.8) 4065 (48.7) 10,008 (49.7)

419 (21.5) 3215 (38.5) 9870 (49.0)

260 (13.3) 1738 (20.8) 5412 (26.9)

288 (14.8) 2549 (30.5) 5842 (29.0)

121 (6.2) 738 (8.8) 2234 (11.1)

53 (2.7) 270 (3.2) 411 (2.0)

192 (9.8) 1303 (15.6) 4534 (22.52)

153 (7.8) 1304 (15.6) 3496 (17.4)

884 5269 6271

) 319.76 (151.43) 385.79 (172.48) 234.47 (87.14)

305 (221–385) 376 (253–514) 235 (168–281)

90–852 90–729 90–550

g data. Within the category sex, the category “other” was designated at some
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Fig. 1: Overview of the Deductive Study Pipeline in Phase 1 of the Study. MLHO leverages the informatics infrastructures developed by the
4CE for a distributed study of PASC sub-phenotypes in a deductive data-driven pipeline, in which we augmented clinical knowledge using an
iterative approach.
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The 4CE network has established procedures for
distributed learning (through Docker) and has distrib-
uted queries for extracting EHR data in a specific data
model with standard quality checks. To translate the
4CE data model and conform with its analytics distri-
bution procedures, we developed a wrapper [https://
github.com/rebeccamesa/pascPhen], an R package that
implements the iterative association mining algorithm
provided in Machine Learning for Health Outcome
(MLHO) pipeline.18 The goal for the data-driven process
was to augment the cohort definitions by identifying
additional EHR data elements (see Appendix Glossary)
that associate with the initial list and could potentially be
used to enrich the clinical definition of PASC sub-
phenotypes.

The MLHO algorithm uses a probabilistic approach
to mining association rules. Association rule mining is
an unsupervised technique that relies on frequency-
based criteria for identifying co-occurrence patterns in
large datasets. Association rule mining algorithms are
designed for use with transactional data, such as data on
consumer purchases or online browsing behavior.
MLHO’s entropy-based algorithm provides a powerful
tool for capturing non-linear associations in clinical data
while also incorporating sparsity in identifying
associations.20

Phenome-wide association studies (PheWAS) iden-
tify associations between specific genetic variations and
specific diseases or traits in a population. PheWAS
studies analyze data from large EHR warehouses or
biobanks to identify patterns of co-occurrence between
different biomarkers and health outcomes. However,
PheWAS association mining is based on p-values, which
can be problematic when studying disease sub-
phenotypes due to sensitivity to sample size. In
contrast, MLHO uses an iterative feature selection al-
gorithm that seeks to identify features that contain
useful predictive information.2
www.thelancet.com Vol 64 October, 2023
The MLHO PheWAS implementation in the Pasc-
Phen R package included the following steps (Fig. 2).
First, the 4CE data model is transformed to the MLHO
input data model and the index date (i.e., date of
COVID-19 hospitalization) is set for all patients.

Second, EHR data are time-stamped based on the
index date into pre-COVID (pre-hospitalization),
acute + phase (0–90 days after hospitalization), and post-
COVID (>90 days after hospitalization).

Third, using the initial core features, potential pa-
tients were identified with these specific symptoms after
a SARS-2-CoV infection. A cohort is defined for each
PASC sub-type if a core feature is present in a patient’s
medical record for the first time 90 days or longer since
hospitalization. Patients are labeled as positive for a
phenotype if they meet the minimum criteria definition
(i.e., the presence of one core feature), negative if they
do not meet the minimum criteria for the PASC sub-
phenotype and have at least a follow up encounter
during the post-COVID time. A one year look back
period before the initial SARS-2-CoV infection was used
for each patient.

Fourth, the core features are removed from the
medical records and MLHO is applied to identify data
elements during the post-COVID and acute-positive
phase that can predict the label for a given pheno-
type. MLHO (a) uses the minimize sparsity, maximize
relevance (MSMR) dimensionality reduction algo-
rithm21,22 that leverages joint mutual information and
sparsity screening to (b) train gradient boosting ma-
chine classification models (using the gbm package in
R23) with 5-fold cross validation for (c) identifying
EHR data elements that associate with a patient
belonging to a given PASC sub-type cohort definition
defined in step 3. Discrimination performance was
measured by area under the receiver operating char-
acteristic curve (AUROC) and reported with 95%
confidence intervals.
5
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Fig. 2: The data-driven process for enriching initial PASC sub-phenotype definitions. Leveraging the initial PASC sub-phenotype definitions,
we developed a distributed representation learning that identifies additional EHR data elements (i.e., encounter records) that associate with a
patient having a diagnosis code for a PASC problem 90 days or longer after COVID-19 hospitalization. The process included the following steps:
1. 4CE data model is transformed to MLHO input; 2. EHR data are time stamped based on the index data into pre-COVID, acute + phase, and
post-COVID; 3. Using the initial data elements, we identified potential patients with specific symptoms after a SARS-2-CoV infection; 4. The
initial (core) features are removed and MLHO is applied to identify data elements during the post-COVID and acute + phase that can predict the
label for a given phenotype; 5. Step 4 is iterated 5 times to compute MLHO confidence score, which quantifies the number of times a feature is
identified as a predictor for a prediction/classification task.
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Lastly, the fourth, previous, step is iterated five times
to compute MLHO confidence score, which quantifies
the number of times a feature is identified as a predictor
for a prediction/classification task, considering possible
discrepancies between the direction of the association
(i.e., as a risk or protective factor). The idea is to itera-
tively apply this process until there are no more relevant
clinical markers for redefining the phenotypes. The
www.thelancet.com Vol 64 October, 2023
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Fig. 3: Illustration of Louvain method used to cluster features. This figure shows the graph structure used to cluster core and MLHO features.
Nodes annotated with f represent the features, and t nodes show the time. The weight of each connection presents the percentage of patients
diagnosed with corresponding feature f at time t. In this example, clusters are separated using different colors.
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choice of the number of iterations was guided by
computational resources available across different in-
stitutions. We also chose an odd number to facilitate
federated analyses by using medians.

The PascPhen package performs as a wrapper and
implements MLHO PheWAS on 4CE data extracts. The
package produces flat file reports which we used for
developing a visualization dashboard and evaluating
clinical meaningfulness of the features identified by
MLHO; henceforth, we call them MLHO features. This
approach allowed the inclusion of temporal dimensions
related to disease progression in the initial definition of
PASC sub-phenotypes, by applying association rule
mining to time-stamped features, as described above
This way, one can discover new features that can be
included in the new enriched definition of PASC sub-
phenotypes.

The PascPhen package was distributed to five 4CE
sites: four in the United States and one in Europe. Data
was transmitted in aggregate. The package produced a
unified report in HTML format from each site,
including descriptive statistics on the patient population
with core features, temporal distribution of the onset of
each PASC sub-phenotype at the site, and new features
identified through iterative MLHO applications that
Fig. 4: Schematic construction of the augmented definition for a
phenotype encompassed time-stamped features from patients’ EHRs. C
tion of being recorded for the first time 90 days or longer after the hospita
post hospitalization, but are time stamped to capture the temporal relat

www.thelancet.com Vol 64 October, 2023
associated with the core features, with odds ratio,
p-value, and 95% confidence intervals—Figure S2 pre-
sents a template report from phase 1 results.

MLHO features were validated by a team of eight
clinicians who reviewed the features to assess if they
were clinically meaningful and whether their incorpo-
ration into the original definition for each PASC
sub-phenotype would result in an enrichment of the
original definition. Since many of the PASC sub-
phenotypes are symptoms or signs, any MHLO identi-
fied diseases, medications, laboratory values, and/or
procedures that the team thought could explain that
symptom or sign were included. Also, if there was a
synonym of the PASC sub-phenotype, it would then be
included. Further details of this selection process can be
found in Strasser 2023 et al.24

The enriched definition was used to categorize pa-
tients into four distinct groups (see Appendix Glossary)
based on the presence of MLHO and/or core features in
their EHRs. Group 4 consisted of those patients with
both the core and MLHO features at respective time-
lines. Group 3 included those only with the core features
(90 or more days since hospitalization), and no MLHO
features. Group 2 consisted of those only with the
MLHO features, but not the core features. Finally,
PASC sub-phenotypes. An augmented definition for a PASC sub-
ore features (initial EHR markers) have an a priori temporal defini-
lization. MLHO features (new EHR markers) can be observed any time
ionships with the core features.

7
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Group 1 lacked any of the core or augmented features
(see Appendix Glossary).

Meta-analysis for PASC prevalence estimates and temporal
distribution (Phase 2)
We applied the novel definitions of the PASC sub-
phenotypes to the hospital systems for meta-analyses.
Each site ran the PascPhen and returned harmonized
summary statistics, which we exploited to estimate
PASC prevalence, including the proportion of patients
with (a) at least one PASC issue, (b) more than one
PASC issue, and (c) each of the seven PASC sub-
phenotypes.

We estimated the prevalence of overall PASC for
MHLO and core symptoms, and the overlap between
them, leveraging the Group 3 (individuals identified as
PASC cases by core features) and Group 4 (individuals
identified as PASC cases by core and MHLO features)
definitions.

To estimate the prevalence ranges, we defined the
lower limit as the number of subjects identified by both
MHLO and core features during the post-COVID time
window (Group 4) divided by the population during the
same period. We defined the upper limit as the num-
ber of subjects identified only by core features during
the post-COVID time window (Group 3) plus the
number of subjects identified by both MHLO and core
features (Group 4), divided by the population during
the same period. We then calculated their average. The
reported prevalence is the average of the lower and
upper limits. Results (Section 3.3. and Fig. 5) report the
values as Prevalence Average (Lower Limit–Upper
Limit).

For each hospital, we computed the overall PASC
prevalence among all the hospitalized cases, including
data from patients with at least one or more of the PASC
symptoms. The same estimates were calculated for
single PASC sub-phenotypes. Prevalence estimates and
the following analyses were performed on the most
prevalent PASC sub-phenotypes. We computed
weighted average prevalence across hospitals, weighting
by the number of subjects enrolled in the analyses by
each site.

We studied the temporal distribution of the most
prevalent PASC sub-phenotypes. We compared the
overall count of features, in 10-day time windows
beginning 90 days after hospitalization. We described
the distributions as raw data (i.e., features count in time
windows) and via kernel density estimates. We per-
formed a Wilcoxon rank sum test, with continuity
correction and p-value Bonferroni adjustment, to
compare the features’ occurrence in time. We per-
formed an analysis within each hospital, to account for
potential confounding factors due to center-effect
clustering.

To cluster MLHO and core features linked by time of
presentation for a feature and number of patient who
had a given feature at a given time, we used the Louvain
community detection algorithm.25 This approach lever-
ages multi-level optimization to maximize the modu-
larity score (Q) of each cluster, where modularity ranges
from −1 to 1 and measures the density of links within
clusters versus links between clusters. We used core and
MLHO features and temporal data to define the nodes
of the input graph to the Louvain method and added the
percentage of patients for each pair (feature, time) as a
weight to the corresponding connections (See Fig. 3).
This will allow the Louvain approach to leverage its
flexibility in detecting similar sub-communities and
incorporate more granular temporal variables in
defining the clusters rather than clustering the features
based on their overall patient/time distribution. The
resolution of clusters is defined by γ, an algorithmic
parameter to define the granularity of clusters. Lower
values of γ result in fewer (and larger) clusters. To
remain consistent with the original definition of
modularity and considering the small size of our
graphs, we set γ = 1. Similar to other unsupervised
learning approaches, the choice of the optimal number
of clusters might impact the interpretation of the re-
sults. However, as the Louvain method only uses the
pre-defined number of clusters (resolution) to deter-
mine the granularity of clusters, this parameter does not
affect the plausibility of our interpretations.
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Results
Characteristics of the study population
The study population consisted of a total of 30,422
hospitalized COVID-19 patients from three hospital
systems who tested positive for SARS-CoV-2 between
the first quarter of 2020 (2020-Q1) through the first
quarter of 2022 (2022-Q1). Of these subjects 12,424
had at least one observation after 90 days from the
first positive test. Table 1 presents the overall char-
acteristics of the study population, including comor-
bidities at baseline, and summary statistics on PASC
features.
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Fig. 5: Prevalence estimates for the overall PASC phenotype and specific PASC sub-phenotypes in the hospitalized population. Each plot
reports on the horizontal axes the prevalence values as percentages of subjects identified by CORE and/or MLHO features over the total of
COVID-19 hospitalized subjects. Each row represents a site via lollipop plots, reporting lower limit (green, col1), upper limit (red, col2) and
average (gray, col3) values. Vertical lines represent average prevalence across hospitals, using as weight the number of subjects enrolled in the
analyses by each site.
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PASC sub-phenotypes definition
We retained in the analyses the phenotypes that were
identified by at least two of the three hospital systems.
We provide an augmented definition for seven PASC
sub-phenotypes using structured EHR data: Joint pain,
Dyspnea, Chronic malaise and fatigue, Chest pain,
Neurological deficits, Dyspepsia, and Cognitive changes.
The list of EHR data elements to construct initial co-
horts of PASC sub-phenotypes is provided in Table S1
(Appendix).
www.thelancet.com Vol 64 October, 2023
Table 2 presents the AUROC obtained from each
site for each of the PASC sub-phenotypes. Most of the
sub-phenotypes were above an acceptable AUROC
threshold (>0.8). That is, sub-phenotypes, developed
at each site, were able to identify new features from
the EHRs that classified patients who had a PASC
core feature for the first time 90 days, or longer post
hospitalization, with acceptable discrimination accu-
racy, when the core features were removed from the
data.
9
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PASC sub-phenotype Hospital system 1 Hospital system 2 Hospital system 3

Joint Pain 0.78 [0.77–0.80]a 0.84 [0.84–0.84] 0.82 [0.82–0.83]

Dyspepsia 0.81 [0.80–0.82] 0.82 [0.81–0.82] 0.80 [0.80–0.81]

Chronic malaise and fatigue 0.90 [0.89–0.91] 0.85 [0.85–0.86] 0.84 [0.84–0.84]

Dyspnea 0.91 [0.89–0.91] 0.81 [0.81–0.82] 0.86 [0.85–0.86]

Cognitive Changes 0.86 [0.85–0.87] 0.87 [ 0.87–0.88] 0.87 [0.86–0.87]

Neurological deficits 0.77 [0.76–0.78] 0.84 [0.84–0.84] 0.85 [0.85–0.85]

Chest pain – 0.88 [0.87–0.88] 0.87 [0.87–0.88]

a95% Confidence Intervals. The table shows the area under the receiver operating characteristics curve obtained from each site running MLHO on the subset of their EHR
data without core features. The classification task was to build a model that can classify the patients who had at least a core feature for a PASC sub-phenotype by using their
EHR data from after COVID-19 infection. Core features were removed and remaining features were time-stamped.

Table 2: Discrimination performance (measured by AUROC) for each PASC sub-phenotype across the 3 hospital systems.

Core features

Sample augmented featu

Diseases with related s

Laboratory tests sugge

Procedures suggestive

Near synonym

aIncludes all ICD codes withi

Table 3: Sample of the au
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The clinical team categorized the features identified
by MHLO based on the underlying relationship between
the identified data element and phenotypes. Four types
of relationships were identified as potentially describing
the association of the MHLO feature to the phenotype.
First, a disease may have been identified by MHLO if
the disease’s primary symptom matched that of the
phenotype. For example, in the case of “joint pain”, a
new diagnosis of “bilateral primary osteoarthritis of the
knee” is likely representative of the “joint pain” pheno-
type. The second relationship identified was a laboratory
test order that suggested the phenotype. For example, in
the case of “chronic fatigue”, ordering “ferritin” could
imply the ordering provider was trying to understand
the underlying etiology of a patient’s anemia, which
often presents as fatigue. Thus, ordering ferritin implies
the patient may have fatigue. The third relationship was
a procedure that suggests the underlying phenotype. For
example, a CT scan of the chest may be related to a
clinical provider trying to determine the etiology of
dyspnea. Finally, in some cases elements were identified
that were near synonyms to the original definition, such
as hypoxemia representing dyspnea, but had been
missed in the original definition. Table 3 shows a
sample of the features identified for each phenotype and
their relationship to that phenotype. For a complete list
of features used to describe each phenotype see
Tables S2 and S3 and Figure S3. The features identified
PASC subtype

Dyspnea Chronic f

R06a–Abnormalities in Breathing F53a–Fati

res

ymptom I48.0–Paroxysmal Atrial Fibrillation E03.9–Hy

stive of symptom LNC 38065–7 D-dimer LNC 2276

of symptom CAT Chest –

R09.02–Hypoxemia –

n the parental group.

gmented features identified by MLHO that are suggestive of dyspnea, chronic
by MHLO, and that had a medical rationale explained by
one of the four categories, were then incorporated into
the new augmented definition.

The new augmented definition consists of the core
features plus the time-stamped MLHO features (Fig. 4).
Based on the presence of core and MLHO features, we
classified patients into four groups: (1) those who do not
have any of these features in their EHRs and thus are
very unlikely to have PASC, (2) those who only have one
of more MLHO features who may have the PASC sub-
phenotype, but not likely, (3) patients who have a core
feature in their EHR for the first time 90 days or longer
post-hospitalization, whom we consider likely to have
the PASC sub-phenotype, and (4) those who have both
core and MLHO features, who are very likely to suffer
from the given PASC sub-phenotype. The signal detec-
tion schema is illustrated in Figure S4 for the PASC
sub-phenotype joint pain.

PASC prevalence estimate
We found that on average 15.7 (Lower Limit 11.12—
Upper Limit 20.03) percent of the hospitalized COVID-
19 patients had at least one PASC problem and 5.98
(Lower Limit 4.06–Upper Limit 7.91) percent of the
hospitalized COVID-19 patients had multiple problems
(see Fig. 5 and Tables S4 and S5). When the PASC sub-
phenotypes were examined separately, the most preva-
lent were Joint pain and Dyspnea, with an average
atigue Joint pain

gue M25.5a Pain in Joint

pothyroidism M17.0–Bilateral primary osteoarthritis of the knee

–4 Ferritin LNC 1988–5 CRP

–

M54.5–Low Back Pain

fatigue, and joint pain.
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prevalence of 5.45 (Lower Limit 4.14–Upper Limit 6.76)
and 4.53 (Lower Limit 3.95–Upper Limit 5.09), respec-
tively. Dyspepsia and Cognitive changes were the least
common (less than two percent on average).

PASC symptoms temporal patterns
We analyzed the temporal distribution of the most
prevalent PASC sub-phenotypes (i.e., prevalence
greater than 2%), excluding Cognitive changes and
Dyspepsia. Chronic malaise and Fatigue and Dyspnea
symptoms appear later (i.e., on average the features
are detected 330 days after the primary infection)
while Neurological deficits appear earlier (on average
289 days after the primary infection). Fig. 6 illustrates
the distribution and the temporal comparison of
PASC sub-phenotypes. The only PASC sub-phenotype
found to have a statistically different distribution is
Neurological deficits, with symptoms appearing earlier
(on average, by about a month) than the other PASC
sub-phenotypes. The distribution comparisons are re-
ported in Tables S6, and for each site in Tables S7, S8
and S9. The features distribution over time is re-
ported in Tables S10 and S11.
Fig. 6: PASC sub-phenotype features temporal distribution. For each PA
time window. The plot, which reports days on the y-axis, illustrates ker
standard deviation (the points and the intervals over the violin plots), and
features were compared by pairwise Wilcoxon test, with a Bonferroni co
vertical lines that connect different PASC sub-phenotypes.

www.thelancet.com Vol 64 October, 2023
Fig. 7 illustrates the temporal distribution of each
feature classified under Chest pain and recorded during
the post-COVID period (i.e.,> 90 days after COVID-19
hospitalization). Features are clustered on the basis of
their temporal distribution. The colored squares show
the results of Louvain clustering,25 which was used to
detect features with similar temporal distributions. The
prevalence of PASC sub-phenotypes is illustrated using
gradient-colored points for each pair <f, t>, where f
represents features and t time. The sparklines on the
right side of the figure show the overall temporal trend
of the prevalence of each feature, with maximum and
minimum values annotated in red and blue dots,
respectively. Evaluating the granular, temporal distri-
bution of each of the sub-phenotypes can be useful for
further understanding of common sequential patterns.
In the case of chest pain (Fig. 7) the earliest components
that make up the sub-phenotype are “cardiac
arrhythmia”, “palpitations”, “chest pain, unspecified”,
and “troponin”. These all point to a cardiac cause rather
than a muscular, pulmonary, or neuropathic one,
whereas the later clusters include features like “pleuro-
dynia”, “intercostal pain”, “d-dimer”, and “chest pain on
SC sub-phenotype we report the number of features in each 30-day
nel densities on the right of each PASC sub-phenotype, mean and
jittered raw data points on the left. Temporal distributions of PASC
rrection; p-values for significant results (<0.05) are reported on the
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Fig. 7: Clustered presentation and temporal distribution of the core and MLHO features. The clusters are defined using Louvain clustering.
Each node of the clustering graph is presented as (f,t,p), where f presents the feature, t presents the time and p shows the percentage of
patients. Blank squares present missing values and the gradient-colored dots show the value of p. The diamonds next to the features on the y-
axis define the type of each feature (i.e., core vs. MLHO) and the sparklines on the right side present the overall temporal distribution of each
feature.
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breathing”. These later components point to a pulmo-
nary origin for the chest pain. The supplement contains
the Louvain clustering results for each of the sub-
phenotypes (See Figures S5, S6, S7 and S8).
Discussion
PASC has evolving properties that need to be defined in
a timely manner to mitigate health, social, and eco-
nomic impacts. Characterizing and understanding
sub-types of PASC can lead to better outcomes for in-
dividuals affected by the condition and improve its
overall understanding and management. While the po-
tential pitfalls in the use of real-world data for studying
PASC are many, structured EHR data offer feasible and
low-cost solutions for establishing screening procedures
for PASC’s multiple existing and future sub-phenotypes.
The results of this study can be used to provide reliable
screening capacities for PASC sub-phenotypes.

We created a high-throughput approach to charac-
terizing PASC sub-phenotypes from structured EHR
data. It is high-throughput because the definitions are
simple to implement and rely only on structured EHRs
that are widely available. This study also provides one of
the most granular characterizations of PASC sub-
phenotypes to date. Evaluating the granular, temporal
distribution of each phenotype can reveal more PASC
sub-phenotypes and more information about PASC in
general. Characterizing the sub-phenotypes of PASC
can guide assessment and diagnosis of the post-COVID-
19 problems, and improve treatment and management
plans.

To date, the definition of PASC is highly variable,
with definitions comprising the presence of persistent
new-onset symptoms ranging from 30 to 90 days post-
SARS-CoV-2 infection.9 However, the natural history
of PASC remains poorly understood. Our analyses
suggest that there is a substantial population of patients
with persistent symptoms that present more than 180
days post-SARS-CoV-2 infection, associated with spe-
cific laboratory data longitudinally across all seven PASC
sub-phenotypes. This suggests that the time-based
criteria of PASC could potentially be more stringent to
increase the specificity of the diagnosis of PASC.
Characterizing PASC sub-phenotypes will also enable
the identification of at-risk populations.

Based on data from multiple institutions, we esti-
mated that approximately 15 percent (11%–20%) of
hospitalized COVID-19 patients will have at least one
PASC complication and approximately five percent
(4%–8%) will have multiple problems. Our findings are
generally consistent with prior estimates of prevalence,
which show that approximately between 13 and 19 26,27

percent of patients with a previous COVID-19 infec-
tion report symptom of PASC.

However, prevalence estimates also vary widely
across studies, owing to differences in PASC definitions
and methodologies to measure the outcome. O’Maho-
ney et al., in a systematic review of 48 studies - although
based on smaller populations (at least 100 people)
and including self-reported COVID-19 symptoms at
≥28 days following infection onset - concluded that
approximately 52.6% (95% CI 43.5%–61.6%) of hospi-
talized COVID-19 survivors experienced at least one
symptom.28

While the prevalence of PASC is still being debated,
we were able to provide prevalence estimates for seven
PASC sub-phenotypes, with Joint pain and Dyspnea
having the highest prevalence at 5.45 (4.14–6.76) and
4.53 (3.95–5.09), respectively. Estimating the prevalence
of PASC by sub-phenotype can aid in the development
of effective interventions and support for PASC patients.
Healthcare providers and public health officials can
leverage these estimates to better understand the overall
www.thelancet.com Vol 64 October, 2023

www.thelancet.com/digital-health


Articles
burden of PASC in the population and allocate re-
sources accordingly.

The Louvain clustering technique demonstrates how
the specific underlying features that define a phenotype
are organized in time and related to one another. This
analysis can provide further insight into the underlying
etiology of a symptom and how that symptom’s signal
changes over time. For example, in the case of chest
pain, the early signal detected is related to a cardiac
etiology rather than a pulmonary one. A number of
studies have previously described cardiac manifestations
of acute COVID-19 including myocarditis, stress car-
diomyopathy, and myocardial infarction.29,30 This early
signal detected by our algorithm could be related to the
cardiac manifestations of acute COVID-19, which were
not detected in the EHR until shortly after the acute
period. Our algorithm suggests that the late chest pain
signal has a different etiology and is no longer associ-
ated with an underlying cardiac diagnosis.

There are several limitations to our work, derived
from the lack of patient-level data for the meta analyses,
which will be the focus of our subsequent analyses, and
the inherent features of structured EHR data. We only
evaluated those PASC sub-phenotypes for which we had
a sufficient number of patients based on the initial defi-
nition in the institutional EHR data. Some PASC syn-
dromes such as chronic fatigue may not be completely
captured in EHRs. Fatigue has been frequently reported
as a sequel of COVID-19 in the literature among non-
hospitalized COVID-19 patients (∼35 percent preva-
lence28). This could have resulted in an underestimation
of patients afflicted with at least one PASC sub-
phenotype, which could explain our lower prevalence
estimates when compared with other studies.

Due to the pre-specified 4CE data extraction schema,
we did not have access to all EHR data elements in local
data extracts. Therefore, our data-driven methodology
may have overlooked additional data elements that could
have been useful for constructing the augmented PASC
definitions. As with any observational study that uses
existing EHR data of hospitalized patients, it is likely
that unmeasured confounders could affect the associa-
tions we have found. Furthermore, hospitalization also
introduces the wider biases associated with hospitali-
zation in many settings such as race and deprivation.

Of particular interest, but beyond the scope of this
study, is the possible effect of unmeasured mediators,
such as hospital characteristics, health and social pol-
icies, social structure and capital, and built environment
attributes. These features could, and likely do, influence
the prevalence of PASC sub-phenotypes in specific de-
mographic groups and/or geographical regions over
time. Numerous methods exist for adjusting for un-
measured confounding, and future studies of PASC,
especially those investigating the temporal subtyping of
PASC, should include these methods, in addition to
rigorous causal analysis.
www.thelancet.com Vol 64 October, 2023
Characterizing PASC sub-phenotypes via EHR is
critical for managing the COVID-19 pandemic side
effects in the coming years, but also complicated by
several factors, including varying quality of EHR data
owing to lack of documentation of symptoms and signs
that may be associated with PASC. PASC occurs in a
temporal context, with changes in its sub-phenotypes
possibly resulting from differences in disease
severity, the appearance or disappearance of certain
symptoms (such as fatigue or dyspnea) over time, and
the effects of treatments on the course of acute COVID.
Our machine learning approach to characterizing
PASC sub-phenotypes can help researchers identify
cohorts for further study and enable clinicians to
recognize evolving PASC sub-phenotypes while
providing patient care.
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