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The OREGANO knowledge graph 
for computational drug repurposing
Marina Boudin    ✉, Gayo Diallo, Martin Drancé & Fleur Mougin   

Drug repositioning is a faster and more affordable solution than traditional drug discovery approaches. 
From this perspective, computational drug repositioning using knowledge graphs is a very promising 
direction. Knowledge graphs constructed from drug data and information can be used to generate 
hypotheses (molecule/drug - target links) through link prediction using machine learning algorithms. 
However, it remains rare to have a holistically constructed knowledge graph using the broadest possible 
features and drug characteristics, which is freely available to the community. The OREGANO knowledge 
graph aims at filling this gap. The purpose of this paper is to present the OREGANO knowledge graph, 
which includes natural compounds related data. The graph was developed from scratch by retrieving 
data directly from the knowledge sources to be integrated. We therefore designed the expected graph 
model and proposed a method for merging nodes between the different knowledge sources, and finally, 
the data were cleaned. The knowledge graph, as well as the source codes for the ETL process, are openly 
available on the GitHub of the OREGANO project (https://gitub.u-bordeaux.fr/erias/oregano).

Background & Summary
The rapid discovery of new drugs is a particularly topical issue. The Covid-19 health crisis that we have experi-
enced has confirmed that. However, while current standard methods are time-consuming and very expensive, 
drug approvals are complicated to obtain. Before this approval, the therapeutic value of drugs must be proven 
in clinical trials that are organised in three phases1. Phase I focuses on toxicological tests on the molecule, while 
phase II is about the evaluation of the minimum dose to be administered to obtain an effective effect, as well as 
the listing of the various secondary effects. Phase III is designed to measure the effectiveness of the drug; the 
drug is authorised or not to be produced and sold at the end of this phase. This is a complex process, especially 
as almost 60% of new drugs tested in clinical trials do not pass Phase II2. This failure rate highlights drugs that 
are not effective enough and/or have too many side effects compared to their benefits. The time spent on clinical 
trials is therefore extremely time-consuming, taking on average 10 to 15 years from Phase I to Phase III. The 
development of new drugs is also very costly, so the pharmaceutical industry focuses its research on diseases 
that will make the heavy investments profitable. This need for cost-effectiveness is an obstacle to the discovery of 
certain treatments, especially for rare diseases.

Thus, alternatives to this costly traditional development process have emerged. This is the case of drug repur-
posing (aka drug repositioning)3, which aims to find a new use for existing drugs or compounds. The idea is to 
reuse drugs that have already been approved, as well as those that have not passed the final stages of clinical trials 
and have a better chance to do so. This possibility opens up prospects for the identification of drugs for rare dis-
eases in particular4, as drugs that have already passed the first stages of clinical trials are less expensive to bring 
to market. Repositioning methods are categorised into either biological or computational methods5. Biological 
methods involve discovering new information about drugs and targets and also testing, in large studies, the 
possibility of binding them, mostly to proteins. However, computational methods predominate in this field, and 
these are diverse and varied.

Computational repositioning methods exploit knowledge about individual drugs to find possible new ther-
apeutic targets6. The methods used differ according to the features describing the drugs that are taken into 
account. Indeed, knowledge about drugs is diverse, as compounds can be described by their chemical formula, 
their side effects, the targets they are aimed at, the diseases they treat and many other features. Numerous 
resources describe portions of this body of knowledge, many of them available online7. However, it is difficult 
to easily connect knowledge from these sources, primarily because they are not formatted in the same way 
and do not necessarily have cross-references allowing them to be interlinked with other knowledge sources. 
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Similarly, the knowledge sources may not be produced for the same purpose and may not cover the same sub-
ject. Nevertheless, some projects aim to overcome these issues through different data fusion methods. The prin-
ciple consists of linking the data and knowledge available in the various sources into a vast knowledge resource 
that is made available to all through a single endpoint. For example, the Linked Open Data cloud initiative brings 
together open source knowledge bases, linking them via nodes and links. In the area of drug repositioning, a key 
issue is the availability of these data and knowledge because drug information is not always made available by 
the companies working on the drugs.

It is possible to learn new knowledge and observations about drugs from those already available. Indeed, 
many studies implement learning algorithms that can, from the available data, determine whether a drug is 
potentially capable of binding to a new target8. The data used by learning algorithms must be represented in 
such a way that machines can learn a general model. One of our assumptions is that the more information there 
is to characterise a drug, the better the pattern. It is therefore necessary to integrate as much drug data as possi-
ble. One of the concerns that emerges in this context is that the data are very heterogeneous and it is difficult to 
characterise drugs in the same way. Indeed, drugs may have one or more targets, one or more side effects, and 
the targets are very diverse. In order to learn effectively on such heterogeneous data, it is necessary to find a way 
to represent the drug data and to leverage this representation. The type of representation that can be used at this 
stage is a knowledge graph, which has been defined by Hogan et al. as: “a graph of data intended to accumulate 
and convey knowledge of real world, whose nodes represent nodes of interest and whose edges represent links between 
nodes”9. A knowledge graph therefore accumulates knowledge of the real world in which the nodes represent 
notions of interest and whose edges represent links between them. A knowledge graph is thus a set of nodes 
(or entities) N and labelled links (or relations or predicates) L represented as triples of the form: (Nx, L1, Ny).  
The edges describe the binary links between two nodes and they are generally oriented and meaningful. In this 
case, the nodes are differentiated: the subject is the source node of the relationship, the object is the target node 
resulting in a triplet expressed as (subject, predicate, object).

From the perspective of defining a graph for drug repositioning, it is then possible to represent each drug, 
target, disease or other related entities by a node in the graph and then link these nodes together.

Biomedical data are well suited to be stored in knowledge graphs because they are scattered over many 
knowledge sources without being linked to each other. In this context, the “Semantic Web initiative” offers an 
idealised vision of the Web, with the idea that resources on the Web should be connected by semantic links (as 
opposed to hyperlinks) and that the meaning of these resources should be exploitable by machines10. Following 
this paradigm, various initiatives aiming to interconnect existing knowledge sources have emerge11,12.

The use of knowledge graphs for drug repurposing has been shown to be effective in recent years13–15. The 
identification of new drug-target relationships is the main goal of knowledge graph-based techniques for repo-
sitioning. The different methods focus on various aspects of the knowledge graph16,17. Some networks are not 
only composed of drugs and targets. Networks comprising other types of nodes can indeed participate in the 
discovery of new information for drug repositioning18–22. Most drug targets being proteins, protein-protein 
interaction networks are likely to provide very relevant information, as some proteins act indirectly on each 
other. Drug-target pairs can also have important consequences on other proteins, thus giving useful indications 
for possible repositioning23,24. Other studies investigated on predicting drug-disease links25. These studies were 
useful for identifying new avenues of research26. Graphs associating drugs and their side effects greatly assisted 
in the prediction of drug-target relationships27. These different pieces of information enrich the network and 
maximise the chances of finding drug-target pairs that are likely to lead to drug repurposing. The next logical 
step was to try to interconnect all this information into a single knowledge graph28–31.

The OREGANO project falls within this approach. Its objective is to develop a holistic knowledge graph on 
drugs and related concepts for humans in order to identify possible repositionable molecules using machine 
learning (or more specifically deep learning) algorithms. In the context of drug repositioning, these algorithms 
aim to predict the probability that a link exists between two nodes in the knowledge graph based on existing links. 
Such algorithms have been applied in a preliminary work on a first version of the OREGANO knowledge graph32.  
The first results were promising, and the present work aims at extending and optimizing these results by means 
of an updated graph composed of well-integrated sources in a first step, then by optimizing the learning meth-
ods in a second step. The OREGANO project aims to fill the missing gap in terms of computational-based drug 
repositioning, and performs link prediction on a large knowledge graph of heterogeneous data for discovering 
missing molecule-target links.

Unlike similar studies, the OREGANO knowledge graph emphasizes the integration of natural compounds 
(i.e. herbal and plant remedies). Indeed, for three decades (1981–2010), more than 60% of drugs were developed 
from natural products, derivatives or natural product-like compounds33. Some prominent herbal prescriptions 
have been transformed into new drugs34 (e.g. Layla Tab in Korea35). Therefore, we hypothesize that there is a 
strong possibility to seek new indications for existing herbal compounds, which could lead to the development 
of new drugs through repurposing strategies.

To the best of our knowledge, there is no previous work on knowledge graphs incorporating together disease 
and drug information and natural compounds specifically used for drug repositioning. Only two studies do refer 
to natural compounds and graph based representations, but for other purposes36,37. Indeed, these studies predict 
links between herbs and diseases or between herbs and targets, but on networks that are not knowledge graphs.

Methods
This section describes the steps involved in building the knowledge graph (Fig. 1), i.e. the data selection, the 
actual construction and the data filtering performed via several stages in this work.

The information to be acquired from the knowledge sources was selected using the model that was produced 
and according to their ability to be integrated (subsection A.). The first version of the OREGANO knowledge 
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graph32 was built using the knowledge available in Bio2RDF12. The utility of this resource resides in its ability to 
establish links and cross-references among the various knowledge bases it incorporates. Nevertheless, Bio2RDF 
has not been updated since 2014. Consequently, the information contained in this resource does not align with 
the content present in the updated iterations of the knowledge bases. In the second version of the OREGANO 

Fig. 1  Overall workflow. After selecting the types of nodes which are of interest for drug repositioning, the 
labels of the links connecting these types are retrieved from the Relation Ontology73. The nodes and the way 
there are connected form the model of the knowledge graph. The sources to be integrated are chosen according 
to the nodes represented in the model and their free online availability. Each knowledge source has its data 
extracted by a dedicated wrapper. These data are processed by a binder and a manager to populate thereafter the 
model and thus generate the OREGANO knowledge graph.

https://doi.org/10.1038/s41597-023-02757-0


4Scientific Data |          (2023) 10:871  | https://doi.org/10.1038/s41597-023-02757-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

knowledge graph, we have thus opted to incorporate the data directly from knowledge source repositories. 
This approach allows us to construct a knowledge graph enriched with up-to-date information. The integration 
process follows the Extract, Transform and Load (ETL) principle: the wrappers extract the data (subsection B.), 
which are then transformed by the binders (subsection C.) and managers (subsection D.).

A. Description of the selected knowledge sources.  The process of building the OREGANO knowledge 
graph first required selecting the knowledge sources to be integrated. This choice was made in coherence with the 
previously designed OREGANO knowledge graph, which was built from data available on the Linked Open Data 
(LOD)32. The same set of sources was therefore chosen with the intention of reinforcing the integration process 
used to develop the first knowledge graph. The difference is that rather than retrieving the sources through the 
Bio2RDF proxy, we have included them in the current version as they were initially (official repository).

In this section, we introduce the four types of sources that were used in this work, i.e. those that describe: 
(i.) information about targets, (ii.) information about phenotypes, (iii.) information about natural compounds, 
and (iv.) information about drugs. In addition, we present: (v.) two additional sources, and (vi.) existing 
cross-references that are useful for integrating the aforementioned sources successfully.

i. Target-related sources.  DrugBank is a free drug information source that was launched in 200638,39. It offers a 
wide range of information on drugs, their targets and interactions. The knowledge about drugs is both chemical 
and pharmaceutical, with different labels and dosages for drugs from around the world. The use of DrugBank 
is open to anyone, provided they create a profile to download the data. The version used in the current work is 
dated back April 1, 2023. It contains respectively 16,306 drugs and 4,939 targets.

SIDER contains information on drugs and their side effects40,41. The most recent version, which was released 
on October 21, 2015, comprises 139,756 pairs of 1,430 drugs and 5,868 side effects. This information was derived 
from data from clinical trials, in which participants were observed, and any side effects were noted. Prior to these 
human testing phases, animal testing also contributed to the data. The resource also lists the disease indications 
for the included drugs.

UniProt is a resource about proteins. It provides in particular their sequences, annotations and informa-
tion about their functions in the organism42. The European Bioinformatics Institute (EMBL-EBI), the SIB Swiss 
Institute of Bioinformatics and the Protein Information Resource (PIR) have collaborated to create and maintain 
it. The version we used for OREGANO was released on September 13, 2023 and aggregated information on 
570,157 proteins. More specifically, UniProt contains several data sources, including UniProtKB that provides 
information about proteins. The latter comprises data from Swiss-Prot43 and TrEMBL44. Since the TrEMBL pro-
tein dataset is not renewed, only the Swiss-Prot data are considered in the integration process.

Reactome is a knowledge source containing data on biological pathways45. Created in 2003, it contains 2,629 
human pathways binding 1,114 drugs, 14,277 proteins and 2,004 small molecules through 14,628 reactions. In 
this work, we used release 85, which was published in June 2023.

PharmGKB is a pharmacogenetic resource combining knowledge of genetic variation and drug responses46,47. 
It aims at integrating knowledge to assist clinicians and researchers in their investigations. PharmGKB has 
grown since it was founded in 2000 and now contains 993 drug label annotations, 201 clinical guideline anno-
tations, 181 curated pathways, and 428 annotated drugs. The release that we integrated was made available on 
September 5, 2023.

ii. Phenotype-related source.  Human Phenotype Ontology (HPO) is a source which is created initially in 2007 
to model an ontology based on the concepts described in the Online Mendelian Inheritance in Man (OMIM)48. 
Nowadays, HPO has evolved into an ontology for diseases and the relationships between diseases and pheno-
types. It contains over 13,000 terms. The HPO diseases come from the following sources: OMIM49, Orphanet50 
and DECIPHER51. The version we have integrated is part of the June 2023 release.

iii. Natural compound-related source.  NPASS is the only source not present in Bio2RDF that was included in the 
first version of the OREGANO knowledge graph to complete data with knowledge about natural compounds.

NPASS contains information on natural compounds and their targets in organisms52,53. It comprises respec-
tively 96,481 natural compounds and 7,753 biological targets linked by 958,866 relationships. The last update 
was on October 4, 2023.

iv. Drug-related source.  Anatomical Therapeutic Chemical (ATC) classification has been developed by the WHO 
Collaborating Centre. It categorises active substances according to their chemical properties and their actions 
in the body. Each compound is assigned a 7-character code consisting of five levels that reflect the compound’s 
place in the classification according to the system in which it acts and its pharmaceutical and therapeutic effects.

v. Additional sources.  Unified Medical Language System (UMLS) is a resource that gathers more than 150 
knowledge sources (i.e. (bio)medical coding systems and terminologies) composed of terms and relationships 
between them54. Since OMIM did not provide external links to connect it to other knowledge sources, UMLS 
was used to ensure proper integration of OMIM.

Orphanet is an online resource about rare diseases50. Cross-references for these diseases are not available via 
HPO (in which Orphanet is included), so extraction of data from Orphanet was necessary to ensure optimal 
HPO integration.
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vi. Existing cross-references.  Finding the mappings that the knowledge sources make available is helpful to 
facilitate the integration process while building the knowledge graph, which involves combining the data. In 
Fig. 2, the different existing mappings between the seven knowledge sources are depicted. Some sources were 
directly connected, which made their integration simple. However, most of the information sources had indi-
rect rather than direct mappings. Such indirect mapping entails that neither source gives cross-references to 
the other, but that they can still be connected by using one or more other cross-references that they both share. 
These mappings make it easier to find sources with related information. Since the information sources do not 
use the same nomenclatures, or even have the same meanings for some elements, it should be noted that estab-
lishing these cross-references requires a great deal of effort. For instance, issues can arise if duplicate proteins 
are found in poorly cleaned large protein libraries. In such cases, the use of an additional knowledge source as a 
pivot was required. As mentioned in the previous subsection, UMLS and Orphanet acted as pivots to enable the 
integration of OMIM and HPO, respectively.

B. Extraction of data from knowledge sources.  First, data were extracted from the knowledge sources 
that have been selected for their potential utility in drug repositioning. Then, their structure was analysed to 
retrieve the relevant information from each source (Table 1). The formats of the sources could differ, but each of 
them underwent the same overall processing. The wrapper (top part of Fig. 3), being the module that handled 
this step, first scanned the resource and then extracted the data deemed of interest for drug repositioning. Then, 
the resulting data were formatted into triples of the form (subject, predicate, object).

The formats were quite similar, but the way the data were organised (e.g. columns for TSV or tag types and 
their structure for XML) and the initial data filters varied, so each knowledge source had its own wrapper.

Only information deemed pertinent to drug repositioning was included in the OREGANO knowledge graph, 
as the knowledge sources are overly large datasets. Since some sources provided information on the quality of 
their content, these were used to keep only the most relevant relations.

The NPASS data were filtered out because the targets come from a multitude of organisms (e.g. Angelica 
Gigas, Bos taurus or Saccharomyces cerevisiae). Therefore, only those relevant to humans were selected.

Only PharmGKB compounds associated with ATC codes with a length of seven digits were retained, as the 
other ATC codes correspond to drug classes (i.e. not to a given compound). Before integrating the links between 
drugs and diseases, another filtering process was applied. Indeed, the clinical annotations that highlight these 
links had different levels of evidence based on the associated research conducted to date. Only 1A, 1B, 2A and 2B 
levels were selected as they correspond to the links with the highest confidence levels (the detailed description 
of the different levels is available at: https://www.pharmgkb.org/page/clinAnnLevels).

For the integration of HPO, a filter was applied on the links between diseases and phenotypes. These links 
have a frequency of occurrence that is modelled by a calculation, as follows:

•	 Excluded: present in 0% of cases.
•	 Very rare: present in 1% to 4% of cases.
•	 Occasional: present in 5% to 29% of cases.

Fig. 2  Diagram showing the different sources to be integrated in the OREGANO knowledge graph and the 
mappings existing between them. Solid lines denote that the source provides mappings to another source in its 
data, and the direction of the arrow indicates that the target source is referenced in the original source’s data. 
Dashed lines correspond to indirect mappings that require an intermediate source.
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Triplets Knowledge sources

Subject Predicate Object DrugBank HPO NPASS PharmGKB Reactome Sider UniProt

Compound has_code ATC X

ATC subclass_of ATC X

Compound has_target Target X X

Compound has_activity Activity X

Compound decreases_activity Activity X

Compound increases_activity Activity X

Compound has_effect Effect X

Compound decreases_effect Effect X

Compound increases_effect Effect X

Compound increases_efficacy Compound X

Compound decreases_efficacy Compound X

Gene causes_condition* Disease X X

Disease has_phenotype* Phenotype X

Compound is_affecting Gene X

Compound is_substance_that_treats* Disease X

Gene acts_within* Pathway X

Compound has_indication Indication X

Compound has_side_effect Side effect X

Target gene_product_of* Gene X

Table 1.  Types of nodes (subject and object) and links (predicate) extracted from the different knowledge 
sources. Labels marked with an asterisk indicate the relationships selected from the Relation Ontology67.

Fig. 3  Integration workflow of a knowledge source. Data from the knowledge sources are extracted by a 
wrapper. The data are of two types: links to be integrated into the knowledge graph and links to external sources. 
The external links are used to link the data via a binder that achieves a mapping table for each type of node. It is 
from this mapping table that the manager converts the triples to be integrated by replacing the source codes by 
the OREGANO codes. This integration process follows the traditional ETL principle.

https://doi.org/10.1038/s41597-023-02757-0
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•	 Frequent: present in 30% to 79% of cases.
•	 Very Frequent: present in 80% to 99% of cases.
•	 Obligate: present in 100% of cases.

Below 30%, the frequency of occurrence of a symptom is thus occasional to rare. We thus made the choice to 
select only the phenotypes whose frequency of occurrence is greater than or equal to 30% in order to represent 
the diseases with the symptoms that most often describe these diseases. For the links that did not have such an 
indicator, the evaluation of the evidence of these links was used. The corresponding levels are: IEA (inferred 
from electronic annotation), PCS (published clinical study) and TAS (traceable author statement) (the detailed 
description of the different levels is available at: https://hpo-annotation-qc.readthedocs.io/en/latest/annotation-
Format.html#phenotype-hpoa-format). Each of these levels describes how the associated link was obtained. The 
TAS and PCS levels have the highest confidence levels as they are derived from scientific works, while the IEA 
level corresponds to links inferred electronically. Therefore, only the TAS and PCS levels were kept when the 
frequency of occurrence was not available.

The graph integrates the HPO diseases with their OMIM codes (obtained through the UMLS). However, 
only the OMIM codes associated with HPO diseases were integrated to avoid overloading the knowledge graph.

UniProt is a very large knowledge source about genes and protein targets. Only the links between the nodes 
already present in the graph were conserved, in order to avoid introducing too many links that were not con-
nected to the nodes of the graph.

The triples generated by the wrapper contained both edges of the knowledge graph and cross-references. 
The relationships were provided as input to the manager, while cross-references were directly transmitted to the 
binder.

C. Fusion of nodes from distinct knowledge sources.  Knowledge sources did not necessarily provide 
mappings to other sources. In this case, a connection had to be established between the knowledge source to be 
integrated and the others. The connection could be created according to external data or knowledge sources and, 
if possible, a new source providing this link was added/used. This was the role of the binder.

The binder (middle part of Fig. 3) handled the creation and merging of nodes with the addition of new 
identifiers specific to the OREGANO knowledge graph into a global mapping table. To do this, a cross-reference 
match was sought to determine whether the node was new to the data. Depending on the cross-references, mul-
tiple candidates could exist for the same node. The goal of the binder algorithm was thus to be able to choose 
the best match for optimal data fusion. The correspondence of nodes was evaluated based on the number of 
common cross-references between two nodes. In the mapping table, each column corresponds to a knowledge 
source and each row represents a node with an OREGANO identifier in the first column. The binder also linked 
any OREGANO identifier to a new node if it was not already in the graph.

D. Constitution of the knowledge graph.  The last algorithm of the integration process is performed by 
the manager algorithm. Indeed, the link manager (bottom part of Fig. 3) combined the links extracted by the 
wrapper and the mappings generated by the binder to format the links. Thus, the links with the original codes 
in the integrated knowledge sources were replaced by the OREGANO identifiers of the associated node in the 
mapping table.

The seven knowledge sources were integrated in a fully automatic way. The data were merged by evaluating 
whether the nodes were new or already present in the mapping table based on the cross-references. A node was 
not integrated if no linkage could be made for it.

Data Records
The knowledge graph (Fig. 4) is made available in TSV format in the form of three columns (subject, predicate, 
object). The data files are openly available on Figshare55 and on Zenodo56. The files made available are described 
in Table 2.

Technical Validation
The technical validation of the OREGANO graph was carried out in four different ways: (i) a comparison with 
related knowledge graphs (subsection A.), (ii) a quality assessment according to criteria defined by Chen et al.57  
(subsection B.), (iii) a practical assessment with the application of an embedding algorithm exhibiting the pos-
sibility of predicting links using the knowledge graph (subsection C.), and (iv) an example of a predicted link 
(subsection D.).

A. Comparison of OREGANO with other related knowledge graphs.  Table 3 shows the biomedical 
knowledge graphs described in the Background & summary section, for which information about the number 
of nodes, edges, and integrated resources was available. We can see that the knowledge graphs from Zhu et al.22, 
PrimeKG31 and Hetionet29,30 have a significant number of nodes and relations, which is not surprising because 
the more knowledge sources the graph integrates and the more different types of nodes it includes, the larger the 
graph becomes. We can also notice that the OREGANO knowledge graph shares a similar set of data with some of 
these graphs, but none of them include data from PharmGKB and NPASS, and especially natural compound data. 
The OREGANO project thus offers a new angle to previous work by integrating this type of knowledge.

B. Evaluation regarding quality assessment.  In the context of knowledge graph construction, there are 
four aspects that are usually neglected and need to be improved, according to Abu-Salih et al.58: (i) knowledge 
graphs must be accessible, (ii) construction methods must be explicit and detailed, (iii) knowledge sources must 
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be of high quality, and finally (iv) the graph must prove its efficiency and usefulness in reality. The OREGANO 
knowledge graph meets the first three requirements, and the fourth will be addressed in future work.

Further, to evaluate the quality of the knowledge graph, we used the framework described by Zhu et al.57. The 
evaluation criteria of other works mentioned in the related works59,60 are more suitable for knowledge graphs 
with a hierarchical ontological structure, which is not the case of our knowledge graph. Zhu et al. exposed 18 
criteria for evaluating the quality of a knowledge graph. These criteria are presented in Table 4 according to 
four levels of consistency for each of them, ranking from perfect consistency (+++) to inconsistency (−). This 
table shows that for most of the criteria, the graph is of good quality. More precisely, 15 out of 18 criteria are 
well addressed in this current version of the OREGANO knowledge graph, while three remain to be addressed.

Fig. 4  The OREGANO knowledge graph obtained after the integration of the different knowledge sources. For 
each node and each link, the number of occurrences in the knowledge graph is specified.

File name Description

OREGANO_V2.tsv File containing all knowledge graph triples. It is composed of 3 columns: 
Subject; Predicate;Object

oregano_metadata_complete.ttl The OREGANO knowledge graph in turtle format with the names and 
cross-references of the various integrated entities.

TARGET.tsv Cross-reference table of the 22,096 targets.

PHENOTYPES.tsv Cross-reference table of the 11,605 phenotypes.

DISEASES.tsv Cross-reference table of the 18,333 diseases.

PATHWAYS.tsv Cross-reference table of the 2,129 pathways.

GENES.tsv Cross-reference table of the 37,794 genes.

COMPOUND.tsv Cross-reference table of the 90,868 compounds.

INDICATIONS.tsv Cross-reference table of the 2,714 indications.

SIDE_EFFECT.tsv Cross-reference table of the 6,060 side-effects.

ACTIVITY.tsv Names of the 78 activities.

EFFECT.tsv Names of the 171 effects.

Table 2.  Description of the files available on Figshare55 and Zenodo56. The cross-reference files are organized 
as follows: the column headers are the names of the sources to which the cross-references belong, and the row 
headers contain the name of the entity in the OREGANO graph. The first column header of each file is a key 
consisting of “ID_OREGANO:” followed by the number of entries in the file. The graph can be queried online 
through a SPARQL endpoint (http://91.121.148.199:8889/bigdata/#query).
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C. Link prediction.  The ultimate aim of the OREGANO project is to use its knowledge graph for drug repo-
sitioning as a knowledge base for discovering new links between molecules and targets. Node embedding algo-
rithms can be used for link prediction over a knowledge graph61–66. By fitting such algorithms to a knowledge 
graph, they predict whether unknown edges have a high probability of existing. Each of the algorithms uses a 
different calculation to try to best predict the edges included in the knowledge graph (Supplementary data 1), 
and metrics are used to measure the probability of obtaining edges that actually exist in the graph. In this way, the 
knowledge graph was subjected to several node folding algorithms. To test the ability of the OREGANO knowl-
edge graph to predict links, the whole graph was used (Supplementary data 2).

The statistical metrics used are the MRR and the Hit@N. Each one measures the possibility of obtaining a 
correct answer, in general for the MRR and in the first N suggestions for the Hit@N (details about these metrics 
are also provided in Supplementary data 1).

The PyKEEN library was used for each of the algorithms67. This is a Python package designed to train and 
evaluate knowledge graph embedding models. Each of the tested models was run for 50 epochs using the hyper-
parameters obtained after a parameter optimisation. Each model was run five times on five training sets from the 
knowledge graph. Each number is the average of the results over the five datasets.

We can see that link prediction over OREGANO performs best with the ComplEx algorithm (Table 5). The 
results show that with this algorithm, it is possible to obtain links with a high probability of existing at 42% of 
Hit@10. In other words, there is a 42% chance of obtaining a good result in the first 10 predictions.

D. Empirical predictions.  Predictions were made on the entire knowledge graph using our best model 
(i.e., ComplEx as shown in Table 5). A set of link predictions was produced on the “has_target” link from the 
Compound entity in the knowledge graph. The top 10 predictions were retained for each compound. The results 
were then ranked from highest to lowest score. From the best results, we selected an example of a natural com-
pound to illustrate the value of integrating them for drug repositioning (detailed statistics regarding the 22,676 
natural compounds included in OREGANO can be found in Supplementary data 3).

One of the best predictions was “COMPOUND:10025 has_target PROTEIN:4003”. Compound 10025 is 
epigallocatechin-gallate (EGCg) and protein 4003 is DNA polymerase k (Pol k). EGCg is the most abundant 
catechin in tea. In plants, catechins are secondary metabolites with antioxidant properties, belonging to the 
flavonoid subgroup of polyphenols68. Its medicinal uses are the subject of much research; EGCg has proven 
anti-cancer properties, notably against lung cancer69. Pol k is a member of the Y family of DNA polymerases, 
which have the ability to tolerate DNA damage during replication. Thanks to its ability to copy DNA, it plays a 
key role in maintaining genomic integrity70. It is also much studied for the role it plays in certain types of cancer. 
In many cancers, its expression is altered, inducing a disorder of genomic stability. The identification of Pol k 
inhibitors is therefore an important area of research; Pol k deregulation has been demonstrated in lung cancer71 
in particular.

Knowledge graph Type of nodes Knowledge resources Number of nodes Number of links

OREGANO
Compound; Target; Gene; Disease; ATC; 
Phenotype; Pathway; Effect; Activity; 
Indication; Side-effect

DrugBank; UniProt; Human Phenotype Ontology; PharmGKB; 
NPASS; SIDER; Reactome 88,937 824,231

Cheng et al.16 Drug; Target KEGG BRITE; BRENDA; SuperTarget; DrugBank 1,921 5,127

Zhu et al.22

Condition and Designated; Gene; 
Protein; Drug; Cell; Tissue; DATA; 
Chemical; Human phenotype; Rare 
Diseases and 32 different rare disease 
categories from GARD

GARD; Orphanet; MONDO; OMIM; HPO 3,819,623 84,223,681

Ye et al.27 Drug
Meyler’s Side Effects of Drugs 15th edition; Side Effects of 
Drugs Annuals (2007–2012); Citeline Pipeline, Thomson 
Reuters Partnering and GeneGo; SIDER

1,647 17,400

Hetionet29,30

Anatomy; Biological process; Cellular 
component; Compound; Disease; 
Gene; Molecular function; Pathway; 
Pharmacologic Class; Side-effect; 
Symptom

Entrez Gene; Labeledin; MEDLINE; MeSH; Pathway 
Interaction Database; Disease Ontology; DISEASES; 
DrugCentral; Gene Ontology; GWAS Catalog; Reactome; 
LINCS L1000; TISSUES; Uberon; WikiPathways; BindingDB; 
DisGeNET; DrugBank; MEDI; PREDICT; SIDER; Bgee; 
DOAF; ehrlink; Evolutionnary Rate Covariation; hetio-dag; 
Incomplete Interactome; Human Interactome Database; 
STAGEO

47,031 2,250,197

PrimeKG31

Biological process; Protein; Disease; 
Phenotype; Anatomy; Molecular 
function; Drug; Cellular component; 
Pathway; Exposure

The Comparative Toxicogenomics Database; DisGeNET; 
Disease Ontology; DrugBank; Drug central; Entez Gene; 
Gene Ontology; Human Phenotype Ontology; Mayo clinic; 
MONDO; Orphanet; TRANSFAC; BioGRID; STRING; MINT; 
IntAct; CORUM; Reactome; SIDER; Uberon; UMLS

129,375 4,050,249

OpenBioLink74 GO Term; Gene; Disease; Phenotype; 
Anatomy; Drug; Pathway

STRING; GO; DisGenet; Human Phenotype Ontology; 
Bgee; STITCH; CTD; DrugCentral; SIDER; Drug Ontology; 
UBERON; UniProt; NCBI; PubChem; Reactome; KEGG

184,732 9,302,547

BioKG75 Genetic Disorder; Disease; Drug; 
Pathway; Protein

DrugBank; The Human Protein Atlas; Cellosaurus; Intact; 
CTD; MedGen; MESH; SIDER; InterPro; SMPDB; UniProt; 
Reactome; KEGG; Hijazi2076

105,524 2,065,094

Table 3.  Different biomedical knowledge graphs, including OREGANO, and their properties. Types of nodes 
and knowledge resources common to the OREGANO knowledge graph are in bold, and those specific to 
OREGANO are underlined.
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EGCg has been shown to inhibit all DNA polymerases except β72. By comparing all the data available on 
these two molecules, a more in-depth study could be envisaged to investigate the possibility of treating certain 
types of cancer whose Pol k regulation is altered with EGCg.

Code availability
The code for the integration and the knowledge graph are available on the GitHub of the OREGANO project in 
the Integration folder (https://gitub.u-bordeaux.fr/erias/oregano).
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Criteria Level of consistency Comments

1. Triples should be concise +++ The triples are concise, following systematically the Subject-Predicate-Object pattern. The relations 
between the different entities are from the Relation Ontology, so they are standardized.

2. Contextual information of entities should be 
captured, +++

This item is available at several levels in the OREGANO knowledge graph. Primarily, contextual 
information is gathered by the relationships existing between entities. In addition to their names and 
cross-references, entities also possess attributes that contextualize them.

3. Knowledge graph does not contain redundant 
triples +++ Since the graph does not contain any transitive relations, the triples in the OREGANO knowledge graph 

are not redundant.

4. Knowledge graph can be updated dynamically ++
If the formats remain identical, the data update scripts can be applied to the newly updated data of 
the various knowledge sources. The only remaining task is to upload these new data and initiate the 
integration workflow.

5. Entities should be densely connected ++ In the framework, there is no threshold for determining the quality of the density of the knowledge 
graph. Nevertheless, between the first and second versions, the density has been increased.

6. Relations among different types of entities should 
be included +++ The knowledge graph includes different types of entities that are connected by different types of 

relationships.

7. Data source should be multi-field +++
Different biomedical domains are represented by the integrated sources, including pharmacology for 
DrugBank and PharmGKB, genetics and proteomics for UniProt, metabolomics for Reactome, and 
biochemistry for NPASS and SIDER.

8. Data for constructing a knowledge graph should 
be in different types and from different resources +++ The OREGANO knowledge graph brings together 7 different knowledge sources that provide different 

types of data on drugs, proteins, genes, diseases, etc. in different formats (TSV, XML).

9. Synonyms should be mapped and ambiguities 
should be eliminated to ensure reconcilable 
expressions

+++
In the current version of the OREGANO knowledge graph, the nodes are identified by a unique 
ID and they have only one plain English name (synonyms can be found by cross-referencing in the 
corresponding knowledge sources).

10. Knowledge graph should be organized in 
structured triples for easily processed by machine +++ The knowledge graph is organised in triples and is available as is. It can also be accessible through a 

SPARQL endpoint.

11. The scalability with respect to the KG size +

Increasing the size of the knowledge graph between the first and second versions did not have a 
significant impact on the amount of tasks performed. However, larger changes (e.g. adding new 
relations, new instances) could lead SPARQL query latencies and changes in the time required to provide 
results when the learning process or computation is performed on the graph.

12. The attributes of the entities should not be 
missed ++

Entities have properties that are integrated in the OREGANO knowledge graph, such as their textual 
names and information about their cross-references. More information could be integrated, such as drug 
toxicity or disease descriptions.

13. Knowledge graph should be publicly available 
and proprietary +++ The knowledge graph is accessible in two locations: on GitHub in Turtle format and via a SPARQL 

endpoint through which users can query the OREGANO graph.

14. Knowledge graph should be authority −
This item is complex, as our work could have authority at the local level in our research with clinicians, 
but at the international and national levels, our project would need to be part of larger cohorts for it to 
become authoritative. This is not the case at the moment, as the project is not finalised.

15. Knowledge graph should be concentrated +++ No unnecessary information has been included in our knowledge graph; only relevant and informative 
information related to drug repurposing has been included.

16. The triples should not contradict with each 
other +++ The knowledge graph has been analyzed by a reasoner in the Protégé tool (https://protege.stanford.edu/), 

and no inconsistencies were detected.

17. For domain specific tasks, the knowledge graph 
should be related to that field +++

The OREGANO knowledge graph was developed with the goal of implementing link prediction 
techniques for drug repositioning. The graph provides data related to biochemical and pharmacological 
aspects, which allows this task to be performed.

18. Knowledge graph should contain the latest 
resources to guarantee freshness −

The knowledge graph may or may not include the most up-to-date information from DrugBank, 
UniProt, Reactome, PharmGKB, and the Human Phenotype Ontology. However, as noted in criterion 4, 
scripts can be used to update the knowledge graph information in the future.

Table 4.  Quality assessment table for the OREGANO knowledge graph, according to the criteria defined in 
Chen et al.57. The level of consistency against these criteria is presented and ranked from perfect consistency 
(+++) to inconsistency (−). Comments specifying the level assigned are provided in the second column.

TransE TransH TransR RotatE ComplEx DistMult

MRR 0.03544 0.03988 0.13806 0.20220 0.25994 0.06254

Hit@1 0.01444 0.01616 0.07948 0.13308 0.17794 0.02528

Hit@10 0.12662 0.09002 0.23664 0.33692 0.42266 0.13606

Table 5.  Results of the different embedding algorithms. MRR stands for Mean Reciprocal Rank and Hit@N 
corresponds to the probability that the correct answer will be found in the first N hits.
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