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Scientific Significance Statement

Global change affects physicochemical and biological compartments of coastal ecosystems from global to local scales.
However, the multiple and interacting effects make it challenging to identify what causes ecosystem responses. By using
bivalve species as a recorder of environmental changes, this study provides the evidence for global effects of anthropogenic
activities (bivalves reflect the isotopic signal of atmospheric CO2, which is directly affected by anthropogenic activities) and of
climate change on coastal ecosystems at global scale, with possible cumulative, synergistic or antagonistic regional and/or
local effects. This research is contributing to crucial understanding of coastal ecosystems responses to environmental and cli-
mate change.

Abstract
Recent rapid changes in climate and environmental conditions have significantly impacted coastal ecosystem
functioning. However, the complex interplay between global and local effects makes it challenging to pinpoint
the primary drivers. In a multi-ecosystem study, we analyzed pluri-decadal trends of bivalve-δ13C as recorder
of global environmental changes. These trends were correlated with large-scale natural and anthropogenic
climate proxies to identify whether coastal biota responded to global effects. Our findings revealed decreasing
bivalve-δ13C trends in all sea regions, mainly linked with increased temperature and atmospheric-CO2
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concentrations, the later generating a decrease in atmospheric-CO2 δ13C values (Suess effect) because of
fossil-fuel burning. After removing the Suess effect from bivalve-δ13C trends, ongoing global climate variability
continues to affect most ecosystems, possibly intensified by combined, interacting regional or local effects.
These results highlight the need to consider large-scale effects to fully understand ecosystem and food web
responses to the multiple effects of global change.

Over the past decades, the world ocean has undergone
rapid climate and environmental changes with significant
consequences on ecosystem functioning and services
(Halpern et al. 2008; Bauer et al. 2013; Bartley et al. 2019;
Benedetti et al. 2021; Cael et al. 2023). Coastal marine
ecosystems form a dynamic land-ocean interface holding
substantial ecological and economic value (Barbier et al. 2011).
As the ultimate receptacle of dissolved and particulate conti-
nental inputs from natural and anthropogenic origin, these
ecosystems are highly productive yet particularly sensitive to
the multiple and interacting pressures of global change acting
at various spatial and temporal scales (Harley et al. 2006).
Climate and human-induced changes in precipitations, river
discharge, nutrients load or land use, alter organic matter
transformation and ultimately nutrient cycling and produc-
tivity along the land-ocean continuum (Milliman et al. 2008;
Bauer et al. 2013). A key challenge remains to understand
how the different components of global change affect coastal
ecosystems responses.

Global change refers to planetary-scale changes in the
Earth system encompassing interacting physicochemical and
biological compartments, and human societies. It comprises
the global climate (i.e., natural and anthropogenic compo-
nents) and other, mostly local, human activities (e.g., land
use, pollution) that affect ecosystems. Local changes may
interact with global climate-induced changes in antagonistic,
cumulative, or synergistic ways, thereby exacerbating ecosys-
tems response (Harley et al. 2006; Cabral et al. 2019). There-
fore, disentangling global from regional and or local effects is
crucial for the understanding of coastal ecosystem functioning,
especially to improve predictive scenarios and adapt management
and conservation strategies.

Carbon is the primary currency in addressing global
change. Carbon stable isotope (δ13C) is commonly used to
understand physical–chemical processes in the ocean: it helps
tracing organic matter origin and fate (Bristow et al. 2013)
and to reveal global anthropogenic impact such as direct
effect of increasing carbon dioxide (CO2) emissions from
anthropogenic activities (Quay et al. 2007). The CO2 emitted
by fossil fuels burning (e.g., coal, oil, and natural gas) has a
lower proportion of 13C than the CO2 naturally present in the
atmosphere and dilute the overall concentration of 13C at
global scale, creating the Suess effect (i.e., decline in global
atmospheric δ13C values by 1.8‰ since the industrial revolu-
tion in 1850 to present day; Keeling 1979; Gruber et al. 1999;
Graven et al. 2017; Dombrosky 2020). Low δ13C-CO2

dissolved in seawater is biologically incorporated by primary
producers during photosynthesis and propagates along the
food web (e.g., Schloesser et al. 2009; Liénart et al. 2022), and
potentially masks local influence of 13C-depleted sources
(e.g., continental material from rivers; Liénart et al. 2017,
2022). Increasing anthropogenic CO2 emissions also indirectly
affects marine ecosystems through temperature increase lead-
ing, for example, to altered CO2 solubility in water, phyto-
plankton phenology or precipitation patterns and river
runoffs (Pörtner et al. 2005; Gittings et al. 2018; van Vliet
et al. 2013).

Bivalve species, as bioindicators for environmental monitor-
ing, offer an integrated view of the environmental conditions
of their habitat through sessile, filter-feeding lifestyles (Briant
et al. 2021; Karlson and Faxneld 2021; Chahouri et al. 2023).
Measuring δ13C of bivalve tissues allows to trace dietary carbon
resources (Magni et al. 2013) and its flows in food webs over
space and time (Vander Zanden and Rasmussen 1999; Corman
et al. 2018), and to understand ecological consequences of
environmental changes in ecosystem functioning (Liénart
et al. 2020). Bivalve-δ13C is primarily influenced by local dietary
changes and physiological processes but global effects, like the
Suess effect, can mask these processes in long-term isotope
trends, hindering for precise interpretations of change (Clark
et al. 2021). Considering Suess effect in isotope data is critical
to unravel pure anthropogenic effects (fossil fuel burning) from
other global and regional/local pressures.

Previous studies addressing global change from pluri-
decadal trends of bivalve-δ13C found a link to climate
change (Briant et al. 2018; Corman et al. 2018), with only
few statistical evidence for indirect climate effects (Liénart
et al. 2020, 2022). However, no study had distinctly esti-
mated and removed global effects, particularly the Suess effect,
before further examining other processes. Our study address
whether pluri-decadal trends in bivalve-δ13C are due to the Suess
effect, and if, when corrected, other global effects persist. In a
multiecosystem approach, we measured δ13C in mussels and oys-
ters across 32 stations in six contrasted sea regions, over four-
decades time series (1981–2021). We correlated multidecadal
changes in bivalve-δ13C with time-series of large-scale anthropo-
genic and climate proxies to identify global effects. By studying
bivalve-δ13C time-series as a record of environmental changes,
this study examines global effects of anthropogenic activities
(i.e., reflect the isotopic signal of increased atmospheric CO2)
and of climate change on coastal temperate ecosystems at broad
spatial scale.
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Methods
Archived samples

Since the late 1970s, the French National Monitoring
Network “ROCCH” (“Réseau d’Observation de la Contamina-
tion CHimique,” operated by IFREMER) uses bivalves from
three different species as bioindicators of chemical contam-
ination: the Pacific oyster Crassostrea gigas, and the blue
mussels Mytilus edulis and Mytilus galloprovincialis (Fig. 1; see
Supporting Information S1 for detailed sampling protocol).
For the purpose of this study, we analyzed 1136 archived
bivalves soft-tissues samples (total soft-tissues) from the
ROCCH network, across 32 stations of six sea regions (Fig. 1,

English Channel; Western Brittany; Northern Bay of Biscay;
Central Bay of Biscay; Arcachon Lagoon; Gulf of Lion) span-
ning 21–40 years over the period 1981–2021 (one sample per
year, collected in mid-February � 3 weeks, i.e., during low
growth, mostly during non-reproductive period, to minimize
the effects of lipids associated with gametogenesis as lipids are
13C depleted, Post et al. 2007). The stations were specifically
selected to reflect environmental gradients on both large and
local scale (Lheureux et al. 2023), for example, tidal regimes
(microtidal to megatidal), climates (temperate, oceanic, medi-
terranean), trophic status (oligotrophic to eutrophic), continen-
tal influence (gradients of influence of rivers).

Fig. 1. Geographical location of the 32 stations sampled for bivalves (M. edulis: blue circles, M. galloprovincialis: green triangles, C. gigas: orange squares)
in the six sea regions (English Channel; Western Brittany; Northern Bay of Biscay; Central Bay of Biscay; Arcachon Lagoon; Gulf of Lion) over the period
1981–2021. At each station, only one of the three species was sampled: M. edulis in the English Channel and at two stations of the Northern Bay of
Biscay, C. gigas in Western Brittany, Central Bay of Biscay, Arcachon Lagoon and three stations of the Northern Bay of Biscay, and M. galloprovincialis in
the Gulf of Lion. The main river influencing the regions are represented by blue lines. The full list of station names is available in Supporting Information
S1. Note that there is no Station number 17.
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Carbon stable isotope analysis
We analyzed aliquots of 400–700 μg of bivalve tissues of

each archived sample for δ13C at the Center for Physical
Science and Technology (Vilnius, Lithuania) with a Flash EA
1112 Series Elemental Analyzer (Thermo Finnigan) connected
to a DeltaV Advantage Isotope Ratio Mass Spectrometer
(Thermo Fisher). Results are expressed in per mil (‰) devia-
tion from international references (see Supporting
Information S1). Analytical precision was <0.15‰. Isotope
data are available in the Figshare repository under the DOI
10.6084/m9.figshare.24884871.

Proxies for global environmental change
We compiled publicly available data over the period

1981–2021 for five hydro-climatic teleconnection indices
representing climate patterns in the Northern hemisphere
(see Supporting Information Fig. S1). Two indices are based
on temperatures: the Atlantic Multidecadal Oscillation (AMO;
Enfield et al. 2001) represents changes in the north Atlantic
Ocean surface temperature after removing the anthropogenic
component (effect of increasing greenhouse gases), whereas
the Northern Hemisphere temperature (NHT) anomalies are
calculated from North Atlantic 1901–2000 temperature aver-
age. Three indices are based on atmospheric pressures: the
North Atlantic Oscillation (NAO; Hurrell 1995; Hurrell and
Deser 2009) corresponds to the pressure difference between
the Azores High and Icelandic Low; the East Atlantic Pattern
(EAP; Barnston and Livezey 1987) values consist in a north–
south dipole of pressure anomalies centered on the north
Atlantic from east to west; the Arctic Oscillation (AO) is based
on atmospheric pressures and is related to the Arctic climate
and its southern incursions (Higgins et al. 2000). We used
globally averaged North-Hemisphere atmospheric CO2 con-
centrations (CO2atm; Lan et al. 2023) and δ13C of atmospheric
CO2 (δ13C-CO2atm; Graven et al. 2017) as global effect proxies
resulting from anthropogenic activities. For each proxy and
time series, we recalculated yearly averages based on the
12 months preceding bivalve sampling in order to integrate a
temporal lag in bivalve-δ13C (except for δ13C-CO2atm and sea-
water δ13C-CO2, see below, where the previous calendar year
was selected). Data origin and calculation details are available
in Supporting Information S1.

The Suess effect
A step-by-step calculation of Suess effect is available in

Supporting Information S1. Briefly, we calculated δ13C of
CO2 dissolved in seawater (δ13C-CO2aq) for each region by
adding the corresponding regional isotopic fractionation (ε)
value to global δ13C-CO2atm for each year on the period
1980–2021 (Table S1). The fractionation between gaseous and
dissolved CO2 phases was calculated from the equation of
Vogel et al. (1970) as given by Mook (2000), and Zeebe and
Wolf-Gladrow (2001): εd/g = �373/T + 0.19‰ (T: absolute
temperature in Kelvin). Despite differences in temperature
within each time series and between regions, differences in

calculated ε, hence in δ13C-CO2aq values was much lower than
the analytical precision for bivalves-δ13C (see Supporting
Information S1). Therefore, we used the average δ13C-CO2aq

value of all regions as a proxy to compare with bivalves-δ13C
in statistical tests. Finally, we calculated regional slopes of
δ13C-CO2aq (i.e., the Suess effect) which was the same for all
regions (�0.243‰ decade�1, Table S1), and removed it from
bivalve-δ13C cumulatively for each year (starting from year
1981) to obtain Suess-corrected bivalve-δ13C (bivalve-δ13Ccorr)
for each station.

Equilibrium between δ13C-CO2atm and δ13C-CO2aq, and
δ13C in phytoplankton and bivalves (i.e., tissue turnover) are
possible processes altering δ13C signal propagation to bivalves.
Considering that these lags are constant over years, it does
not affect the multidecadal δ13C trends we are investigating.
Also, we did not consider seasonal variation in atmospheric
CO2, nor in the δ13C of aquatic CO2 linked to phytoplankton
activity as we were looking at long-term trends in annual
means. Hence, we considered equilibrium between atmo-
sphere and seawater and calculated the trends of δ13C-CO2aq

as if the Suess effect was the only process occurring
(i.e., considering physical–chemical processes only, Affek and
Yakir 2014).

Statistical analyses
We examined unidirectional temporal trends in bivalve-

δ13C times series for each station with Mann-Kendall tests
corrected for autocorrelation (R-package “modifiedmk,”
Patakamuri and O’Brien 2021). We applied linear models to
calculate the value of the slope (in ‰ decade�1). Over the
same time period, we evaluated relationships (1) in bivalve-
δ13C time series between pairs of stations and (2) between
bivalve-δ13C time series and global proxies using Spearman
two-sided correlation tests (p-values corrected for multiple
testing with Benjamini–Hochberg procedure). For reliable
comparison between datasets, we tested the trends on a
common period of three decades (1990–2021) corresponding
to 30 � 2 years (criterion met for 28 stations), whereas corre-
lations were performed on complete datasets. Statistical ana-
lyses were performed with the R software (R Core
Team 2022).

Results
Pluri-decadal trends in bivalve-δ13C

During a shared period of 30 � 2 years (1990–2021),
bivalve-δ13C signal exhibited a significant decrease at 93% of
the stations (26/28; Fig. 2, Table 1). The average decrease was
�0.58 � 0.24‰ decade�1, ranging from �1.08 to �0.22‰
decade�1 (i.e. �3.24 to �0.65‰ over 30 years). The decrease
was not significant at only three stations (two in English
Channel, one in Northern Bay of Biscay, over 30 years).
Within each region, between station pairs, there were
80–100% of significant correlations in bivalve-δ13C in
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Fig. 2. Pluri-decadal variability in bivalve-δ13C over the period 1981–2021 for the 32 stations of the six sea regions. Black lines correspond to significant
trends (calculated on the period 1990–2021; Mann-Kendall tests; p-value < 0.05). One outlier (CB-21-PALL in 2014, �27‰) was removed for statistical
tests. Colors corresponds to species.
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Western Brittany, Central Bay of Biscay, Arcachon Lagoon,
Gulf of Lion, and 47–70% for Northern Bay of Biscay and
English Channel (but all western English Channel stations
were correlated, Table 2). When comparing station pairs
between regions, there was an increase in correlation from
north to south: the English Channel stations were poorly cor-
related with stations from the other regions (29–42%) while
the Gulf of Lion, the Central Bay of Biscay and the Arcachon
Lagoon showed more correlations (60–87%) between station
pairs.

Correlations between bivalve-δ13C and global proxies
Bivalve-δ13C was positively correlated with δ13C-CO2aq for

78% of the stations (Table 3). Both δ13C decreased concomi-
tantly over time. There was a negative correlation between
bivalve-δ13C and CO2atm and NHT for 78% and 75% of the
stations respectively. The higher the atmospheric CO2 con-
centrations and the warmer the air temperatures (positive
anomalies) in the Northern hemisphere, the more negative
were bivalve-δ13C values. The EAP (pressure) and AMO
(temperature) indices were negatively correlated with

Table 1. Raw values (mean � SD, over the total dataset; n total = number of years of the time series) and decadal slopes of bivalve
δ13C (dark gray) and bivalve δ13C corrected for the Suess effect (light gray, δ13Ccorr) calculated over a common period of 30 � 2 years
(1990–2021).

δ13C raw values Years Slope (‰ decade�1)

n total Average � sd n Start End δ13C δ13Ccorr

English Channel (EC) EC-1-AMBL 36 �18.8 � 0.9 31 1990 2021 �0.37 �0.13
EC-2-PSQT 34 �18.9 � 0.7 32 1990 2021 0.04 0.28
EC-3-VARE 37 �19.1 � 0.6 32 1990 2021 �0.04 0.20
EC-4-ANTI 36 �19.3 � 0.8 32 1990 2021 �0.44 �0.19
EC-5-CLHV 29 �20.1 � 0.7 25 1990 2017 �0.15 0.09
EC-6-VILL 36 �20.7 � 1.0 31 1990 2021 �0.51 �0.27
EC-7-OUIS 27 �19.0 � 1.1 27 1994 2021 �1.08 �0.84
EC-8-PBES 37 �19.1 � 1.2 32 1990 2021 �0.93 �0.69
EC-9-BDVG 37 �19.5 � 0.9 30 1990 2021 �0.84 �0.59

Western Brittany (WB) WB-10-PLAN 37 �19.5 � 1.0 32 1990 2021 �0.83 �0.59
WB-11-PASS 21 �20.6 � 0.8 21 2001 2021 �1.13 �0.89
WB-12-PERS 21 �20.3 � 0.9 21 2001 2021 �0.93 �0.69
WB-13-AULN 38 �19.8 � 0.7 32 1990 2021 �0.40 �0.16

Northern Bay of Biscay (NB) NB-14-GUIL 39 �18.8 � 0.6 32 1990 2021 �0.39 �0.15
NB-15-PEBE 40 �18.6 � 0.6 32 1990 2021 �0.27 �0.03
NB-16-CHEM 39 �20.1 � 0.7 32 1990 2021 0.04 0.28
NB-18-BOUR 37 �17.9 � 0.8 32 1990 2021 �0.23 0.01
NB-19-NOIR 38 �18.8 � 0.7 32 1990 2021 �0.49 �0.24

Central Bay of Biscay (CB) CB-20-RIVE 40 �19.1 � 1.0 32 1990 2021 �0.94 �0.69
CB-21-PALL 38 �18.7 � 0.7 31 1990 2021 �0.67 �0.42
CB-22-BOYV 38 �18.9 � 0.9 32 1990 2021 �0.79 �0.54
CB-23-PONT 38 �19.5 � 0.8 32 1990 2021 �0.63 �0.38
CB-24-FOSS 40 �20.7 � 1.0 31 1990 2021 �0.63 �0.38

Arcachon lagoon (AL) AL-25-FERR 39 �19.2 � 0.6 31 1990 2021 �0.22 0.02
AL-26-JACQ 38 �18.8 � 0.5 32 1990 2021 �0.32 �0.08
AL-27-COMP 40 �19.1 � 0.9 32 1990 2021 �0.91 �0.67

Gulf of lion (GL) GL-28-BANY 32 �19.9 � 0.9 28 1991 2021 �0.55 �0.30
GL-29-HRLT 31 �20.2 � 0.8 28 1990 2021 �0.48 �0.24
GL-30-STMM 38 �20.3 � 0.8 32 1990 2021 �0.44 �0.19
GL-31-CART 37 �20.6 � 1.1 30 1990 2021 �0.63 �0.39
GL-32-COUR 37 �19.3 � 0.8 31 1990 2021 �0.64 �0.40
GL-33-POME 24 �19.8 � 0.8 24 1998 2021 �0.85 �0.61

Slope values were calculated from linear models and values are expressed in permille per decade. Significant slopes are in bold (Mann-Kendall tests; p-
value <0.05). Time series that do not match time length requirements of 30 � 2 years are in italics (four Sta. 5, 11, 12, and 33).
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bivalve-δ13C for 56% and 44% of the stations respectively.
Positive phases of both EAP and AMO, which increase sea
surface temperature and are linked to milder and wetter pre-
cipitation in winter months over most of Northern Europe,
were linked to more negative bivalve-δ13C values. There was
no significant correlation between bivalve-δ13C and AO and
NAO. Regionally, the English Channel and Northern Bay of
Biscay showed less correlations (47% and 40%, respectively)
with global proxies (out of AO, NAO, and δ13C-CO2atm)
than the Gulf of Lion and Arcachon Lagoon (87%)
(Table 3).

Remaining pluri-decadal trends in Suess-corrected
bivalve-δ13C

After removing the Suess effect from bivalve-δ13C trends,
we tested the significance of the remaining trends. Over the
common period of 30 � 2 yr (1990–2021), bivalve-δ13Ccorr sig-
nificantly decreased for 50% of the stations, while 46%
exhibited no significant change, and one station experienced
a significant increase (EC-2-PSQT) (Table 1). The average
decrease was �0.45 � 0.27‰ decade�1 ranging from �0.84
to �0.19‰ decade�1 (from �2.52 to �0.58‰ over 30 years).
There were only 28–50% significant correlations in bivalve-
δ13Ccorr between station pairs within each region except for
Central Bay of Biscay (70%; Table 2). There was almost no
correlation remaining between station pairs of different
regions (0–33%; Table 2).

Remaining correlations between Suess-corrected bivalve-
δ13C and global proxies

Overall, the number of correlations with global
proxies decreased after removing the Suess effect. Bivalve-
δ13Ccorr was still correlated with δ13C-CO2aq at 53% of the
stations, mostly positively (negatively correlated at two sta-
tions; Table 3). There were 47–53% correlations left
between bivalve-δ13Ccorr and NHT and CO2atm, mostly
negative, and only 25–34% correlations remained for the
other hydro-climatic indices. Still, there was no significant
correlation between bivalve-δ13Ccorr, and AO and NAO.
Regionally, more correlations were remaining with global
proxies (55–60%, out of AO NAO and δ13C-CO2atm) for
Western Brittany and Gulf of Lion than for the other
regions (28–44%).

Discussion

We found an overall global temporal decrease in bivalves
δ13C tissues in all sea regions, independently of bivalve
species and despite differences in trophic status, tidal regime,
continental influence, etc., of the studied ecosystems
(Lheureux et al. 2023). This decrease was of same order of
magnitude in all regions and with numerous correlations
between stations of different sea regions. These results are
consistent with the literature regarding marine organisms
from different trophic levels (e.g., Druffel and Benavides 1986;

Aharon 1991; Bauch et al. 2000; Schloesser et al. 2009) includ-
ing bivalve species from other sea areas (Liénart et al. 2022,
�0.45‰ decade�1). The decrease in bivalve-δ13C correlates in
all regions with the global decrease in δ13C of dissolved CO2

linked to the Suess effect (Keeling 1979). Among global pro-
cesses directly altering bivalve-δ13C, the Suess effect can be
measured, and therefore removed from pluri-decadal trends.
After its correction, 46% of previous bivalve-δ13C slopes were
not significant anymore and there were almost no correlations
left between regions, showing that part of global direct
anthropogenic effect on bivalve-δ13C was removed. Yet, sig-
nificant decrease in bivalve-δ13Ccorr was still observed for 50%
of the stations, and up to 60% of correlations with other
global proxies remained in some regions (Gulf of Lion), indi-
cating that other global processes affecting bivalve-δ13C values
are still ongoing.

In addition to the Suess effect, increasing temperatures and
CO2 concentrations affect bivalve-δ13C via trophic pathway
(Corman et al. 2018). Indeed, even after the Suess-effect cor-
rection, a large proportion of stations still exhibited negative
correlation between bivalve-δ13Ccorr, atmospheric CO2 con-
centration and NHT (both proxies for anthropogenic activi-
ties), and with AMO and EAP (proxies for natural climate,
which trends indicate increased surface temperatures in
Northern Atlantic; Comas-Bru and McDermott 2014; Zampieri
et al. 2017). Changes in phytoplankton physiology and com-
munity assemblages can also both explain the decrease in
bivalve-δ13C over time. Carbon isotope fractionation
(i.e., enrichment of one isotope relative to another during
[bio]chemical or physical processes) between phytoplankton
and dissolved CO2 is modulated by the balance between
carbon demand (i.e., productivity/growth rate) and CO2

availability (Fry 1996): as the increase in water temperature
increases carbon demand (productivity) and decreases dis-
solved CO2 concentration (CO2 availability), phytoplank-
ton isotopic fractionation decreases, leading to an overall
increase in phytoplankton-δ13C; in contrast, as atmospheric
and seawater CO2 concentration increase due to fossil fuel
burning, phytoplankton isotopic fractionation increases,
leading to a decrease in phytoplankton-δ13C. Additionally,
temperature increase may change phytoplankton commu-
nity toward smaller cell-sized species (e.g., David et al. 2012;
Hern�andez-Fariñas et al. 2014), which display lower δ13C
values (e.g., Tuerena et al. 2019). All these processes are
likely to occur concomitantly and reflect into bivalve tissues
as any changes in phytoplankton-δ13C directly alter bivalve-
δ13C by trophic propagation (Lefebvre et al. 2009).

Global change also affects bivalve-δ13C through bivalve
physiology. Bivalve isotope fractionation directly relates to
metabolic rates, (e.g., assimilation and growth, Lefebvre and
Dubois 2016) which are temperature-dependent (Hiebenthal
et al. 2013; Matoo et al. 2021). In their study, Marín Leal et al.
(2008) showed that lower δ13C during winter were associated
with lower metabolic rate. Increasing water temperature over

Liénart et al. Bivalves as a recorder of global change

9

 23782242, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lol2.10399 by Portail B

ibC
N

R
S IN

SU
, W

iley O
nline L

ibrary on [06/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T
ab

le
3
.
C
or
re
la
tio

ns
be

tw
ee
n
gl
ob

al
an

th
ro
po

ge
ni
c
an

d
cl
im

at
e
pr
ox

ie
s,
an

d
bo

th
bi
va
lv
e
δ1

3
C
(b
iv
al
ve
-δ

1
3
C
,l
ef
t
pa

ne
l,
da

rk
gr
ay
)
an

d
bi
va
lv
es

δ1
3
C
co

rr
ec
te
d

fo
r
th
e
Su

es
s
ef
fe
ct

(b
iv
al
ve
-δ

1
3
C
co

rr
,r
ig
ht

pa
ne

l,
lig

ht
gr
ay
)
fo
r
ea
ch

st
at
io
n
of

th
e
si
x
se
a
re
gi
on

s.

B
iv
al
ve

-δ
1
3
C

B
iv
al
ve

-δ
1
3
C
co

rr

A
O

N
A
O

A
M
O

EA
P

N
H
T

C
O

2
at
m

δ1
3
C
at
m

δ1
3
C
aq

A
O

N
A
O

A
M
O

EA
P

N
H
T

C
O

2
at
m

δ1
3
C
at
m

δ1
3
C
aq

En
gl
is
h
C
ha

nn
el

(E
C
)

EC
-1
-A
M
BL

�0
.3
9

0.
39

0.
39

EC
-2
-P
SQ

T
0.
39

0.
46

�0
.4
5

�0
.4
5

EC
-3
-V
A
RE

EC
-4
-A
N
TI

�0
.4
7

�0
.4
1

�0
.4
3

0.
43

0.
43

EC
-5
-C
LH

V
EC

-6
-V
IL
L

�0
.5
5

�0
.4

EC
-7
-O

U
IS

�0
.4
7

�0
.6
8

�0
.7
9

0.
79

0.
79

�0
.4
6

�0
.6
2

�0
.7
4

0.
74

0.
74

EC
-8
-P
BE

S
�0

.4
6

�0
.5

�0
.6
8

�0
.7
2

0.
72

0.
72

�0
.4

�0
.5
4

�0
.5
6

0.
57

0.
57

EC
-9
-B
D
VG

�0
.4
3

�0
.5
7

�0
.6
5

�0
.6
7

0.
67

0.
67

�0
.4
8

�0
.3
9

�0
.3
7

0.
37

0.
37

W
es
te
rn

Br
et
ag

ne
(W

B)
W
B-
10

-P
LA

N
�0

.6
5

�0
.5
8

�0
.8
2

�0
.8
8

0.
88

0.
88

�0
.6
1

�0
.5
6

�0
.7
5

�0
.8
1

0.
8

0.
8

W
B-
11

-P
A
SS

�0
.5
1

�0
.6
7

�0
.8

0.
8

0.
8

�0
.5
9

�0
.6
6

�0
.7
5

0.
75

0.
75

W
B-
12

-P
ER

S
�0

.5
4

� 0
.6
8

0.
68

0.
68

�0
.5
3

0.
53

0.
53

W
B-
13

-A
U
LN

�0
.4
7

�0
.5
6

�0
.5
6

0.
57

0.
57

N
or
th
er
n
Ba

y
of

Bi
sc
ay

(N
B)

N
B-
14

-G
U
IL

�0
.3
7

�0
.5
3

0.
52

0.
52

N
B-
15

-P
EB

E
N
B-
16

-C
H
EM

0.
49

0.
53

0.
56

�0
.5
6

�0
.5
6

N
B-
18

-B
O
U
R

�0
.3
7

�0
.5
3

�0
.5
8

0.
58

0.
58

N
B-
19

-N
O
IR

�0
.4
2

�0
.3
8

�0
.6
5

�0
.6
9

0.
69

0.
69

�0
.4
3

�0
.4
4

0.
44

0.
44

C
en

tr
al

Ba
y
of

Bi
sc
ay

(M
B)

C
B-
20

-R
IV
E

�0
.6
5

�0
.4
9

�0
.8
1

�0
.8
8

0.
88

0.
88

�0
.5
7

�0
.4
6

�0
.7
3

�0
.7
9

0.
78

0.
78

C
B-
21

-P
A
LL

�0
.5

�0
.5
9

�0
.6
4

�0
.5
8

0.
58

0.
58

�0
.4
4

C
B-
22

-B
O
YV

�0
.7
3

�0
.4
5

�0
.8
2

�0
.8
8

0.
88

0.
88

�0
.6
6

�0
.3
8

�0
.7
3

�0
.7
7

0.
77

0.
77

C
B-
23

-P
O
N
T

�0
.3
8

�0
.4
5

�0
.5
6

0.
55

0.
55

C
B-
24

-F
O
SS

A
rc
ac
ho

n
la
go

on
(A
L)

A
L-
25

-F
ER

R
� 0

.3
8

�0
.4
1

�0
.5
1

0.
49

0.
49

A
L-
26

-JA
C
Q

�0
.4
3

�0
.3
8

�0
.4
9

0.
47

0.
47

A
L-
27

-C
O
M
P

�0
.5
3

�0
.5
4

�0
.7
2

�0
.7
9

0.
78

0.
78

�0
.3
5

�0
.4
7

�0
.5
5

�0
.6
2

0.
62

0.
62

G
ul
fo

fl
io
n
(G

L)
G
L-
28

-B
A
N
Y

�0
.6
5

�0
.3
8

�0
.6
9

�0
.7
5

0.
75

0.
75

�0
.5
4

�0
.5
2

�0
.5
9

0.
58

0.
58

G
L-
29

-H
RL

T
�0

.4
5

�0
.5
2

�0
.5
1

0.
52

0.
52

G
L-
30

-S
TM

M
�0

.4
6

�0
.4
1

�0
.6
4

�0
.7
3

0.
73

0.
73

�0
.4
2

�0
.5
2

0.
52

0.
52

G
L-
31

-C
A
RT

�0
.6
1

�0
.6
2

�0
.7
4

0.
73

0.
73

�0
.4
9

�0
.4
6

�0
.5
8

0.
56

0.
56

G
L-
32

-C
O
U
R

�0
.6
9

�0
.4
9

�0
.8
1

�0
.8
9

0.
89

0.
89

�0
.5
9

�0
.4

�0
.6
8

�0
.7
6

0.
75

0.
75

G
L-
33

-P
O
M
E

�0
.5
3

�0
.7

0.
7

0.
7

�0
.5
4

0.
54

0.
54

O
nl
y
si
gn

ifi
ca
nt

co
rr
el
at
io
ns

ar
e
sh
ow

n
(t
w
o-
si
de

d
Sp

ea
rm

an
te
st
s
rh
o
va
lu
es

[r
an

k
co

rr
el
at
io
n
co

ef
fi
ci
en

t]
;p

-v
al
ue

s
<
0.
05

).

Liénart et al. Bivalves as a recorder of global change

10

 23782242, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lol2.10399 by Portail B

ibC
N

R
S IN

SU
, W

iley O
nline L

ibrary on [06/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



multidecadal scales should result in increased metabolic
activity, hence in bivalves-δ13C as a pure metabolic effect. In
addition, lipid content in bivalves (reflected by higher C:N
ratio when it increases) should decrease with warmer temper-
atures in temperate regions (Tan et al. 2023) translating to
increased bivalves-δ13C values and decreased C:N (Post
et al. 2007). However, this is not the observed trend (decreas-
ing bivalve-δ13C, no overall decreasing trend in C:N ratio;
data not shown), which suggests that bivalve physiology is
likely not a dominant process for the multidecadal bivalve-
δ13C trends of this study. These trends are rather explained
by direct (through diet) or indirect (through the effect of abi-
otic factors on phytoplankton physiology) changes in
bivalve-δ13C through food availability and quality (Liénart
et al. 2020, 2023).

As these effects are linked to global drivers, they should
similarly affect all regions and stations. However, ‘only’ 50%
of the stations still exhibit significant decrease in Suess-
corrected bivalves-δ13C (most of the stations of Western
Brittany, Central Bay of Biscay and Gulf of Lion) and only
43% of the stations still exhibit a correlation between
bivalves-δ13Ccorr and global proxies (out of AO NAO and
δ13C-CO2atm; most of the stations of Western Brittany and
Gulf of Lion). This indicates that beyond global drivers,
bivalves-δ13C also responds to regional/local drivers that have
cumulative, synergetic (for the stations exhibiting more nega-
tive slopes) or antagonistic (for the stations exhibiting less
negative slope, nonsignificant or even positive slope) effect
with global drivers. It is beyond the scope of this article to
discuss these regional/local drivers but the present results
clearly enlighten their effect on bivalves-δ13C.

To summarize, the global increase in atmospheric CO2 has
many impacts (e.g., global warming), including on marine
ecosystems (e.g., increased seawater temperature, increased
primary production). Such changes go beyond physical–
chemical processes or changes in the production base and
have an impact on species at the base of the food webs, with
potential knock-on effects expected on upper trophic levels,
including isotopic signal. Our study demonstrates that the
changes in the chemical composition of the atmosphere
(increase in CO2 and associated decrease in δ13C-CO2atm) are
recorded in bivalves soft-tissues. This global effect is likely
related to ‘passive’ processes (Suess effect; changes in
δ13C-CO2atm directly modify bivalve-δ13C through physical
and chemical processes, i.e., without change in biological
processes), but is also associated to ‘active’ processes (i.e., bio-
logical, due to change in phytoplankton or bivalve fraction-
ation and physiology). Indeed, even after removing the Suess
effect, a link between bivalve-δ13C and global indices remains
for half of the stations. Beyond global effect, regional and/or
local effects likely occur in cumulative, synergistic or antago-
nistic ways. Correcting δ13C time series for the Suess effect is a
first and necessary step required when comparing biological
samples collected one or more decades apart (as previously

advised by Misarti et al. 2009; Dombrosky 2020; Clark
et al. 2021). Further studies are required to comprehensively
investigate regional/local processes related to changes in
bivalve-δ13C once corrected for the Suess effect, which will
contribute to a deeper understanding of ecosystem responses
to global change.
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