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Endo metabolomic profiling of
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the specific glycolytic flux during
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This study explored the intracellular metabolic variations between 17 strains of

Saccharomyces cerevisiae belonging to two different genetic populations: flor

and wine yeasts, in the context of alcoholic fermentation. These two populations

are closely related as they share the same ecological niche but display distinct

genetic characteristics. A protocol was developed for intracellular metabolites

extraction and 1H-NMR analysis. This methodology allowed us to identify and

quantify 21 intracellular metabolites at two different fermentation steps: the

exponential and stationary phases. This work provided evidence of significant

differences in the abundance of intracellular metabolites, which are strain- and

time-dependent, thus revealing complex interactions. Moreover, the differences

in abundance appeared to be correlated with life-history traits such as average

cell size and specific glycolytic flux, which revealed unsuspected phenotypic

correlations between metabolite load and fermentation activity.

KEYWORDS

phenotypic trade-offs, flor and wine yeast, metabolite load, 1H-NMR, fermentation
kinetics

Key points

1. The phenotypic variability of intracellular metabolites was evaluated by NMR analysis.
2. This revealed differences in the abundance of intracellular metabolites between strains.
3. Metabolic load appeared to be correlated with life history and fermentative traits.

1. Introduction

Genetic and enzymatic regulation of metabolic pathways is decisive for the ecological and
evolutionary success of living organisms. One well-studied case of such metabolic control
is the Crabtree effect, which governs the catabolism of glucose by yeast in a sugar-rich
environment (Pronk et al., 1996). The fitness effect provided by the Crabtree effect is well
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illustrated by the alcoholic fermentation performed by the budding
yeast Saccharomyces cerevisiae that generally outcompetes other
yeast species present in grape juice (Drumonde-Neves et al., 2021).
In such conditions, S. cerevisiae preferentially produces alcohol
from sugar by repressing the use of oxidative respiration, even
in the presence of oxygen (Piškur et al., 2006; Merico et al.,
2007). This metabolic strategy promotes the fast development
of its biomass (Pfeiffer et al., 2001) coupled with ethanol
production (Goddard, 2008) and temperature increase (Balsa-
canto et al., 2020). Interestingly, ethanol-producing yeasts such
as Saccharomyces and Brettanomyces genera can also efficiently
catabolize ethanol at the end of the alcoholic fermentation process
(Hagman et al., 2013). This metabolic transition (diauxic shift) has
been intensively investigated by molecular approaches (Zampar
et al., 2013). The yeast’s ability to switch from ethanol production
(fermentation) to ethanol consumption (respiration) is based on
the presence of parallel enzymatic reactions, including alcohol
dehydrogenase enzymes (Thomson et al., 2005) that occurred after
whole genome duplication. This fast production and consumption
of ethanol is referred to as the “make-accumulate-consume”
strategy (Piškur et al., 2006; Hagman et al., 2013) and might be
considered as evidence of the specialization of S. cerevisiae for
sweet fruits. However, other authors have indicated that this species
might be a generalist, making it capable of surviving in a wide range
of environments (Goddard and Greig, 2015).

Resource-utilization strategies are intimately linked to
metabolic trade-off and are subjected to natural selection. For
example, individuals of the same species may take different paths
of metabolic adaptation in a changing environment, as recently
demonstrated (Ekkers et al., 2022).

The winemaking process constitutes an anthropic niche in
which at least two specific populations of the same species may
coexist. As demonstrated by several phylogenomic studies, flor
(velum) yeast and wine yeast are two closely related groups of
yeasts with distinct genetic characteristics (Coi et al., 2017; Eldarov
et al., 2018; Peltier et al., 2018b). These divergent populations are
characterized by genomic signatures in many genes involved in the
biofilm formation (FLO11), metal transport (FRE-FIT region and
ZFR1), sugar uptake (HXT3 and FSY1), and signaling pathways
(RAG2 and SFL1) (Fidalgo et al., 2006; Coi et al., 2017; David-
Vaizant and Alexandre, 2018; Eldarov et al., 2018; Legras et al.,
2018). Interestingly, flor and wine yeast populations allowed the
emergence of a specific “Champagne” cluster of wine yeasts
resulting from their hybridization. Several quantitative genetics
studies demonstrated that the segregation of flor and wine alleles
in a F1-hybrid progeny clearly impact the phenotypic properties
of yeast during alcoholic fermentation. Flor-specific alleles were
reported to control asparagine uptake (ASP1) (Marullo et al., 2007),
fermentation kinetics and pH resistance (PMA1) (Martí-Raga et al.,
2017), glycerol production and malic acid consumption (PNC1,
SDH2, MAE1, PYK2, MSB2, and PMA1) (Peltier et al., 2021). In
addition to this genetic evidence, proteomics and transcriptomic
analyses depicted the transition of metabolic pathways occurring
during the velum formation such as stress resistance, oxidative
carbon metabolism, nutrient uptake, protein maintenance, DNA
reparation, and cell wall biogenesis (Moreno-García et al., 2015a,b).
Complementary information on flor yeasts has been compiled in
dedicated reviews (Alexandre, 2013; Legras et al., 2016).

However, despite the numerous studies focusing on the specific
characteristics of flor yeast, comparative physiological studies of flor
and wine yeast are surprisingly rare (Esteve-Zarzoso et al., 2001;
Nidelet et al., 2016; Legras et al., 2018). A metabolic survey of a
large panel of Saccharomyces strains recently revealed that the final
concentrations of malic and succinic acids may be significantly
different between flor and wine yeast populations (Vion et al.,
2023). These organic acids play a central role in the TCA cycles
and would be markers of divergent metabolic strategies between
flor and wine groups. In order to better characterize these possible
metabolic features, we aimed to quantify the intracellular content
of the most abundant metabolites of the yeast. The quantification
of intracellular metabolites is particularly challenging since many
environmental disturbances can affect their concentration due
to rapid degradation or enzymatic conversion, as reviewed by
Pinu et al. (2017). Yeast metabolome has been particularly well
investigated and several protocols have been compared for their
selectivity regarding different chemical families (Villas-Bôas et al.,
2005; Canelas et al., 2009; Kim et al., 2013). According to Villas-
Bôas et al. (2005), methanol extraction is the most universal
and convenient method since this solvent is able to permeabilize
yeast membrane, act as a quenching agent and extract a large
variety of intracellular metabolites. Endo-metabolite extraction
has been used to investigate the variability of endo-metabolites
belonging to different pathways such as amino acids biosynthesis
(Hans et al., 2001) and diauxic shift (Zampar et al., 2013). This
approach is also useful for understanding the effect of gene
expression (Lourenço et al., 2013) and the assimilatory routes
of carbon sources (Ogawa et al., 2021). Once extracted, such
metabolites can be quantified using two main analytical chemistry
approaches, NMR or mass spectrometry (Marshall and Powers,
2017).

NMR presents the advantage of being readily quantitative
and requires minimal sample preparation, without the use
of preliminary separation techniques. Several studies have
demonstrated its relevance for studying yeast metabolome
(Lourenço et al., 2013; Ogawa et al., 2021). In recent work, we
used basic 1H-NMR-based analysis to quantify extracellular
metabolites during alcoholic fermentation. In the present study, we
implemented this method to compare the endo-metabolome of a
restricted number of flor and wine strains for the first time.

2. Materials and methods

2.1. Yeast strains used and culture
methods

The strains of S. cerevisiae used are listed in Supplementary
Table 1. Seven of them belong to the flor group while seven others
have been clearly characterized as wine yeasts. Three other strains,
SB, FMGS_889, and AC1_191, have a mixed genome related to
flor and wine yeasts. The ISVV-2D strain resulted from a cross
between the haploid strains CLIB 1770 and CLIB 1769 delivered
by the CIRM collection and derived from the flor strain 2D (Coi
et al., 2016). S. cerevisiae strains were propagated on YPD 2%
(1% peptone, 1% yeast extract, and 2% glucose) at 30◦C in both
liquid and plate cultures (2% agar). Long-term storage at −80◦C
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was achieved by adding one volume of glycerol to YPD overnight
cultures.

2.2. Alcoholic fermentation assays

2.2.1. Grape juices
The grape juice used for the alcoholic fermentation was a

Sauvignon Blanc 2021 (SB21). It was collected in the Bordeaux
area and stored at −20◦C. Its final composition in terms
of fermenting sugar, malic acid content and pH is listed in
Supplementary Table 2.

2.2.2. Alcoholic fermentation monitoring
Small-volume alcoholic fermentations were carried out in

screwed vials according to the general procedure described in
Peltier et al. (2018a). Twenty milliliter-screwed vials (Thermo
Fisher Scientific, Bordeaux, France) were filled with 12 ml of
grape must and were tightly closed with screw caps (Agilent
Technologies, hdsp cap 18 mm PTFE/il 100 pk, Les Ulis, France)
and perforated with hypodermic needles (G26-0.45 × 13 mm,
Terumo, Shibuya, Tokyo, Japan) to release the CO2. The vessel
was inoculated by 2.106 viable cell.ml−1 precultured in liquid
media, 50% filtered must, 50% sterile H2O for 24 h. Cell
concentration and viability was estimated by flow cytometry
(see below). Fermentation took place at 24◦C in shaken vials
using an orbital shaker (SSL1, Stuart, Vernon Hills, IL, USA)
at 175 rpm. Fermentation kinetics was estimated by manually
monitoring (1–2 times per day) the weight loss caused by CO2
release using a precision balance with automatic weight recording
(LabX system, Mettler Toledo, Viroflay, France). The amount of
CO2 released every hour was modeled from the raw data using
non-parametric loess polynomial regression (Peltier et al., 2018a).
The computed data allows the estimation of the time necessary
to reach the maximum CO2 produced as well as the lag phase.
The lag phase was determined as the time necessary to reach
the first 2 g/L of CO2 produced in accordance with the study
by Zimmer et al. (2014). The fermentation rate (dCO2/dt) was
computed by calculating locally the rate of CO2 produced hour
per hour from the loess dataset. The loess data were also used
for calculating the average speed between 15 and 50% of the
fermentation (V15_50) considering that on average the trains
produced 93 g/L of CO2. The exact difference of CO2 between
the first value with a CO2 value higher than 13.95 g/L and the
first point of with a CO2 value higher than 46.59 g/L. Those data
were used to calculate the average speed between 15 and 50%
of the fermentation (V15_50). The specific fermentation speed
between 15 and 50% (sV15_50) of the fermentation was obtained by
dividing V15_50 by the viable biomass collected during the growth
phase.

2.3. Biomass collection

Some vials were set aside at 10 and 50% of the maximal
CO2 produced for the extraction of intracellular metabolites. Five
milliliters were taken per vial for quenching and metabolites
extraction. Measurements of cell density, viability and cell size

were taken by flow cytometry for each sample (CytoFlex, Beckman
Coulter apparatus). Enzymatic assays of malic acid, acetic acid,
glycerol, succinic acid, and residual sugars were performed on
all samples. Figure 1 summarizes the experimental steps from
fermentations to NMR analysis.

2.3.1. Flow cytometry analyses
Flow cytometry measures were taken for each biomass sample

and to adjust the cell concentration during inoculation using a
CytoFlex (Beckman Coulter, Villepinte, France). Twenty microliter
of homogenized culture with 3 µM propidium iodide (PI) were
diluted in 1 ml final McIlvaine buffer (sodium phosphate dibasic 0.2
M, citric acid 0.1 M) and was analyzed by flow cytometry (Zimmer
et al., 2014). A total of 50,000 events were recorded per experiment.
The viability of cells was estimated using 488 nm excitation, with
a 610/20 nm long bandpass filter to detect PI fluorescence (dead
cells). The Mean Forward-Scatter parameter (Mean FSC) was used
to estimate the size of the cells.

The ploidy of the strains was controlled using the method
described by Todd et al. (2018). This involved collecting the
yeast cells during their growth phase, permeabilizing them with
ethanol 70% for 4 days at 4◦C and treating them with RNAse
A in 50 mM of Sodium citrate buffer, 50 mM, pH = 8.1. The
DNA content was quantified using PI diluted in the sodium citrate
buffer. The ploidy level was estimated by measuring the intensity
of the 630 nm detector and using haploid, diploid, and tetraploid
strains as controls, CLIB 1770, GN, and Hirondelle, respectively as
previously described by Albertin et al. (2009).

2.3.2. Intracellular yeast metabolites extraction
and sample preparation

A sample of 5 ml of fermenting grape juice was taken from
the vials and quickly quenched in cold pure methanol with a (1:5)
ratio sample/methanol in 35-ml Teflon centrifuge tubes with screw
closures (Nalgene, Thermo Fisher Scientific), which were used to
prevent metabolite leaks during centrifugation (Villas-Bôas et al.,
2005). The tubes were centrifuged at 4,000 g for 5 min to remove
the medium. The pellet was resuspended in 1 ml of cold pure
methanol and placed at−80◦C with agitation for 30 min. The tubes
were centrifuged at 10,000 g for 5 min and the supernatant was
stored in a 1.8 ml microtube. The pellet was washed again with
0.5 ml of cold pure methanol, placed at −80◦C with agitation for
30 min. The tubes were then centrifuged at 10,000 g for 5 min
and the supernatant was collected in the same microtube as before.
Methanol was evaporated with a SpeedVac vacuum (RapidVap,
Labconco, Kansas City, MO, USA) at 32◦C and 25% agitation for
4 h. The microtubes were stored at−80◦C until NMR analysis.

2.3.3. Metabolites analysis by 1H-NMR
2.3.3.1. Sample preparation

Intracellular metabolites were resuspended in 660 µl of
phosphate buffer (Na2HPO4, 0.1 M, pH 7.0) in 90% H2O, 10%
D2O with 1,3-dimethylamylamine (DMMA) 1 mM as an internal
standard to achieve a quantitative experiment and TSP to set the
spectrum at 0 ppm. The resulting solution was placed into the NMR
tube. Since the majority of the intracellular compounds quantified
can be found in the extracellular media, the efficiency of the
extraction was verified by adding 5 g/L of galactose to the samples
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FIGURE 1

Schematic representation of the experimental steps from fermentation to 1H-NMR analysis.

prior to methanol quenching. This sugar is not present in grape
juices or in S. cerevisiae metabolome. Detection of its presence
would therefore be indicative of extracellular contamination. As
shown in Supplementary Figure 1, less than 0.1% of galactose
added (5 g/L) was found in intracellular extracts supplemented
with galactose. To ensure that the addition of methanol was
able to extract a high percentage of intracellular metabolites, the
supernatant containing extracellular metabolites was discarded and
the cell pellets were again treated with 1 ml of cold methanol.
The percentage of recovery of the first extraction is given in
Supplementary Table 3. On average, the percentage of recovery of
a single extraction is higher than 85%, except for ethanol and citric
acid that are poorly extracted. The entire experimental setup was
carried out in accordance with protocols developed by others and
proved the efficiency of the cold methanol extraction.

2.3.3.2. NMR spectra acquisition

Spectra were recorded on a 600 MHz Avance III NMR
spectrometer (Brucker, Wissembourg, France) operating at
600.25 MHz, equipped with a TXI 5 mm probe with z gradient
coils. The measurement of intracellular compounds was performed
at 303 K using TopSpin 4.0.8 software (Brucker, Wissembourg,
France) and the number of scans was set at 256, resulting in an
analysis time of 35 min per sample. The acquisition parameters
were set as follows: Free Induction Decay (FID) was collected
into a Time Domain (TD) of 64 K data points, with a Spectral
Width (SW) of 16 ppm, an acquisition time (AQ) of 3.40 s and a
relaxation delay of 5 s per scan. Then 90◦ pulse calibration was
carried out for each sample automatically, and the shimming was
set manually in gs mode for each spectrum in order to obtain the
finest possible line width (lower than 1 Hz). Water suppression
was achieved during the Relaxation Delay (RD) using a shape
pulse with a multiple-band selective solvent suppression (20 Hz
centered on each water signal), with a power level for presentation
of 50.37 dB and a shaped pulse for presaturation of 34.83 dB. The
FIDs were multiplied by an exponential function corresponding to
a 0.3 Hz line-broadening factor prior to Fourier transformation.
A manual phase followed by automatic baseline corrections were

applied to the resulting spectrum, which was aligned to zero
using the TSP signal.

Intracellular compounds were identified based on previous
studies (Puig-Castellví et al., 2015), the use of available databases as
YMDB (Jewison et al., 2012) and dosed additions made it possible
to identify some other compounds. Compounds were quantified
by targeted analysis, by the global spectral deconvolution method
(GSD) (Cobas et al., 2011), using the simple mixture analysis (SMA)
plugin of MestReNova 12.0 software (Mestrelab Research, Santiago
de Compostela, Spain).

2.4. Enzymatic assay

For each sample taken during the alcoholic fermentation and at
the end, a volume of 800 µl was manually transferred in Micronics
tubes (Novazine, Lyon, France, ref: MP32033L) and stored at
−20◦C. Concentrations of the following organic metabolites were
measured: acetic acid, glycerol, malic acid, and succinic acid using
the respective enzymatic kits: K-ACETGK, K-GCROLGK, K-MAL-
116A, and K-SUCC (Megazyme, Bray, Ireland) according to the
manufacturer’s instructions. Glucose and fructose were assayed at
the end of alcoholic fermentation using the enzymatic method
described by Stitt et al. (1989). All the enzymatic assays were
performed by a robotic platform at the Bordeaux metabolomics
facilities.1

2.5. Statistical analyses

All the statistical and graphical analyses were carried out using
R software (R Development Core Team, 2016) and plots were
generated using the base or ggplot2 packages. All the raw data are
given on the Supplementary Table 4.

1 http://metabolome.cgfb.u-bordeaux.fr/
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2.5.1. Multivariate analyses
The heatmap was generated using the ComplexHeatmap

package. Data were scaled and centered to compare variables that
did not have the same order of magnitude.

2.5.2. Analysis of variance
Analyses of variance (ANOVA) were carried out using the

car package. The phenotypic variability of the 21 intracellular
metabolites was estimated by a linear model (LM1) according to
the formula (1):

yijk = timei + groupj + strain
(
group

)
jk + inter2

ijk + eijkl (1)

where y is the value of all the variables for a fermentation time
i (i = 1, 2), j (j = 1, 2) for groups of yeast strains fermented
from grape juice. Each group is composed of k strains. The factor
strain is nested in the factor group and k varies between 1:7
and 1:8 according to the number of strains per group. The term
inter2

ijk represents the first order interaction of each factor and
εijkl the residual. When necessary, non-parametric comparison of
samples were carried out using the Wilcoxon–Mann–Whitney or
Kruskal test with corrected p-values (Benjamini–Hochberg method
α = 0.05).

3. Results and discussion

3.1. Experimental design

In this study, a 1H-NMR method was developed to quantify the
main intracellular metabolites of fermenting yeasts during alcoholic
fermentation. We focused our efforts on the characterization of flor
and wine yeasts that constitute two distinct S. cerevisiae populations
(Coi et al., 2017; Peter et al., 2018) and share similar ecological
niches. As recently demonstrated, wines made by these two groups
may have statistical differences for several organic compounds
including malic, acetic, and succinic acids (Vion et al., 2023). The
genetic material used is listed in Supplementary Table 1. Seven
flor strains were compared to eight wine strains. In addition, two
control strains (FMGS_889 and AC1_191) were included in the
experiment. These strains were selected for their opposed malic
acid metabolism as previously reported (Vion et al., 2021, 2022). As
specified in the methods, yeast cells were collected during alcoholic
fermentation and immediately quenched using cold methanol.
Samples were taken at two fermentation moments: 10 and 50%
of CO2. According to previous works, the growth of yeast strains
during alcoholic fermentation occurs up to 15–20 g/L of CO2
production (Bely et al., 1990; Marullo et al., 2009; Albertin et al.,
2011; Nidelet et al., 2016). The samples taken at 10% of CO2
were therefore considered to correspond to the growth phase while
samples taken at 50% of CO2 were considered to correspond to the
stationary phase.

Just before sampling, the concentration and the cell size of
yeasts were estimated by flow cytometry. To ensure the reliability
of the quantification, five biological repetitions were carried out
per modality. In addition, a small volume of fermenting juice was
frozen for enzymatic metabolic analyses. The experimental design
of this work is shown in Figure 1.

3.2. Fermentation and yeast growth
monitoring

The average fermentation rate (dCO2/dt) of the flor and
wine groups in function of the CO2 produced are shown in
Figure 2A. The fermentation kinetics of each individual strain and
the CO2 production of each culture are provided in Supplementary
Figure 2 and Supplementary Table 4, respectively. An important
phenotypic variability was observed within groups for the kinetic
parameters computed (lag phase, time to reach the maximal CO2,
and V15_50). Thus, those traits that reflect the fermentation
efficiency at the culture level are not statistically different between
flor and wine yeast in our conditions (Kruskal test, α = 0.05).
A similar conclusion has been done in a recent study using other
natural grape juice with a subset of the strains used in this study
(Vion et al., 2023).

The quantification of cell growth and viability by flow
cytometry at two different time courses of alcoholic fermentation
allowed the investigation of possible difference in life-history
traits between flor and wine populations. The average viability
of fermenting yeast in the growth and the stationary phases are
92 and 81%, respectively. These traits were not statistically
different between flor and wine populations. In contrast,
the cell concentration reached during the stationary phase
is significantly different between flor and wine yeasts, with
average values of 6.15 × 107 and 8.6 × 107 (Wilcoxon test,
α = 0.05) (Figure 2B). The FSC parameter of the flow cytometer
was used as a proxy for determining the cell size of both
populations. Interestingly, the evolution of cell size between
the flor and wine groups was statistically different. Wine yeasts
were smaller than flor yeasts during the growth phase, but
they became larger during the stationary phase (Figure 2C), as
confirmed by a strong effect of interaction between group and
sampling time (two-way ANOVA 21.8% of the variance explained,
p-value = 0.009).

Since the cell size can be influenced by the ploidy level,
we quantified the DNA content of the 15 strains used in this
experiment using the method described by Todd et al. (2018).
Except for the ISVV-2D strain, all the strains used in this study
were found to be diploids, as shown in Supplementary Figure 3.
Strain ISVV-2D was obtained by crossing two haploids derivatives
of the strain 2D purchased at the CIRM collection; these strains
were haploids (with a correct matting type) and were mixed to
obtain a diploid clone named ISVV-2D. Intriguingly, the resulting
hybrid showed an unexpected ploidy (4n) with G1 and G2 peak
intensity close to the tetraploid control (Hirondelle).

3.3. Development and optimization of a
methodology to extract intracellular
metabolites from S. cerevisiae and
1H-NMR analysis

The typical 1H-NMR spectrum after water suppression is
presented in Figure 3. The signals at 0.00 and 1.26 ppm correspond
to TSP and DMMA respectively; other signals correspond to
intracellular metabolites. The 1H-NMR spectra were dominated by
sugar content and organic acids followed by some amino acids.
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FIGURE 2

Biomass analysis of yeast cells at the sampling time. (A) The time course CO2 release of the flor and wine strains. Dot lines represent the two
sampling points (exponential and stationary phases, 10 and 50 g/L released CO2, respectively). (B) The cell concentrations at stationary phase
(cell/ml) of flor and wine yeast were compared (Wilcoxon test, α = 0.05). (C) The average yeast size (FSC unit) of flor and wine yeast did not evolve in
the same way according to the sampling point (ANOVA test, interaction effect α = 0.01).

The chemical shifts and coupling constant used for identification
and absolute quantification of 21 organic compounds are listed
in Table 1. The abundance of each compound was normalized by
the number of cells per milliliter present in the sample. For both
sampling times, the average abundance and CV of each compound
and phase are indicated in Table 1. The average abundance of
each strain at each sampling point is provided in Supplementary
Figure 4.

These analytical results demonstrated that the experimental
procedure developed can efficiently extract and quantify
intracellular metabolites of fermenting S. cerevisiae. The extraction
methodology was adapted from previous intracellular metabolite
extraction protocols. According to Villas-Bôas et al. (2005),
cold methanol acts as a non-selective solvent and quenching
agent allowing the efficient extraction of different chemical
families’ intracellular metabolites. The addition of galactose in the
fermentation medium and its absence in the intracellular extracts
confirms the efficiency of our protocol (Supplementary Figure 1).
Extracted metabolites were then identified and quantified by
1H-NMR using the procedures applied in a previous study (Vion
et al., 2023).

In order to compare biological samples in the same
physiological state, yeast cells were collected according to
their progress in the fermentation (10 and 50% of the total CO2
expected) during the alcoholic fermentation. These sampling
points corresponded to the growth and stationary phases since
they occurred before and after the peak of CO2 production rate
(Figure 2A). The time monitoring of these metabolites may provide
information about the evolution of the physiological status of the
cells. For example, trehalose is a typical quiescence marker and a
key storage carbohydrate (Gray et al., 2004). The abundance of this
compound is 2.2-fold higher during the stationary phase in our
experiment (Table 1) (Wilcoxon test, p-value = 1.14e−08 < 0.05).
The detection of this accumulation confirmed the overall
physiological changes occurring in fermenting yeasts.

Interestingly, a similar approach was applied to characterize
the genetic and environmental factors modulating the intracellular
content of S. cerevisiae in synthetic media cultures (Airoldi et al.,
2015). Compared to this former study, we quantified additional
intracellular compounds such as ethanol, 2,3-butanediol, and
proline. The detection of additional metabolites would require
a higher number of scans and more concentrated biological
materials. The analytical parameters are already 256 scans for an
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FIGURE 3

Annotated typical 1H-NMR spectrum of intracellular yeasts’ metabolites after water suppression (1D-NOESY-experiment).

analysis time of 35 min per sample. In addition, the evolution of
these intracellular compounds was achieved for a larger number of
strains (17) compared to Airoldi et al. (only two). By increasing
the number of strains, we aim to explore the intraspecific
variability of intracellular metabolite abundance that has been
poorly investigated so far.

3.4. Wine and flor yeast showed life
history traits and metabolic trade-offs

The relative abundance of the 21 intracellular metabolites
quantified by 1H-NMR was represented by a heatmap according
to populations and sampling times (Figure 4). Interestingly, the
sum of the abundance of each metabolite quantified is statistically
different between flor and wine populations during the growth
phase. Strains belonging to the wine population displayed a lower
pool of intracellular metabolites than strains belonging to the flor
group (Wilcoxon test, p-value = 0.05, Figure 4A). In contrast,
no significant differences in the sum of abundance were observed
between the two populations during the stationary phase. This
surprising finding could reflect a real difference of metabolite
concentration inside the cell, or it could be due to biases in
abundance normalization. As is routinely done, we normalized
NMR intensity by the number of viable cells per milliliter. We
alternatively normalized data by the total volume of fermenting
yeast that is the product of the cell volume and the number of
cells. In both cases, the cumulated metabolite load was significantly
higher for the flor group, revealing unsuspected variations between

S. cerevisiae populations during the growth phase of alcoholic
fermentation.

Previous studies reported strong correlations between the
specific glycolytic flux, the number of fermenting cells and their
average size among yeast strains of different origins. These
phenotypic trade-offs were reported at different sugar level
concentrations (Spor et al., 2008, 2009) and under different
alcoholic fermentation conditions (Albertin et al., 2011). The
correlation between these life-history traits defined two styles of
growth strategies named “ants” and “grasshoppers.” This trade-off
reflects the energetic impossibility of making big and numerous
cells at the same time in a context of limited nutrient resources.
Wine yeasts have been reported to belong to the “ants” group, since
they are small, numerous, and ferment quickly at their populational
level (Albertin et al., 2011).

The quantification of the overall metabolite content of
fermenting cells provides the opportunity to test the impact of
this new metabolic parameter. First, we confirmed the negative
relationship between the cell size and the maximum biotic capacity
previously reported by Spor et al. (2008; Figure 5A). In addition,
a weak yet highly significant positive correlation (rho = 0.49,
p-value = 0.0002) was found between the overall metabolite load
and the cell size during the growth phase (Figure 5B). Broadly,
the biggest cells are those containing the highest intracellular
metabolite specific concentration. This trend was only observed
during the growth phase when the variation of the cell size between
the strains was particularly high (Supplementary Figure 5).
Finally, we tested the correlation between the overall metabolite
load and the specific glycolytic flux measured between 15 and
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TABLE 1 Chemical shifts and coupling constants used for compounds identification.

Compound 1 1 H (multiplicity, J in Hz,
assignment)

Growth phase (10% FA) Stationary phase (50% FA)

CV (%) Abundance
(mmol/107

cells)

CV (%) Abundance
(mmol/107

cells)

Acetic acid 1.90 (s, CH3) 38.25 1.12× 10−04 33.85 1.76× 10−04

Alanine 1.50 (d, 7.2, CH3) 75.92 8.23× 10−05 38.20 1.34× 10−04

2,3-Butanediol 1.13 (d, 6.2, 2CH3), 3.61 (m, 2CH) 32.73 4.97× 10−05 31.43 2.88× 10−04

Citric acid 2.54 (d, 15.6, CH2), 2.66 (d, 15.6, CH2) 27.97 5.45× 10−04 26.40 5.24× 10−04

Ethanol 1.17 (t, 7.2, CH3) 25.32 8.72× 10−04 38.75 1.63× 10−03

Fructose 3.97 (m, CH), 4.01 (dd, 12.8, 1.0 CH2), 4.09 (m,
2CH)

22.72 7.73× 10−02 23.59 5.11× 10−02

Glucose 4.65 (d, 7.9, CH), 5.23 (d, 3.6, CH) 22.36 6.4× 10−02 24.08 2.69× 10−02

Glycerol 3.55 (dd, 11.8 and 6.5, CH2), 3.64 (dd, CH2) 25.70 3.44× 10−03 24.61 5.39× 10−03

Isoleucine 0.93 (t, 7.4, CH3), 1,01 (d, 7.0, CH3), 1.24 (m, CH2),
1.45 (m, CH2), 1.97 (m, CH), 3.66 (d, 3.9, CH)

97.20 1.12× 10−08 54.58 1.83× 10−06

Leucine 0.96 (t, 2CH3), 1.70 (m, CH3) 63.17 5.02× 10−06 129.30 6.75× 10−06

Lysine 2,12 (dtd, CH), 3,01 (t, 7.05, CH2) 33.74 1.95× 10−04 23.79 2.71× 10−04

Malic acid 2.36 (dd, 16.3 and 7.0, CH), 2.67 (dd, 16.3 and 4.5,
CH), 4.30 (dd, CH)

24.19 6.02× 10−03 23.05 5.34× 10−03

Proline 2.02 (m, CH2), 2.06 (m, CH) 29.40 8.38× 10−04 44.33 1.13× 10−03

Pyruvic acid 2.36 (s, CH3) 45.39 8.82× 10−05 29.57 1.44× 10−04

Serine 3.96 (m, CH2) 27.09 2.37× 10−03 23.69 1.64× 10−03

Succinic acid 2.56 (s, 2CH2) 24.42 2.70× 10−04 26.71 9.71× 10−04

Tartaric acid 4.47 (s, 2CH) 16.35 1.25× 10−03 22.51 1.11× 10−03

Threonine 1.32 (d, 6.7, CH3), 2.58 (d, 4.9, CH), 4.24 (m, CH) 25.15 1.01× 10−04 35.18 2.71× 10−04

Trehalose 5.2 (d, 3.8, CH2) 47.50 3.47× 10−03 35.91 7.71× 10−03

Tyrosine 3.02 (dd, CH2), 3.17 (dd, CH2), 3.92 (dd, CH), 6.88
(d, 8.4, 2CH), 7.17 (m, 8.6, 2CH)

27.39 1.30× 10−06 32.40 4.10× 10−05

Valine 0.99 (d, 7.3, CH3), 1.04 (d, 7.3, CH3), 2.28 (m, CH) 40.77 1.04× 10−05 69.01 1.46× 10−05

The signal chosen for quantification is in bold. Abundance (normalized by the cell number) and coefficients of variation (CV) of intracellular compounds are indicated for both sampling time.

50% of CO2 released (sV15_50) (Figure 5C). There is a strong
and very significative positive correlation between the specific
glycolytic flux and the overall metabolite concentration observed
in both populations. Strains with a high metabolic load have a
higher specific CO2 production rate and could be considered as
“grasshoppers.”

In addition to the broad differences found between flor and
wine groups, important strain-specific variations were found.
Interestingly, strain SB had the highest relative abundance of
intracellular metabolites within the wine population and had the
biggest size of the wine yeasts in growth phase. This might be
explained by its mosaic origin between flor and wine yeasts (Peltier
et al., 2021). In contrast, the flor yeast 36.2J (S4V) exhibited
a low relative abundance of intracellular metabolites, like most
strains of the wine group. Other yeast strains displayed distinctive
metabolic profiles, such as the flor yeast ISVV-2D, which had a
much higher content of intracellular metabolites in the stationary
phase compared to all other strains. Interestingly, this laboratory-
made strain was shown to be tetraploid, which could impact its
intracellular metabolite levels. Surprisingly, its average cell size

is not particularly higher than that of other diploids flor strains,
as shown in Supplementary Figure 5. This important strain
variability suggested that the cumulated load of metabolites is a
complex parameter that remains to be investigated.

3.5. The variability of metabolites
abundance is mostly characterized by
complex genetic × sampling time
interactions

A nested analysis of variance was applied to deeply investigate
the differences in metabolite content between populations and
sampling phases. This analysis estimated the effects of the
fermentation phase (Time), genetic factors and their possible
interactions. The genetic contribution effect was decomposed in
population and strain within population effects as detailed in linear
model 2 (see section “2. Materials and methods”). The contribution
of each factor on 17/21 quantitative traits is summarized in
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FIGURE 4

(A) Boxplots representing the distribution of the sum of the abundance of each metabolite quantified (cumulated abundance). A Wilcoxon test was
applied between the flor and wine populations and the resulting p-values of the test were annotated on the plot. (B) Heatmap of the intracellular
metabolites’ concentration per strain. Both sampling times are represented (growth phase and stationary phase). Strains are clustered and colored
by population. Concentration values are normalized and expressed as low, medium, or high concentration of metabolites. The control strains
AC1_191 and FMGS_889 were also added to the heatmap.

Figure 6. A Levene test (α = 0.05) was performed to test the
variance homogeneity and the four traits were excluded from the
analysis.

Some compounds such as 2,3-butanediol, tyrosine and
succinic acid are greatly impacted by the sampling moment,
which explained almost 50% of the variance for 2,3-butanediol
and tyrosine. Intracellular 2,3-butanediol and tyrosine globally
increased four times between growth and stationary phases,
while succinic acid was three times more concentrated inside
the cells at stationary phase. The accumulation of 2,3-butanediol
by yeast cells during stationary phase is shown in Figure 7A.
This compound is the end metabolite of the degradation of

acetoin, a minor by-product of alcoholic fermentation. Besides
these few metabolites, most of the compounds showed quite
steady intracellular concentration between the two phases. This
phenomenon highlighted that yeast cells are able to maintain
relative intracellular homeostasis of their metabolites during the
alcoholic fermentation process. This observation also implies
that the concentrations measured were not contaminated by
the extracellular medium. For example, extracellular fructose is
supposed to be drastically consumed between the growth and
stationary phases due to the ongoing alcoholic fermentation
(40 g/L of CO2 produced). However, the intracellular concentration
of fructose is quite similar according to the sampling phases
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FIGURE 5

Each dot represents a biomass sample that was quantified by flow cytometry before to be submitted to metabolite extraction. The mean FSC
parameter is a proxy of the cell size. (A) Correlation between the cell size and the cumulated concentration of intracellular metabolites during the
growth phase. (B) Correlation between the cell size and the total cell concentration during the growth phase. (C) Correlation between the
cumulated concentration of intracellular metabolites and the specific glycolytic flux (per cell) during the growth phase. For each panel correlations
within variables were tested using the non-parametric correlation test of Spearman.

FIGURE 6

Bar graphs indicating the part of variance explained by the different factors of the ANOVA. The letters T and G represent the time of fermentation
and the genetic factors, respectively. The nested ANOVA applied allows to evaluate the effect of the genetic group (population) and the effect of
strain within each population (Strain). GxT represents the interaction between genetic and time and was decomposed in two nested factors
Time:Population and Time:Strain in Population. Gray tons indicate non-significative effect of the factors.

(Figure 7B). Interestingly, most of the metabolic compounds
(14/17) assayed are strongly impacted by the genetic component,
which represented more than 25% of the total variance. Although
the population origin was always significative, the decomposition
of the population and strain variances indicated a strong strain
variability. In addition, an important effect of genetic per time

(GxT) interaction was observed for several compounds. This effect
ranged between 8 and 31% of the total variance and highlighted
the difficulty of establishing a clear pattern of intracellular
metabolic content between the flor and wine populations, as
illustrated for fructose, glycerol, and malic acid (Figures 7B–D,
respectively).
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FIGURE 7

(A) Evolution of intracellular 2,3-butanediol content between growth phase (GP) and stationary phase (SP) for the 15 strains. Strains are colored
according to their population origin. The bold line represents the average value of the evolution for each population. (B) Evolution of intracellular
glycerol content between GP and SP. (C) Evolution of intracellular fructose between GP and SP. (D) Evolution of intracellular malic acid between GP
and SP.

Population genomic studies have revealed that the species
S. cerevisiae is composed of several distinct populations that are
characterized by specific genetic and metabolic features. Wine
and flor yeasts constitute two distinct groups of strains (Coi
et al., 2017). Although they share the same ecological niche (wine
environment), they developed alternative metabolic strategies for
surviving. The first produces ethanol from grape juice while the
second consumes ethanol from wine by forming a velum (Legras
et al., 2016). Surprisingly few studies have compared the phenotypic
properties of wine and flor yeast during alcoholic fermentation
(Esteve-Zarzoso et al., 2001). In addition, a comparative study
of diversity of metabolic networks within numerous S. cerevisiae
strains encompasses several wine and flor strains. The prediction
of metabolic fluxes by applying a flux balance analysis suggested
that flor yeast was characterized by a high production and output
of acetate, which contrasted with the behavior of other groups
such as bread strains (Nidelet et al., 2016). This discrepancy
can be explained by a high variability of accessory metabolic
fluxes such as the Pentose Phosphate Pathway. More recently,
a metabolomic study identified unsuspected differences in the
extracellular composition of wines produced by flor and wine
strains. Among others, the content of malic acid at the end of
alcoholic fermentation clearly discriminated the two groups, with
the flor group being a stronger consumer of this organic acid (Vion
et al., 2023). Since flor and wine yeast have evolved under different

energy metabolisms (fermentation or respiration) we speculated
that they might carry intracellular metabolic hallmarks of these
very different selective pressures. The previous section highlighted
that the cumulated content of the intracellular metabolites is
significantly different between these two groups during the first
stages of alcoholic fermentation. Taken individually, none of the
metabolites are able to clearly discriminate those groups. Among
the metabolites identified by our nested ANOVA as having the
strongest impacts, including glucose, fructose, malic acid and
citric acid, glycerol has a strong population effect accounting for
more than 20% of the total variance explained. However, the
strain variability effect within groups is always stronger, making it
impossible to define whether those metabolic compounds are group
specific.

3.6. Comparison of intracellular
metabolites abundance of two strains
showing opposed malic acid metabolism

The intracellular metabolic profile of the two control strains
(AC1_191 and FMGS_889) were compared in this last section.
These strains were selected for their strong discrepancy regarding
their malic acid metabolism, which is illustrated in Figure 8A.
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FIGURE 8

Extracellular malic acid (g/L) according to the fermentation phase. (A) A Wilcox test has been performed between AC1_191 and FMGS_889 strains
and the resulting p-value is displayed on the graphs. (B) A Wilcox test has been performed between flor and wine populations and the resulting
p-value is displayed on the graphs.

FIGURE 9

Concentrations of intracellular valine (A), pyruvic acid (B), alanine (C), and threonine (D) for the two control strains in stationary phase. A Wilcox test
has been performed between the two strains and the p-values are displayed on the plots.
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From the stationary phase sampling point, the extracellular malic
acid concentration between the two strains is significantly different
(difference of 1.23 g/L) and reached 2.4 g/L by the end of
alcoholic fermentation. These differences are much higher than
those observed between flor and wine groups that differ by only
0.15 g/L at the end of alcoholic fermentation (Figure 8B). The NMR
quantification method developed provided the opportunity to
investigate which intracellular compounds could reflect differences
in malic acid metabolism observed at the extracellular level.
Surprisingly, the various organic acids quantified showed very
similar concentrations between the two strains. Thus, regardless
of the malic acid consumption and/or production dynamics,
the intracellular concentrations of malic acid and other organic
acids (succinic, citric, and pyruvic) are quite steady (Figure 9A).
In contrast, the intracellular concentrations of valine, alanine,
and threonine measured at the stationary phase displayed a
statistical difference between the two strains (Figures 9B–D).
These amino acids are indirectly derived from pyruvic and alpha
ketoglutaric acid and might result from a difference in malic
acid assimilation. However, additional experiments will be needed
to establish a metabolic link between these compounds and the
malic consumption differences observed between AC1_191 and
FMGS_889.

4. Conclusion

In this work we developed a 1H-NMR protocol to quantify the
intracellular concentration of yeast biomass during the alcoholic
fermentation of natural grape juice. This protocol was applied to
study the phenotypic variability of the metabolic content of several
S. cerevisiae strains belonging to two distinct genetic populations
of the flor and the wine yeasts. The precise quantification of 21
metabolites at two time series provided the scientific community
with new results. First, the method applied allowed us to detect
significant differences between the strains, which demonstrated the
variability of the intracellular amounts of the main metabolites.
The cumulated concentration of these metabolites is significantly
different between the two groups of strains, at least during the
growth phase. This difference of abundance is also correlated
with life history traits such as average cell size. In addition, we
demonstrated that intracellular metabolic variability is governed by
the sampling time and the yeast strain with complex interactions
that prevent us from drawing simple physiological conclusions. For
instance, strains with a very different metabolic production of malic
acid are very similar in terms of the majority of their intracellular
metabolites. Despite these complex differences, the method and the
first results obtained reinforce the interest of this analytic tool for
studying the role of intracellular metabolite concentrations in the
physiology of the fermenting yeast S. cerevisiae.
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SUPPLEMENTARY FIGURE 1

NMR spectra showing both glucose and galactose signal in intracellular
extracts. The green spectrum has been obtained using the standard
extraction procedure with 1 ml cold methanol applied on cell pellet. The
red spectrum illustrates the amount of galactose recovered in the extract
when 5 g/L of galactose are added just before the quenching step. This
compound is not present in the media and constitute a proxy of
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extracellular metabolite contamination. As shown in the figure only 3.44 mg
of this compound was found in the intracellular extract. The blue spectrum
illustrates the additional amount of intracellular metabolites that could be
recovered by a second methanol extraction. For instance, more than 92%
of glucose are extracted by the first methanol extraction.

SUPPLEMENTARY FIGURE 2

(A) Average CO2 production over the time. The CO2 production was
estimated by following the weight loss and converted in g/L of CO2

released. Dots represent the average CO2 produced of four replicates and
was used for applying a loess fit represented by the colored line. The local
derivate of the loess fit dCO2/dt was calculated and locally smoothed by a
mobile mean (n = 11) allowing to get the fermentation rate that was plotted
again the time (B) and the CO2 produced (C). The vertical lines indicated
the sampling points at 10 and 50% of the alcoholic fermentation.

SUPPLEMENTARY FIGURE 3

Ploidy level of the 15 strains used in this work estimated by flow cytometry
analysis. The strains CLIB1770 and SBE are haploid and tetraploid and were
used as control of the ploidy level.

SUPPLEMENTARY FIGURE 4

Evolution of intracellular content of the 21 metabolites between growth
phase (GP) and stationary phase (SP) for the 17 strains. All concentrations
are expressed in mmol/107 cell.

SUPPLEMENTARY FIGURE 5

Each box plot represents the mean FSC parameter considered as a proxy of
the cell size for the 15 strains belonging to the flor and wine groups. The
quantification of cell size was shown for the growth and stationary phase
on panels (A,B), respectively.
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