Increased Expression of Two Multidrug Transporter-Like Genes Is Associated with Ethidium Bromide and Ciprofloxacin Resistance in *Mycoplasma hominis*

S. Raherison, P. Gonzalez, H. Renaudin, A. Charron, C. Bébéar, and C. M. Bébéar*

Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, Bordeaux Cedex, France

Received 6 April 2004/Returned for modification 11 July 2004/Accepted 11 September 2004

Two genes, *md1* and *md2*, coding for multidrug resistance ATP-binding cassette transporters were identified in *Mycoplasma hominis* PG21. Expression of these two genes, quantified by quantitative competitive reverse transcription-PCR, was significantly increased in ethidium bromide-resistant strains of *M. hominis* compared to that in *M. hominis* PG21.

Mycoplasma hominis is a cause of human urogenital tract infections for the treatment of which fluoroquinolones represent an efficient antimicrobial class. Three mechanisms of bacterial resistance to fluoroquinolones have been described, target-related mechanisms, by either alteration or protection, and active efflux (7). Active efflux of fluoroquinolones is mediated by endogenous multidrug resistance (MDR) efflux pumps, increased expression of which can develop an MDR phenotype (15). In *M. hominis*, resistance by target alteration has already been described in vivo (2) and in vitro (1). Furthermore, we recently reported an active efflux system, possibly an ATPbinding cassette (ABC)-type efflux pump, in ethidium bromide (EtBr)-selected strains of *M. hominis* showing an MDR phenotype with increased MICs of ciprofloxacin and EtBr (16).

Few bacterial ABC MDR efflux systems have been characterized; all are homologous to the known human P glycoprotein LmrA in *Lactobaccus lactis* (19), MsbA in *Escherichia coli* (3), HorA in *Lactobacillus brevis* (17), VcaM in *Vibrio cholerae* (8), and more recently the heterodimeric ABC transporter EfrAB in *Enterococcus faecalis* (10). Mycoplasmal genome sequencing revealed the presence of two adjacent ABC-type genes identified as putative MDR genes, *mg014* and *mg015* in *Mycoplasma genitalium* and *pmd1* and *msbA* in *Mycoplasma pneumoniae* (13, 18). To determine the genetic support of the ciprofloxacin and EtBr active efflux identified in *M. hominis*, we searched for homologous genes in the *M. hominis* genome.

A consensus primer, MD2-1 (5'-GGTCCTACAGGAACT GGAAAA-3'), located in the Walker A motif of the ATPbinding domain and a degenerated primer, MD2R (5'-ATAA TYTCHTCWTYWGTDGCAT-3'), located downstream of this motif just before the ABC signature were deduced from the alignment of MDR-like genes of *M. genitalium* (5) and *M. pneumoniae* (6). PCR amplification of the genomic DNA from the *M. hominis* PG21 reference strain with primers MD2-1 and MD2R led to a 224-bp DNA fragment showing homology with the *mg014* gene of *M. genitalium*. Two recombinant plasmids selected by colony hybridization with the radiolabeled 224-bp DNA fragment were obtained from two HindIII and XbaI genomic libraries of M. hominis PG21. Inserts of these two recombinant plasmids were sequenced by primer walking. The 10,616-bp DNA sequence obtained was shown to contain eight putative open reading frames, two of which, E and F, were assigned as MDR-like genes in M. hominis and named md1 and md2, respectively. Analysis of the upstream region of gene md1 revealed a putative promoter and a consensus Shine-Dalgarno sequence located upstream of the ATG start codon. The TAG stop codon of the *md1* gene is preceded by the ATG start codon of *md2*, and the two genes overlap by 8 nucleotides. A short stem-loop structure, followed by a run of T residues corresponding to a rho-independent transcription terminator frequently found in mollicutes (11), was found only downstream of the md2 gene stop codon. The predicted MD1 and MD2 proteins contained 607 and 625 amino acids, respectively, corresponding to calculated molecular masses of 68 and 70 kDa. Kyte-Doolittle hydropathy plots detected one hydrophilic carboxyl-terminal domain and one hydrophobic amino-terminal domain in both proteins. The hydrophobic domain contained six potential transmembrane segments (TMS) as described for LmrA in L. lactis (19), HorA in L. brevis (17), and other bacterial ABC MDR pumps (3, 8, 10). An ATP-binding domain was found in the carboxyl-terminal domain of both

TABLE 1. Percentages of identity and similarity between the MD1 and MD2 proteins of *M. hominis* and other ABC-type MDR transporters

		1		
Transporter	Organism	Identity similarity (%)		Reference
		MD1	MD2	Reference
MD1	M. hominis	100, 100	27.3, 68.3	This study
MD2	M. hominis	27.3, 68.3	100, 100	This study
EfrA	E. faecalis	29, 71.2	27.8, 67.8	12
EfrB	E. faecalis	24.2, 66.8	34.4, 72.8	12
HorA	L. brevis	13.9, 57.2	28, 67	17
LmrA	L. lactis	13.7, 56.9	26.6, 69.1	19
MsbA	E. coli	23.6, 65.9	29.1, 66.5	9
VceM	V. cholerae	21.8, 61.3	22.4, 62	8
MDR1N ^a	Homo sapiens	25.2, 68.3	26.9, 66.1	4
MDR1C ^a	Homo sapiens	23.8, 65.5	25.2, 67	4

^a MDR1C and MDR1N correspond to the carboxy-terminal and amino-terminal halves of the human P glycoprotein, respectively.

^{*} Corresponding author. Mailing address: Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France. Phone: (33) 5.57.57.16.25. Fax: (33) 5.56.93.29.40. E-mail: cecile.bebear@u-bordeaux2.fr.

	-	
MD1	I MFKLYKLMANKFKCLSFLTISLTLLQVVSFLVLPILLGQLTRLIGENAYLIQNNLSTNRP	60
MG014	MGLVLKEFNNKIRTALILAPFFTFAQIVIDLIIPSFLASAISVVFSIDKLKQDESGGKTI	60
EfrA	-MKLMWRYTMRYKKLLFADFICVFGFILIELGLPTILARMIDKG	43
LmrA	-MERGPQMANRIEGKAVDKTSIKHFVKLIRAAKPRYLFFVIGIVAGIIGTLIQ	52
	* *	
MD1	ITIEILRINFLCQSHQSALMHLGGYFALFLIIGTISAMCASLLASYVSQAGSKQIRSCLW	
MG014 EfrA	SVDFIGGANINFANVREAQIVLATTVILLALCGLFFGLISIYCASYVSANTSFLLRKKIF IIPRDMDYIYQQGIWMVVITISGVAMNILLGYFGARITTNIVRDIRDDLF	120
LmrA	LOVPKMVOPLINSFGHGVNGGKVALVIALYIGSAAVSAIAAIVLGIFGESVVKNLRTRVW	93 112
Balli	*	
	III	
MD1	KHLGELSQKDIEAFSNAKILTRFTIDISRIQTGLMSFLRMLIIGPFNLVLGLVFALLTNL	180
MG014	AKLMRITTPSHDHYGSSTLLVRLTNDVYLMEVIAFDFLRLIIRAPLLFIGGLVFAVTTNQ	
EfrA	EKIQTFSHSEYESIGVSSLITRTTNDAYQIMLFMGNILRLGFMTPVMFIASLYMVMRTSP	
LmrA	DKMIHLPVKYFDEVKTGEMSSRLANDTTQVKNLIANSIPQAFTSILLLVGSIIFMLQMQW * *	172
	IV	
MD1	QLSMIFLVVIPLLTLTMVISGVIWNPIQKKEQEMYDKINIESRENILGAKVIKSYNMEQI	240
MG014	DMSISLLITFPLILLVIGILNRKSIPLFKENQKSVDKINERVEEDVSGYKVIQSFNLHSF	
EfrA	SLGMYVLGALPFLLLAVVGIARLSEPLSKKQOKNLDGINGILRENLSGLRVIRAFVNEKF	
LmrA	RLTLAMIIAVPIVMLIMFPIMTFGQKIGWTRQDSLANFQGIASESLSEIRLVKSSNAEKQ	
	* * * *	
	Υ	
MD1	QWNKFQNVNKNWGTTTSKSWIIFTITFNFIEIISNIAIAFIVFFVGKQTSKENIADFSKS	
MG014	TNNKFKIANEGWKKNSTSSLFINSLNIPFTFFLSSLTIIIALLLVFQLDSSVSVDPLPQD	
EfrA	EESRFNKVNETYTKSSKSLFRLMAAAQPGFFFLFNIVMVLIIWSGTVQISHG	
LmrA	ASKKAENDVNALYKIGVKEAVFDGLMSPVMMLSMMLMIFGLLAYGIYLISTG	284
	VI	
MD1	IGNGVTFMNYVMTVTFGVVASSFTTFNIFKANVSSKRIFEIMNKKPDIAKIK-SDKL	356
MG014	AAIRPNIFAFFQYNFYIVLGFILTSLTMVNFNRSRVALGRIKDILSQPEIKTITN-KDQK	
EfrA	DLEVGNLIAFIEYIFHALFSFMLFASVFMMYPRAAVSASRIQEALDMEPAIREEEGVTET	
	DEBYONDINI IDITITUME DINDING VIPATI GANOADKI QEADDREFAI KEELGVIEI	220
LmrA	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD	
	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * *	
LmrA	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A	343
LmrA MD1	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT	343 416
LmrA MD1 MG014	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSLIANIIGGLYEP	343 416 419
LmrA MD1	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSLIANIIGGLYEP ATKGYLEFKNVTFAYPGHAESPVIRNVSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV	343 416 419 385
LmrA MD1 MG014 EfrA	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSLIANIIGGLYEP	343 416 419 385
LmrA MD1 MG014 EfrA	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSLIANIIGGLYEP ATKGYLEFKNVTFAYPGHAESPVIRNVSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP	343 416 419 385
LmrA MD1 MG014 EfrA LmrA MD1	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGFTGSGKSTLANIIGGLYEP ATKGYLEFKNVTFAYPGHAESPVIRNVSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP * * * * QDGLVTIDGHNIQEIDTDSLRKNISHVYQNPCLLSGTIKSNLLLAKPNAT	343 416 419 385 401 466
LmrA MD1 MG014 EfrA LmrA MD1 MG014	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ATKGYLEFKNVTFAYPGHAESPVIRNVSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP * * * * QDGLVTIDGHNIQEIDTDSLRKNISHVYQNPCLLSGTIKSNLLLAKPNAT NEGEILLGGEKIQSIDSLYLSEMIGIVFQQNILFKGTISSNIKIGIETRSDWKNQSDLQK	343 416 419 385 401 466 479
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ELLPTLEFKNVTFAYPGHAESPVIRNVSFKASPGETVAFIGSTGSGKSTIFSLLERFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP * * * * QDGLVTIDGHNIQEIDTDSLRKNISHVYQNPCLLSGTIKSNLLLAKPNAT NEGEILLGGEKIQSIDSLYLSEMIGIVFQQNILFKGTISSNIKIGIETRSDWKNQSDLQK SEGEILLDGVNVKEYKLSALRNKIGYIPQKALLFTGTIADNLRYGKEDAT	343 416 419 385 401 466 479 435
LmrA MD1 MG014 EfrA LmrA MD1 MG014	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ULGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSLIANIIGGLYEP ATKGYLEFKNVTFAYPGHAESPVIRNVSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLINLDFKT LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGKSTIFSLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSLIANIIGGLYEP ATKGYLEFKNVTFAYPGHAESPVIRNVSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTLAKLINLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLINLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTLANIIGGLYEP ATKGYLEFKNVTFAYPGHAESPVIRNVSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT UEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIFSLLERFYQV ATKGYLEFKNVTFAYPGHAESPVIRNVSFKASPGETVAFIGSTGSGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512 586
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGKSTIFSLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512 586 597
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYJESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLINLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512 586 597 553
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLLNLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGKSTIFSLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512 586 597 553
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLINLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLINLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512 586 597 553
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Walker A IVNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLINLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTIAKLINLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKASPGETVAFIGSTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512 586 597 553
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA	VMSLGTLLGMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512 586 597 553
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA	VMSLGTLLGMMMYLMNLTGVVPTVATFFTELAKASGSTGRLTELLDEQEVLHQG-DSLD * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512 586 597 553
LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA MD1 MG014 EfrA LmrA	VMSLGTLLGMMMYLMNLIGVVPTVATFFTELAKASGSTGRLTELLDEEQEVLHQG-DSLD * * Malker A Valker A Valker A Valker A VNGEIEFSHVSFKYYESAKSNVLEDISFTLKPGKVLGIIGPTGSGKSTIAKLINLDFKT ELLPTLEFRNISFGLGNKNNNNFLQNLSFKFEAYKTYGIVGPTGSGKSTLIQLIPRFYDV LEGKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGGKSTIFSLLERFYQP * * * * * * * * * * * * * * * * * * *	343 416 419 385 401 466 479 435 452 526 539 495 512 586 597 553

FIG. 1. ClustalW alignment of the deduced amino acid sequences of MD1 from *M. hominis* (GenBank accession no. AY169817), MG014 from *M. genitalium* (5), EfrA from *E. faecalis* (12), and LmrA from *L. lactis* (19). Asterisks indicate identical residues. Shading indicates the putative transmembrane α -helices predicted by TMpred from the INFOBIOGEN website. The ABC signature sequence and Walker A and B motifs are indicated by horizontal lines.

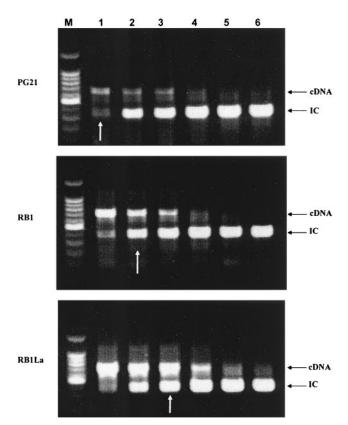


FIG. 2. Quantitative competitive RT-PCR of the *md1* gene in *M. hominis* strains PG21, RB1, and RB1La. White arrows indicate the cDNA quantity detected for each strain compared to the internal control (IC) range. Lanes: M, 100-bp molecular mass marker; 1, 0.03 pg; 2, 0.06 pg; 3, 0.2 pg; 4, 0.5 pg; 5, 1 pg; 6, 2 pg.

proteins, including the characteristic Walker A and B motifs and the ABC signature sequence (18). MD1 and MD2 showed 27.3% sequence identity and 68.3% similarity. ClustalW comparison of the MD1 and MD2 proteins with the other ABCtype MDR proteins identified in bacteria and the two halves of the human P glycoprotein is summarized Table 1. Proteins MD1 and MD2 showed the best levels of identity and similarity with E. faecalis MDR proteins EfrA and EfrB, respectively. It should be noted that the efrA and efrB genes seem to be organized in an operon like md1 and md2, with the two genes overlapping and being followed by a transcription terminatorlike sequence (10). The sequence alignments of the MD1, MG014, EfrA, and LmrA proteins are shown Fig. 1. TMS prediction with the TMpred program indicated that the six TMSs of the MD1 protein were at positions similar to those of the other ABC MDR pumps (18, 19). The Walker A and B motifs and the ABC signature sequence were conserved in all four proteins (Fig. 1).

Expression of *md1* and *md2* in *M. hominis* PG21 and the MDR phenotype strains RB1 and RB1La selected on EtBr (16) was studied and quantified by quantitative competitive reverse transcription (RT)-PCR (14) (Fig. 2). RNAs were isolated from mycoplasma cultures in the exponential growth phase with the High Pure RNA isolated kit (Roche Diagnostics GmbH) and quantified by spectrophotometry. mRNAs

were reverse transcribed into cDNA with the Enhanced Avian RT-PCR kit (Sigma). Internal competitor (IC) DNAs were generated by PCR amplification from M. hominis PG21 with primers a₂₀MD1 (5'-TGTCAAAGCCATCAGAGTGC G-3') and b20c20MD1 (5'-AATGAAGAAGCAACAGCTCCT TTGCTTGTTGTGGTTCCTC-3') for the md1 IC and primers a20MD2 (5'-TAGTGCTTTAACATCGCTTGG-3') and b20c20MD2 (5'-AGGTCCTACAATAGCAAACACCAACGC AAATGCTCCGCCAAC-3') for the md2 IC. Each IC was added at concentrations of 0.03 to 2 pg to a constant amount of cDNA. The PCR amplification was performed on the IC DNA-cDNA mixture with primers a₂₀MD1 and c₂₀MD1 (5'-AATGAAGAAGCAACAGCTCC-3') for md1 and primers a20MD2 and c20MD2 (5'-AGGTCCTACAATAGCAAACAC-3') for md2. After agarose gel electrophoresis, EtBr-stained PCR products were visually quantified with a UV lamp by comparing the relative amounts of the two products, which are distinct in size. For md1 expression, strain PG21 expressed 0.03 pg of mRNA whereas the RB1 and RB1La strains expressed 0.07 and 0.2 pg of mRNA, respectively, i.e., two- and sevenfold more than the PG21 strain (Fig. 2). In the same way, expression of md2 was 3- and 10-fold increased for RB1 and RB1La, respectively, compared to that of PG21 (data not shown). These results indicated constitutive expression of both genes in control strain PG21 and overexpression in the MDR phenotype strains. The most EtBr-resistant strain, RB1La, which had the lowest CIP and EtBr uptake levels (16), also had the highest level of md1 and md2 expression, strengthening the association of these genes with the MDR phenotype observed in M. hominis.

To explain this overexpression, we looked for mutations in the putative *md1* promoter region of the RB1 and RB1La strains. However, no point mutation was detected in this region. In the same way, no mutation was found within the md1 and *md2* sequences or in the 5-kbp region upstream of *md1*. No gene homologous to transcriptional regulator families regulating the expression of bacterial MDR pumps has been found in the mycoplasmal genomes completely sequenced. The mechanism of regulation of the expression of genes md1 and md2 remains to be determined. Genetic inactivation of these two genes in EtBr-resistant strains would prove their involvement in the MDR efflux of M. hominis. However, gene disruption through homologous recombination has not been successfully applied to M. hominis. Therefore, direct evidence of the role of the MDR genes identified in this study in M. hominis would benefit from the development of genetic tools for this microorganism.

Nucleotide sequence accession number. The nucleotide sequence data reported for *M. hominis* have been submitted to the GenBank database and assigned accession no. AY169817.

REFERENCES

- Bébéar, C. M., H. Renaudin, A. Charron, J. M. Bové, C. Bébéar, and J. Renaudin. 1998. Alterations in topoisomerase IV and DNA gyrase in quinolone-resistant mutants of *Mycoplasma hominis* obtained in vitro. Antimicrob. Agents Chemother. 42:2304–2311.
- Bébéar, C. M., J. Renaudin, A. Charron, H. Renaudin, B. de Barbeyrac, T. Schaeverbeke, and C. Bébéar. 1999. Mutations in the gyrA, parC, and parE genes associated with fluoroquinolone resistance in clinical isolates of Mycoplasma hominis. Antimicrob. Agents Chemother. 43:954–956.
- Chang, G., and C. B. Roth. 2001. Structure of MsbA from *E. coli*: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293:1793–1800.

- Chen, C. J., J. E. Chin, K. Ueda, D. P. Clark, I. Pastan, M. M. Gottesman, and I. B. Roninson. 1986. Internal duplication and homology with bacterial transport proteins in the *mdr1* (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47:381–389.
- Fraser, C. M., J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton, R. D. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley, et al. 1995. The minimal gene complement of *Mycoplasma genitalium*. Science 270:397–403.
- Himmelreich, R., H. Hilbert, H. Plagens, E. Pirkl, B. C. Li, and R. Herrmann. 1996. Complete sequence analysis of the genome of the bacterium *Mycoplasma pneumoniae*. Nucleic Acids Res. 24:4420–4449.
- Hooper, D. C. 2001. Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis. 7:337–341.
- Huda, N., E. W. Lee, J. Chen, Y. Morita, T. Kuroda, T. Mizushima, and T. Tsuchiya. 2003. Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in non-O1 *Vibrio cholerae*. Antimicrob. Agents Chemother. 47:2413–2417.
- Karow, M., and C. Georgopoulos. 1993. The essential *Escherichia coli msbA* gene, a multicopy suppressor of null mutations in the *htrB* gene, is related to the universally conserved family of ATP-dependent translocators. Mol. Microbiol. 7:69–79.
- Lee, E. W., M. N. Huda, T. Kuroda, T. Mizushima, and T. Tsuchiya. 2003. EfrAB, an ABC multidrug efflux pump in *Enterococcus faecalis*. Antimicrob. Agents Chemother. 47:3733–3738.
- Muto, A., and C. Ushida. 2002. Transcription and translation, p. 323–345. *In* S. Razin and R. Herrmann (ed.), Molecular biology and pathogenicity of mycoplasmas. Kluwer Academic/Plenum Publishers, London, United Kingdom.
- 12. Paulsen, I. T., L. Banerjei, G. S. Myers, K. E. Nelson, R. Seshadri, T. D. Read, D. E. Fouts, J. A. Eisen, S. R. Gill, J. F. Heidelberg, H. Tettelin, R. J.

Dodson, L. Umayam, L. Brinkac, M. Beanan, S. Daugherty, R. T. DeBoy, S. Durkin, J. Kolonay, R. Madupu, W. Nelson, J. Vamathevan, B. Tran, J. Upton, T. Hansen, J. Shetty, H. Khouri, T. Utterback, D. Radune, K. A. Ketchum, B. A. Dougherty, and C. M. Fraser. 2003. Role of mobile DNA in the evolution of vancomycin-resistant *Enterococcus faecalis*. Science 299: 2071–2074.

- Paulsen, I. T., L. Nguyen, M. K. Sliwinski, R. Rabus, and M. H. Saier, Jr. 2000. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Mol. Biol. 301:75–100.
- Piddock, L. J. V., M. M. Johnson, S. Simjee, and L. Pumbwe. 2002. Expression of efflux pump gene *pmrA* in fluoroquinolone-resistant and -susceptible clinical isolates of *Streptococcus pneumoniae*. Antimicrob. Agents Chemother. 46:808–812.
- Putman, M., H. W. van Veen, and W. N. Konings. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64:672–693.
- Raherison, S., P. Gonzalez, H. Renaudin, A. Charron, C. Bébéar, and C. M. Bébéar. 2002. Evidence of active efflux in resistance to ciprofloxacin and to ethidium bromide by *Mycoplasma hominis*. Antimicrob. Agents Chemother. 46:672–679.
- Sakamoto, K., A. Margolles, H. W. van Veen, and W. N. Konings. 2001. Hop resistance in the beer spoilage bacterium *Lactobacillus brevis* is mediated by the ATP-binding cassette multidrug transporter HorA. J. Bacteriol. 183: 5371–5375.
- van Veen, H. W., and W. N. Konings. 1998. The ABC family of multidrug transporters in microorganisms. Biochim. Biophys. Acta 1365:31–36.
- van Veen, H. W., K. Venema, H. Bolhuis, I. Oussenko, J. Kok, B. Poolman, A. J. Driessen, and W. N. Konings. 1996. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc. Natl. Acad. Sci. USA 93:10668–10672.