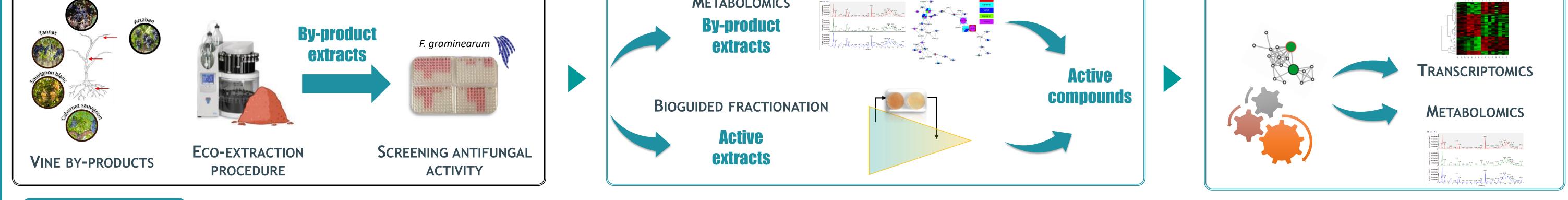


T. Tran-Minh^{1*}, C. Tardif^{2*}, S. Bernillon¹, N. Ponts¹, P. Waffo-Téguo², C. Rouger², F. Richard-Forget¹, V. Atanasova¹

* These authors contributed equally to this work

Use of metabolomics to identify bioactive compounds from grapevine eco-extracts that can impair fungal growth and production of mycotoxins by Fusarium graminearum and elucidate their mechanisms of action

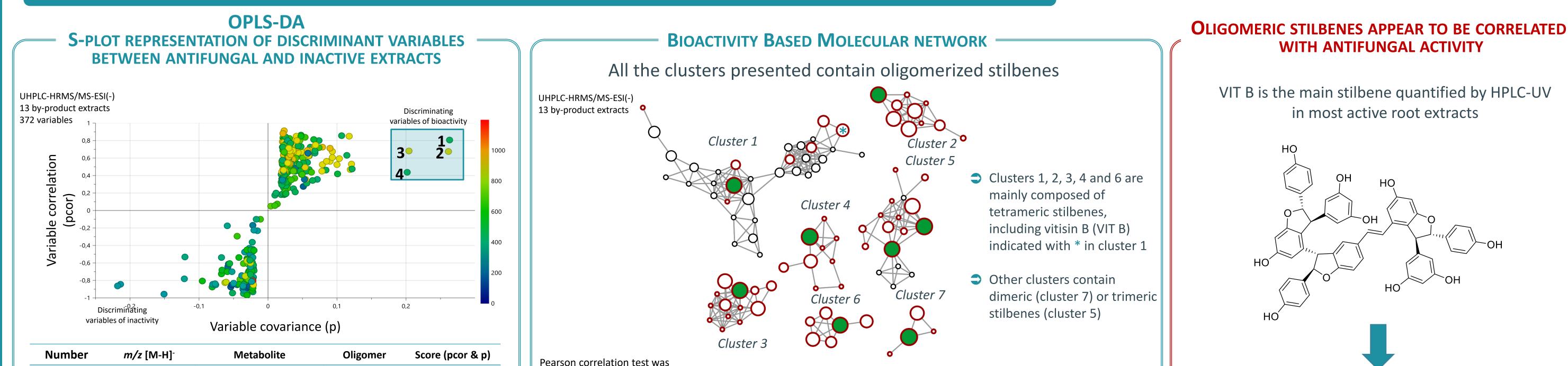
PROBLEM STATEMENT AND OBJECTIVES

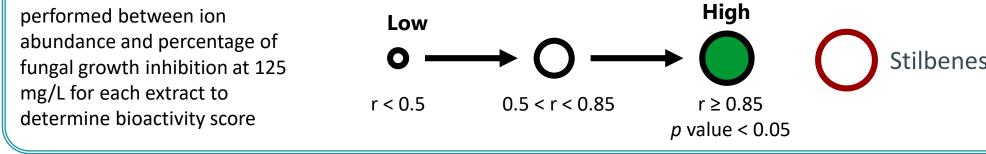

Fusarium Head Blight of small-grain cereals is a devastating fungal disease primarily caused by Fusarium graminearum in Europe. Beyond crop losses, F. graminearum poses potential health risks due to the production type B trichothecene (TCTB) mycotoxins including deoxynivalenol (DON) and 15-acetyldeoxynivalenol (15-ADON). The development of environmental-friendly strategies guaranteeing the safety of food and feed is a key challenge facing agriculture today. The goal of the present study is to investigate and exploit the biological activity of grapevine wastes to develop environmental-friendly solutions to counteract the growth of *F*. graminearum and its production of mycotoxins. In the first step, natural extracts from vine by-products were obtained using eco-extraction and were characterized for their antifungal and antimycotoxin activities. Identification of active molecules and their mechanisms of action were investigated using complementary omics approaches.

EXPERIMENTAL PROCEDURE

PRODUCTION AND SCREENING OF BY-PRODUCT EXTRACTS

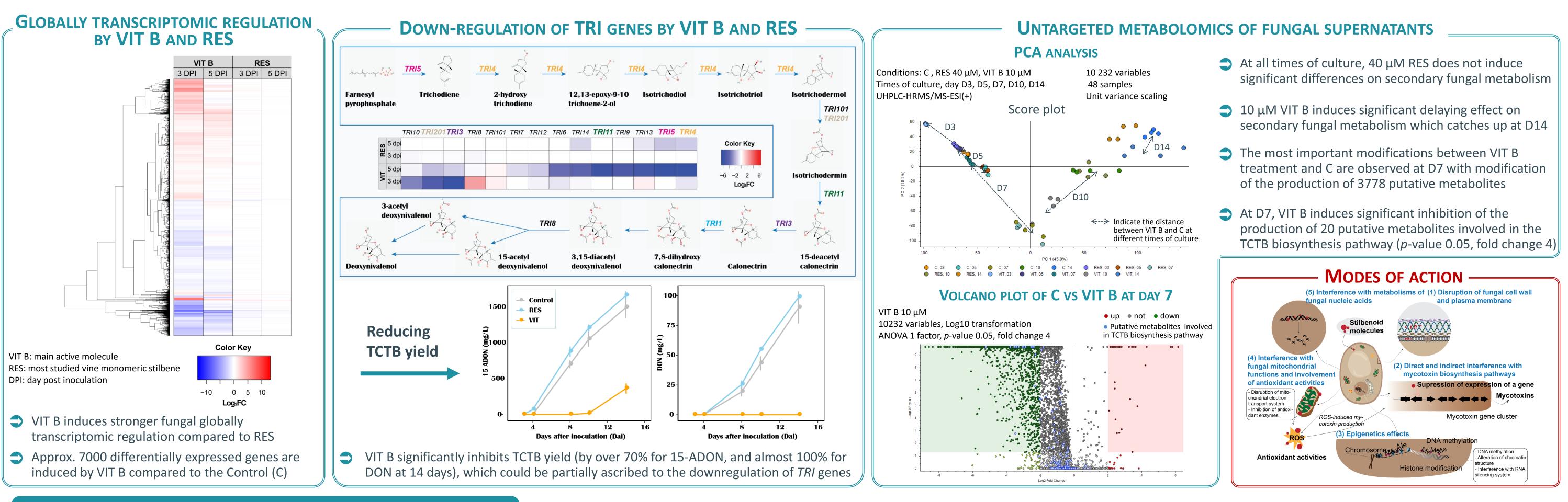
 DENTIFICATION	OF	ACTIVE	COMPOUNDS	


MODES OF ACTIO


METABOLOMICS

RESULTS

UNTARGETED METABOLOMICS AND MOLECULAR NETWORK TO EVIDENCE THE ACTIVE COMPOUNDS



1	469.1293	Ampelopsin A	Dimer	0.81 & 0.26
2	905.2610	Vitisin B	Tetramer	0.67 & 0.25
3	905.2609	Isohopeaphenol	Tetramer	0.68 & 0.20
4	453.1348	<i>E</i> -ε-viniferin	Dimer	0.43 & 0.19

Isolation of VIT B from root extract using preparative HPLC

MULTI-OMICS APPROACH TO UNDERSTAND THE MODE OF ACTION OF VIT B AND E-RESVERATROL (RES)

CONCLUSIONS AND PERSPECTIVES

- > Untargeted metabolomics combined with molecular network and bioguided fractionation allow us to identify oligomeric stilbenes, in particular VIT B, as predominant active antifungal and antimycotoxin metabolites in vine by-products
- \geq VIT B (at a low concentration of 10 μ M) induces significant modifications in secondary fungal metabolism of F. graminearum, especially in TCTB biosynthesis pathway
- Omics approaches provide a deeper insight into the mechanism of action of VIT B underlying its antifungal and antimycotoxin activity
- > The ongoing *in-planta* assays will study bioactivities of the vine extracts towards developing environmental-friendly solutions

Center **Nouvelle Aquitaine - Bordeaux**

(1)

(2)

INRAE, RU1264 Mycology and Food Safety (MycSA), 71, Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France

Faculty of Pharmaceutical Sciences, UMR 1366 Enology, Axis Molecules of Biological Interest, ISVV, Univ. Bordeaux, 210, Chemin de Leysotte, 33882 Villenave d'Ornon, France

Contact:

vessela.atanasova@inrae.fr trang.tran@kuleuven.be charles tardif@hotmail.fr

