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Abstract

White matter hyperintensities (WMHs) are well-established markers of cerebral small

vessel disease, and are associated with an increased risk of stroke, dementia, and mor-

tality. Although their prevalence increases with age, small and punctate WMHs have

been reported with surprisingly high frequency even in young, neurologically asymp-

tomatic adults. However, most automated methods to segment WMH published to

date are not optimized for detecting small and sparse WMH. Here we present the

SHIVA-WMH tool, a deep-learning (DL)-based automatic WMH segmentation tool that

has been trained with manual segmentations of WMH in a wide range of WMH sever-

ity. We show that it is able to detect WMH with high efficiency in subjects with only

small punctate WMH as well as in subjects with large WMHs (i.e., with confluency) in

evaluation datasets from three distinct databases: magnetic resonance imaging-Share

consisting of young university students, MICCAI 2017WMH challenge dataset consist-

ing of older patients from memory clinics, and UK Biobank with community-dwelling

middle-aged and older adults. Across these three cohorts with a wide-ranging WMH

load, our tool achieved voxel-level and individual lesion cluster-level Dice scores of

0.66 and 0.71, respectively, which were higher than for three reference tools tested:

the lesion prediction algorithm implemented in the lesion segmentation toolbox (LPA:

Schmidt), PGS tool, a DL-based algorithm and the current winner of the MICCAI 2017

WMH challenge (Park et al.), and HyperMapper tool (Mojiri Forooshani et al.), another

DL-based method with high reported performance in subjects with mild WMH burden.

Our tool is publicly and openly available to the research community to facilitate investi-

gations of WMH across a wide range of severity in other cohorts, and to contribute to

our understanding of the emergence and progression of WMH.
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1 | INTRODUCTION

Cerebral small vessel disease (cSVD) represents a spectrum of patho-

logical processes affecting small vessels of the brain. It is a leading

vascular cause of dementia and accounts for up to 25% of strokes

(Cannistraro et al., 2019; Wardlaw et al., 2013). Most often, cSVD is

covert and can be detected on brain imaging of individuals without

clinical manifestation of stroke. White matter hyperintensity (WMH)

is one of the most well-established imaging markers of cSVD, and is

characterized by heightened signal intensity on T2-weighted-

fluid-attenuated inversion recovery (FLAIR) sequences of magnetic

resonance imaging (MRI). WMH of presumed vascular origin is highly

prevalent in neurologically asymptomatic older individuals, and is

associated with an increased risk of stroke, cognitive decline, demen-

tia, and mortality (Debette et al., 2019; Debette & Markus, 2010;

Wardlaw et al., 2021). So far, the exact etiology and pathogenesis of

these age-related WMHs remain elusive, though they are known to

be associated with common cardiovascular risk factors, including

smoking and hypertension (Moroni et al., 2018). Regardless, they rep-

resent an important preclinical biomarker of cSVD that should trigger

preventive interventions to reduce the risk of stroke and dementia

and can be used as a surrogate endpoint in clinical trials (Wardlaw

et al., 2021).

Although their prevalence increases with age, small and punctate

WMHs have been reported with surprisingly high frequency even in

young adults under 40 years of age (Keřkovský et al., 2019; Wadhwa

et al., 2019; Wang et al., 2019; Williamson et al., 2018). If they repre-

sent early forms of covert cSVD, it is crucial to investigate their emer-

gence and progression in order to study their pathophysiological

correlates as well as their association with genetic, environmental, and

behavioral risk factors. Clinically, the presence and severity of WMH

on MRI are most commonly assessed with visual rating scales, such as

the Fazekas (Fazekas et al., 1987) or more anatomically detailed Schel-

tens Scale (Scheltens et al., 1993) and the Age-Related White Matter

Changes (ARWMC) scale (Wahlund et al., 2001). They are all point

scales expressing the severity of WMH, with grade 0 indicating no

lesion and increasing grade indicating the size and/or number of the

lesion, as well as the degree of confluency. While they can be effec-

tive for differentiating the most severe cases of WMH from milder

cases, these clinical scales are inadequate for the characterization of

subjects with the early stages of cSVD, who would at most receive a

grade of 1. They also provide very limited information on the spatial

extent and distribution of WMH, only distinguishing between WMH

found in the periventricular region from deep white matter (for

Fazekas) or different lobes in each hemisphere (for ARWMC). It is

therefore essential to have automated methods to segment WMH in

order to quantify and provide precise spatial information of any

lesions in cohorts across the disease spectrum.

While numerous WMH segmentation tools and algorithms exist,

including an increasing number of deep-learning (DL) based methods

in recent years, there is a lack of automated methods that have been

validated in populations with low prevalence and small overall lesion

load, hampering the detailed characterization of WMH in young sub-

jects. Indeed, most methods published to date are optimized for

detection in older subjects (Guerrero et al., 2018; Li et al., 2018,

2022; Sundaresan et al., 2021; Umapathy et al., 2021) or patients with

multiple sclerosis (MS; reviewed in Zeng et al., 2020) who typically

manifest a higher load of WMH with sharper boundaries and large

confluent lesions. In these populations, the advantage of more

advanced DL-based methods over more traditional signal-processing

and machine-learning-based methods is reported to be minimal

(Balakrishnan et al., 2021). The true advantage of these advanced

methods may be more evident for the segmentation of WMH in sub-

jects with relatively mild lesion load (<5 ml), as recently suggested

(Khademi et al., 2021; Li et al., 2022; Rachmadi et al., 2018). However,

even those studies evaluating their method in subjects with mild

WMH burden with DL-based (Khademi et al., 2021; Rachmadi

et al., 2018) or other approaches (Ong et al., 2022; Rachmadi-

et al., 2020) primarily use databases with 2D FLAIR acquisition with

the slice thickness ranging from 3 to 5 mm, which precludes detection

of small WMH not on the plane of acquisition. To our knowledge, no

study has explicitly optimized the segmentation performance in high-

quality 3D FLAIR scans from healthy young- to middle-aged adults

with very mild WMH burden.

Among the DL-based approaches, Unet-based architecture

(Ronneberger et al., 2015) has been by far the most popular and suc-

cessful, with the top two winning methods in the MICCAI 2017

WMH segmentation challenge (MWC: Kuijf et al., 2019) using varia-

tions of Unet architecture (Li et al., 2018; Park et al., 2021). Designed

for biomedical image segmentation tasks that require pixel-by-pixel

classifications, Unet offers an elegant architecture that allows efficient

learning from limited sources of training images (Ronneberger

et al., 2015). Unlike many publicized neural networks for image classi-

fication that are typically trained on a large annotated dataset

(e.g., ImageNet dataset with �1.2 million training images), Ronneber-

ger et al. (2015) demonstrated a successful segmentation of neuronal

structure by their Unet model trained with only 30 training dataset of

electron microscopy images. The model uses successive contracting

layers of fully convolutional network, followed by the upsampling

operators that are more or less symmetric to the contracting path,

resulting in the characteristic “u-shape” architecture (and hence their

name). The skip connections that connect feature maps of the con-

tracting path to the expanding path help preserve spatial information

and allow the model to learn fine-grained detail with the full spatial

context of the input image. Li et al. (2018) and Park et al. (2021) both

used the Unet architecture with 2D input, partly because the imaging

resolution along z-direction of the MWC training dataset is rather

poor and vary from one data source to the other.

In the present study, we describe the development of a 3D Unet-

based tool we call “SHIVA-WMH” detector, optimized to detect a full

range of WMH severity, including very mild cases that can be

observed in young subjects from general population. Our tool was

developed in the context of the SHIVA project (https://rhu-shiva.

com/), whose aim is to prevent cognitive decline and dementia
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through a better understanding of cSVD, and is based on the architec-

ture of “SHIVA-perivascular spaces (PVS)” detector we described pre-

viously (Boutinaud et al., 2021: https://github.com/pboutinaud/

SHIVA_PVS) that segments PVS, another marker of covert cSVD

(Wardlaw et al., 2013; Yu et al., 2022). We took advantage of the

1 mm isotropic 3D FLAIR and T1-weighted anatomical scans of

the unique, large neuroimaging database of French university students

called MRi-Share (Tsuchida et al., 2021). The whole-brain manual seg-

mentation of WMH in subsample of MRi-Share subjects were com-

bined with the publicly available MRI from the MWC training data

(Kuijf et al., 2019) to cover the full range of age-related WMH severity

when tuning and evaluating our model. We aimed to create a ready-

to-use tool that can chart the emergence and progression of WMH

across the adult lifespan in multicohort studies with varying age

ranges. Our SHIVA-WMH detector tool with pretrained models is

made openly available at (https://github.com/pboutinaud/SHIVA_

WMH) to other researchers to encourage replication and further

research into the earliest forms of WMH.

2 | MATERIALS AND METHODS

2.1 | Overview

The present paper first describes the development of SHIVA-WMH

detector, trained with manually traced WMH from 90 subjects

(40 MRi-Share and 50 MWC) and synthetic WMH from 360 other

subjects (all from MRi-Share). A separate set of 10 subjects each from

manually traced MRi-Share and MWC, as well as 11 subjects from the

UK Biobank data (Alfaro-Almagro et al., 2018), served as an indepen-

dent, held-out evaluation set (total of 31 subjects). The latter repre-

sented a sample from a cohort never seen during training and

constituted an important test of generalizability of the tool

performance.

We then describe the evaluation of our tool against three refer-

ence WMH segmentation tools that could be applied out-of-the-box

(i.e., without retraining or fine-tuning) in the held-out test set:

(1) lesion prediction algorithm implemented in the lesion segmentation

toolbox (LPA-LST; Schmidt, 2017a; Schmidt, 2017b), a clinical refer-

ence tool based on the conventional signal-processing, (2) PGS (Park

et al., 2021), a state-of-the-art, ensemble 2D Unet-based model that

is currently the winner of the MWC, and (3) HyperMapper (HPM;

Mojiri Forooshani et al., 2022), another state-of-the-art 3D Unet-

based tool with promising results in subjects with mild WMH burden.

We present the performance metrics both at the voxel- and individual

lesion cluster-level for each tool, and provide cohort-by-cohort analy-

sis for performance comparison.

Finally, we stress the importance of early identification and char-

acterization of the small WMH we attempted to optimize with our

tool by comparing microstructural properties inside and outside the

manually traced WMH in MRi-Share subjects using the multishell

diffusion-weighted imaging (DWI) available for this dataset.

2.2 | Participants and MRI data description

Table 1 summarizes the key acquisition parameters for the

T1-weighted (T1w) and FLAIR images, sample sizes for manually

traced WMH, and the range of total lesion load for the three datasets

used in the present work, acquired across five different scanners.

2.2.1 | MRi-Share

The MRi-Share database is a subcomponent of a larger, prospective

cohort study on French university students' health, called iShare

(internet-based Student Health Research enterprise, www.i-share.fr).

The detailed study and MRI acquisition protocol have been described

in Tsuchida et al. (2021). For the training and evaluation of the

SHIVA-WMH detector, we used the MRI data and manually traced

WMH from the same subsample of 50 subjects described in

Boutinaud et al. (2021), drawn from the total sample of 1867 MRi-

Share subjects (mean age 22.1 years, range 18–35, 72% female). We

also used the T1w and FLAIR data from additional 360 subjects,

selected from the 1817 subjects without any manual tracing of WMH,

to enhance the training dataset, as described in Section 2.4.3.

All participants were imaged between 2015 and 2018 on a 3 T

Siemens Prisma MRI scanner (Siemens Healthcare, Erlangen,

Germany) with a 64-channel head coil at Bordeaux University, in a sin-

gle MRI session lasting for �45 min. It included a 3D T1w

magnetization-prepared rapid gradient-echo as well as a 3D SPACE

FLAIR sequence, both with 1.0 mm isotropic resolution (Table 1).

Diffusion-weighted MRI (DWI) data were acquired using a multishell

multiband x3 sequence with 100 noncollinear diffusion gradient direc-

tions (b0/d8 each for anterior-to-posterior and posterior-to-anterior

phase encoding; b300/d8; b1000/d32; b2000/d60) with the follow-

ing parameters: TR/TE = 3540/75 ms; FOV = 118 � 118 mm2;

84 slices; 1.7 mm isotropic resolution.

2.2.2 | MICCAI 2017 WMH challenge
dataset (MWC)

We supplemented the training and evaluation datasets with the MRI

and manual tracing of WMH from 60 subjects provided as training

datasets in the MICCAI 2017 WMH segmentation challenge (http://

wmh.isi.uu.nl/; Kuijf et al., 2019). The set of 3D T1w and 2D or 3D

multi-slice FLAIR images were acquired at three different institutes:

the University Medical Center (UMC) Utrecht, Vrije Universiteit Uni-

versity Medical Centre (VU) Amsterdam, and the National University

Health System (NUHS) in Singapore (20 subjects per site; Table 1).

The 3D FLAIR images had been resampled into the transversal direc-

tion with a slice thickness of 3 mm by the MWC organizers to make

them similar to other 2D FLAIR images in the dataset and to save time

for manual annotation. All subjects were recruited at the memory

clinics on each site as part of larger cohort studies (UMC Utrecht and
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VU Amsterdam data from a cohort of 861 subjects, mean age

67.7 years and 46.3% female (Boomsma et al., 2017); NUHS

Singapore data from a cohort of 238 subjects, mean age 72.5 years,

range 50–95 years, 51% female (van Veluw et al., 2015)), and were

selected randomly by the MWC organizers.

2.2.3 | UK Biobank

UK Biobank is the largest cohort study with brain MRI measurements

from approximately 50,000 middle-aged and older adults (as of 2022),

recruited from communities across the United Kingdom (Miller

et al., 2016). All brain imaging data were acquired at one of the three

dedicated imaging centers equipped with identical 3 T Siemens Skyra

scanners (Siemens Healthcare, Erlangen, Germany) with the standard

Siemens 32-channel head coil (Alfaro-Almagro et al., 2018). For the

present work, we use the raw T1w and FLAIR images acquired using

similar sequences as those for MRi-Share (Table 1).

2.3 | Manual tracing of WMH

2.3.1 | MRi-Share

Subjects for manual tracing of WMH were selected based on the

visual inspection of a neuroradiologist (BM) who reviewed the raw

T1w and FLAIR images of the entire dataset, to cover varying degrees

of both WMH and visible PVS, from no detectable WMH or PVS to

many visible WMH (>10) and/or PVS. A trained investigator (AT) then

performed voxelwise manual segmentation of each WMH on the raw

FLAIR images using Medical Image Processing, Analysis and Visualiza-

tion (MIPAV) software (v 7.4.0).

Specifically, WMH was segmented on each axial slice of the

FLAIR image, viewed along with coronal and sagittal views using

the 3D view setting of the MIPAV to check the 3D shape and extent

of hyperintense signals. Any punctate region of increased intensity

within the white matter, as well as hyperintense rims around the

ventricles that were thicker than 2 mm, were segmented. This

included punctate hyperintense regions sometimes found around the

PVS visible on T1w images. For each hyperintense region found, the

“paint grow” tool of the MIPAV was applied to automatically paint

every neighboring voxels that have a higher intensity than and within

a 3 mm distance from the selected voxel. Following the initial seg-

mentation of the first 10 subjects, they were reviewed and modified

by a second expert (LL). Any discordance between the two raters

was then reviewed together to reach a consensus. Subsequently, the

remaining 40 MRI datasets were manually segmented by the first

expert only.

2.3.2 | MICCAI 2017 WMH segmentation
challenge

We used the publicly available manual tracing of WMH for the

60 MWC training dataset. The details of the procedure are described

in Kuijf et al. (2019). Briefly, manual tracing of WMH, as well as any

other pathologies, was performed by two expert raters by consensus,

in which the tracing performed by the first rater was reviewed by the

second rater and corrected by the first rater.

2.3.3 | UK Biobank

A small sample of 11 subjects was selected to cover a range of esti-

mated WMH load (0.7–16 ml, representing values in the first and last

decile of the entire dataset) from a pool of 13,554 subjects (available

at the time of the selection) with “usable” quality T1w and FLAIR

images as well as the WMH load estimated by the Brain Intensity

Abnormality Classification Algorithm tool (Griffanti et al., 2016). The

same rater who performed the manual tracing of WMH for the MRi-

TABLE 1 Summary of key acquisition parameters and the range of manually traced WMH lesion load in the three cohorts.

Dataset Institute Scanner

T1-weighted voxel size

(TR/TE/TI) FLAIR voxel size (TR/TE/TI) Train Test

WMH load

range in ml

MRi-

Share

Bordeaux

University

3 T Siemens

Prisma

1.00 � 1.00 � 1.00 mm3

(2000/2.0/880 ms)

1.00 � 1.00 � 1.00 mm3

(5000/394/1800 ms)

40 10 0–1.8

MWC UMC Utrecht 3 T Philips

Achieva

1.00 � 1.00 � 1.00 mm3

(7.9/4.5/—ms)

0.96 � 0.95 � 3.00 mm3

(11,000/125/2800 ms)

17 3 0.8–75.0

VU

Amsterdam

3 T GE Signa

HDxt

0.94 � 0.94 � 1.00 mm3

(7.8/3.0/��ms)

0.98 � 0.98 � .20 mm3

(8000/126/2340 ms)

17 3

NUHS

Singapore

3 T Siemens

TrioTim

1.00 � 1.00 � 1.00 mm3

(2300/1.9/900 ms)

1.00 � 1.00 � 3.00 mm3

(9000/82/2500 ms)

16 4

UKB UKB Imaging

Centre

3 T Siemens

Skyra

1.00 � 1.00 � 1.00 mm3

(2000/2.01/800 ms)

1.05 � 1.00 � 1.00 mm3

(5000/395/1800 ms)

— 11 0.1–22.5

Total 90 31

Abbreviations: MWC, MICCAI 2017 WMH segmentation challenge dataset; NUHS, the National University Health System; TE, echo time; TI, inversion

time; TR, repetition time; UKB, UK Biobank; UMC, the University Medical Center; VU, Vrije Universiteit University Medical Centre.
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Share database (AT) manually traced WMH on the raw FLAIR images

using the 3D Slicer tool (version 4.11.20210226: https://www.slicer.

org), using the same criteria applied during the segmentation of WMH

for MRi-Share. With the 3D Slicer tool, the “Threshold” effect in the

Segment Editor module was used to specify an intensity range that

preliminarily isolated visible hyperintensities from the surrounding

white matter in any given location. As in MRi-Share, each axial slice

was reviewed slice by slice, together with coronal and sagittal views

to check the entire 3D extent of each lesion, and the “Paint” tool that
painted regions with the specified intensity range was used to seg-

ment individual hyperintensities deemed as lesion, in each plane of

the 3D view.

2.4 | SHIVA-WMH detector

2.4.1 | Preprocessing

In order to prepare the input image arrays for the SHIVA-WMH

detector, the following preprocessing steps were performed on the

T1w, FLAIR, and manually traced WMH masks:

1. Reorientation to match either LAS or RAS (left or right/anterior/

superior) orientation using fslreorient2std tool from the FSL.

2. For the MWC dataset, images were resampled to 1 mm isotropic

using flirt from the FSL (Jenkinson et al., 2002), with—applyisoxfm

and—noresampleblur options.

3. Linear coregistration of FLAIR to T1w image was performed with

flirt (Jenkinson et al., 2002) for MRi-Share and UKB datasets, and

the generated transformation matrices were applied to the WMH

masks to bring them to the reference T1w images. This step was

skipped for the MWC dataset, which had already been aligned by

the organizers.

4. A brain mask created based on the individual T1w image was used

to obtain a bounding box around the brain (centered on the mass

center of the brain mask), and to crop all images to a uniform

dimension of (160 � 216 � 176 voxels).

5. Voxel intensity values inside the brain mask were linearly rescaled

to values between 0 and 1 by setting the 99th percentile value as

the maximum and setting any higher intensity values as 1.

2.4.2 | SHIVA-WMH architecture and
implementation

Our model is based on the previously published PVS detector

(Boutinaud et al., 2021) with an Unet-like architecture of Ronneberger

et al. (2015). We made the following modifications to improve perfor-

mance or to adapt it for the specific task of WMH segmentation:

• For the primary multichannel model, the input layer was modified

to accept multimodal input of T1w and FLAIR images.

• Pretraining with auto-encoder was not performed since the larger

training set with multimodal input in the present work allowed rel-

atively fast training without the pretraining with auto-encoder.

• The architecture of the network was modified to have an increased

number of initial kernels (feature maps, nKinit), from 8 to 10, and

the multiplication factor (mF) applied to the number of kernels at

the first convolution layer of each stage (or depth) after the first

was slightly reduced from 2 to 1.8.

• The dropout rate applied at each stage (after the max pooling for

encoding or after the last convolution for decoding blocks) was

increased from 0.1 to 0.5, except in the first encoding block, which

had a reduced dropout rate of 0.05 to increase the rate of reten-

tion, reflecting the general recommendation for optimal dropout

rate across a wide range of networks and tasks (Srivastava

et al., 2014).

• Convolution blocks now use a Swish activation function

(Equation (1)) rather than the rectified linear unit (ReLU; Glorot &

Bengio, 2010) used previously, since it has shown an advantage

over ReLU on deeper models across a number of challenging data-

sets (Ramachandran et al., 2017).

f xð Þ¼ x � sigmoid xð Þ ð1Þ

Figure 1 provides a schematic overview of the resulting architec-

ture of the SHIVA-WMH model. The modified model has slightly less

trainable parameters (40 million rather than 44 million in the Bouti-

naud et al.'s study) and also extracts a higher number of features at

higher resolution upper stages and less at deeper levels, which we

found to be advantageous for the detection of small lesions like PVS

and small WMH.

In addition to the network architecture modifications, we per-

formed the following data augmentations to the training dataset to

increase the model robustness: (i) flipping on the midsagittal plane,

(ii) voxel translations (up to plus or minus five voxels in each orthogo-

nal axis), and (iii) nonlinear voxel intensity value transformation using

a Bézier curve, in the similar fashion as in Zhou et al. (2021), with two

endpoints set to [0, 0] and [1, 1] and two control points within this

range generated randomly. The probability of each type of augmenta-

tion for an image at a training epoch was set to 0.5, 0.9, and 0.9,

respectively. In particular, the nonlinear voxel intensity value transfor-

mation was found to significantly improve the generalizability of the

detector when predicting lesions in unseen datasets (unpublished

observation from the PVS detector).

We implemented the network in Python 3.7, using Tensorflow 2.7

with Keras backend, scikit-learn (1.0.1), and scikit-image (0.18.3). The

network was trained on a computer (Ubuntu 22.04) with a Xeon

ES2640, 40 cores, 256 GB RAM, and a Tesla V100 GPU with 32 GB

RAM; inferences can be done on any GPU compatible with the Ten-

sorflow version with at least 8 GB RAM. We used a fivefold cross-

validation scheme to train the network, stratified on WMH voxel load

and cohort. We used the Adam optimizer with the default parameters

TSUCHIDA ET AL. 5 of 20
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of beta1 = .9, beta2 = .999, epsilon = 1e–7, and used a cyclical learn-

ing rate with exponential decay, with the initial and maximum learning

rates set to 1e-6 and 0.001, respectively. As in the Boutinaud et al.'s

study, we used a Dice loss function (Equation (2)) as a loss function:

Dice loss¼1� 2�P
voxels ytrue �ypred

� �þϵP
voxelsytrueþ

P
voxelsypredþϵ

� �
ð2Þ

where ytrue and ypred represent the image arrays for the ground truth

(manually traced WMH or synthetic WMH labels in the case of

enhanced training set: see Section 2.4.3) and predicted WMH, respec-

tively, and (ytrue � ypred) is an element-wise multiplication of the two

arrays, representing the intersection between the two images. We

used the smoothing constant ϵ of 1e-6 to prevent the division by

0. We used a batch size of 4 for each training fold to fit in the avail-

able GPU memory. The output maps from each fold, valued between

0 and 1, were averaged to create the final WMH prediction map, also

valued between 0 and 1.

2.4.3 | Training and enhancement

We initially trained our model with T1w and FLAIR images from

40 MRi-Share and 50 MWC subjects with manually traced WMH

(Table 1), using the fivefold cross validation scheme, in which 20% of

the training data served as validation data in each fold. We call this

model our “base” model. However, due to the large imbalance in the

total number of voxels labeled as WMH in the two cohorts (only �8 K

voxels of WMH collectively in MRi-Share compared to �777 K voxels

in MWC training data; also see Figure 2), the Dice loss function would

inevitably bias the optimization toward models that can detect larger

WMH lesions. In order to gauge how much the presence of MWC

training data degrades the performance of our model in MRi-Share

subjects, we trained another model with only MRi-Share training data,

which we call “MRi-Share-specific” model. As shown in the Supple-

mental Figure 1, the comparison of segmentation accuracy in the

MRi-Share subjects from the validation sets in each training fold indi-

cated lower accuracy of the “base” model relative to “MRi-Share-spe-

cific” model, as expected.

To overcome the problem of imbalances, we took the advantage

of the large pool of still unannotated MRi-Share dataset to generate

pseudo WMH labels using the specialized “MRi-Share-specific” model

that could segment small WMH with relatively high accuracy and use

them to enhance the original training data composed of manually

traced WMH labels. This is akin to “semisupervised learning with

pseudo annotations” reviewed by Tajbakhsh et al. (2020) as one

promising approach to tackle the problem of scarce annotated training

data common in medical image segmentation tasks (Tajbakhsh

et al., 2020). In this approach, pseudo annotations are first assigned to

unlabeled data, then a new segmentation model is trained with com-

bined data that include both the labeled and pseudo labeled data. We

used this approach more specifically to ameliorate the voxel

F IGURE 1 Schematic overview of the SHIVA-white matter hyperintensity (WMH) detector network architecture. The figure illustrates the
3D Unet architecture used for the SHIVA-WMH detector. Each blue box corresponds to the multichannel feature maps, with the number of
features at each stage indicated in the white box with blue outline. The gray boxes are copied and concatenated feature maps from the encoding
path to the decoding path. The arrows and triangles stand for different operations as indicated inside right legend.

6 of 20 TSUCHIDA ET AL.

 10970193, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26548 by C
H

U
 B

ordeaux, W
iley O

nline L
ibrary on [11/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



imbalance between the examples of small WMH primarily found in

MRi-Share and those of large WMH found in MWC data. We first

obtained the predictions of WMH from the “MRi-Share-specific”
model in 100 randomly selected MRi-Share subjects out of 1817 sub-

jects without the manual tracing of WMH. We filtered out those with

very low or high predicted load of WMH by removing subjects in the

top and bottom 5 percentile of the total estimated WMH volume. This

is because subjects at the bottom 5 percentile would scarcely add

examples of small WMH that can be learned by the model, and con-

versely, we did not need to add examples of subjects with the highest

load, which is already provided by the manually traced MWC training

data. We then used the pseudo WMH labels in the remaining 90 sub-

jects to supplement the original training data from 90 subjects with

manual tracing (“enh90” model, for enhancement with 90 pre-

dicted data).

While the “base” model used the Glorot uniform initializer to ini-

tialize its weights, “enh90” model used the weights of the “base”
model as the initial weights to speed up the training. Since it showed

some indication of improvement over the “base” model in the valida-

tion sets of both MRi-Share and MWC training data (Supplemental

Figure 1), we repeated the process with an additional enhancement

using a new set of pseudo WMH labels from 270 MRi-Share subjects

generated similarly from the “MRi-Share-specific” model to train

another model (“enh270” model). As its initial weights, we used the

weights of “enh90” model, thus resulting in a model that was cumula-

tively trained with 360 synthetic WMH labels. This model showed

further improvement in the MRi-Share validation sets and similar per-

formance in the MWC. We repeated the process with increasing num-

bers of enhancements (300 and 400 additional training labels), each

using the weights of the preceding model as the initial weights. How-

ever, since there were no signs of further improvement in the MRi-

Share validation sets after the “enh270” model (Supplemental

Figure 1), we selected this model as the optimal detector; it will be

referred to in the following as the SHIVA-WMH detector.

2.4.4 | FLAIR-only version

We initially focused on developing a model that uses both T1w and

FLAIR as inputs, following an earlier observation of the superior per-

formance of multimodal over FLAIR-only models. However, to for-

mally compare the impact of having only FLAIR as an input and to

potentially allow quantification of WMH in datasets with only FLAIR

images, we created the modification of the SHIVA-WMH detector

with FLAIR only input. The training process of the FLAIR-only version

and its performance comparison with the multimodal version is

described in the Supplemental Material.

2.5 | Performance evaluation

We evaluated the performance of the SHIVA-WMH detector and

existing methods in the held-out test dataset from the three cohorts,

including 10 unseen data each from MRi-Share and MWC and

11 data from UKB. The UKB test data represent a dataset coming

outside of cohorts used in training (Table 1), with the levels of WMH

severity being the intermediate between those of MRi-Share

and MWC.

F IGURE 2 Distribution of total lesion load
and individual distributions of lesion-cluster sizes
in each subject with the manually delineated
WMH in the three datasets. The x-axis plots the
log10-transformed total WMH volume (in mm3)
against the y-axis showing the distribution of the
log10-transformed individual lesion cluster size
(in mm3) in each subject, based on the manually
traced WMH (i.e., each dot along the given

x-value representing the lesion clusters in a single
subject). Colors indicate subjects from each cohort
(MRi-Share in turquoise, MWC in orange, and UKB
in gold colors). Each subject is assigned one of five
shapes randomly to separate data points coming
from subjects with very close overall lesion
volumes. Histograms on the margins show the
distribution of the total lesion volume (top) or the
lesion cluster size (right) separately for each
cohort.
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2.5.1 | Evaluation metrics

We focused on the metrics that quantify the spatial similarity of the

ground truth (manually traced WMH of the held-out test set) and pre-

dicted WMH both at the voxel- or individual lesion cluster-level. Spe-

cifically, we counted the number of true positives (TP), false negatives

(FN), and false positives (FP) voxel-by-voxel or at the level of individ-

ual lesion clusters (each individual lesion cluster defined as a 3D con-

nected component using voxel connectivity of 26) to compute the

following performance metrics.

• Voxel-level or cluster-level true positive rate (VL- or CL-TPR): It is

measured as the number of TP voxels or lesion clusters divided by

the number of ground truth voxels or clusters (i.e., TP + FN), and is

equivalent to sensitivity or recall.

• Voxel-level or cluster-level positive predictive value (VL- or CL-PPV): It

is measured as the number of TP voxels or clusters divided by the

number of predicted WMH voxels or clusters (i.e., TP + FP), and is

equivalent to precision.

• Voxel-level or cluster-level Dice coefficient (VL- or CL-Dice): It is the

harmonic mean of the TPR and the PPV, or, equivalently, it can be

expressed as:

Dice¼ 2�P
voxels or clusters ytrue �ypred

� �
P

voxels or clustersytrueþ
P

voxels or clustersypred

� �
¼ 2�TP

2�TPð ÞþFNþFP

� �

Note that the term F1 score is used sometimes to refer to lesion

cluster-based metric (CL-Dice in our terminology) to distinguish from

the VL-Dice, which is often referred as Dice score or Dice similarity

coefficient (e.g., Kuijf et al., 2019), even though mathematically the

Dice and F1 scores are equivalent (Reinke et al., 2021). While both

VL- and CL-metrics are overlap-based measures that quantify the spa-

tial similarity between the predicted and ground truth label as a refer-

ence, CL-metrics emphasize the detection quality over segmentation

quality: in other words, CL-metrics quantify the ability to identify

every lesion cluster, rather than the ability to precisely segment any

given lesion cluster, and thus more relevant for small WMH lesions

where detection of every lesion cluster may be more pertinent than

the precise delineation of lesion boundaries (Park et al., 2018). In con-

trast, VL-metrics are biased toward larger lesions in that large lesion

clusters with more voxel-count influence them disproportionately

than lesion clusters with very small voxel-count. In other words, when

there is mixture of small and large lesions, any given segmentation

tool can achieve high VL-metrics without detecting any of the small

lesions if the collective voxel counts of the small lesions are smaller

than those of the large lesions (Reinke et al., 2021).

We also report the modified Hausdorff distance (95th percentile:

HD95) as a measure of the accuracy of the segmentation boundaries. It is

defined as the 95th percentile of the symmetric surface distances

(Hausdorff distance) of two binary images, with lower values indicating

shorter overall distances between the two images. We used the imple-

mentation of HD95 computation from the MedPy package (version 0.4.0).

2.5.2 | Metric comparisons with existing methods

We performed sets of paired t tests with subject as the within-factor

that compared each performance metric of the SHIVA-WMH against

the LST-LPA, PGS, and HPM, separately for each of the three cohorts

in the held-out test set to allow evaluation of performance in the

cohorts with very different demographic and WMH lesion characteris-

tics. Note that PGS performance could not be compared for the

MWC test subjects, since they were part of the training data used for

this tool. Each comparison was Bonferroni corrected for the number

of comparisons made for the given cohort (three for MRi-Share and

UKB, two for MWC). All paired t tests were performed in R, version

4.2.2 (R Core Team, 2018), and visualized using ggpubr package

(Kassambara, 2022). Summary tables were generated using gt

package (Iannone et al., 2020).

For all metric computations, prediction maps were thresholded at

0.5 to make a fair comparison with the PGS tool, whose output pre-

diction maps were already thresholded at this value. For all other tools

(SHIVA-WMH, LST-LPA, HPM), lower thresholds improved the VL-

and CL-Dice scores slightly (thresholds that resulted in the highest

average VL- and CL-Dice scores were 0.2 for SHIVA-WMH, 0.1 for

LST-LPA and HPM), but the overall patterns remained essentially the

same (not shown).

2.6 | Comparison algorithms

2.6.1 | Lesion segmentation toolbox–LPA

The LST-LPA is an open-source MATLAB tool that uses only an FLAIR

image as an input to segment WMH without requiring any optimiza-

tions or retraining (Schmidt, 2017b). It is based on a conventional sig-

nal processing method with binary classification using a logistic

regression model that has been trained with 53 MS patients with

severe lesion patterns. While it was originally developed to detect

WMH in MS patients (Schmidt et al., 2012), it has been applied in the

context of age-related WMH and widely used (Garnier-Crussard

et al., 2020; Ribaldi et al., 2021; Vanderbecq et al., 2020). Being part

of the toolbox for the SPM software, it is fully automated and simple

to use, and is often selected as a reference tool for the new WMH

detection method development (Balakrishnan et al., 2021). Since it

comes with a built-in preprocessing pipeline that includes intensity

normalization, we used the raw FLAIR images from the test dataset as

the input to obtain the predicted maps of WMH.

2.6.2 | PGS

The PGS tool is a 2D Unet-style model with a multi-scale highlight

foreground method to augment the influence of small lesions or vox-

els lying in the lesion boundaries, and is currently the best-ranking

method that has been submitted to the MICCAI 2017 WMH chal-

lenge (Park et al., 2021). The pretrained model submitted to the

8 of 20 TSUCHIDA ET AL.
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challenge is available as the Docker-contained code from the chal-

lenge website (https://wmh.isi.uu.nl/results/pgs/). It has been trained

on the 2D axial slices of T1w and FLAIR images from the same MWC

dataset used in the present study. Because our MWC test dataset is

part of the training dataset in the challenge (and therefore in the PGS

model), evaluation of this tool in the MWC test dataset was not per-

formed. Since this tool had been trained on the bias-field corrected

data prepared by the challenge organizers (using SPM12), we used the

bias-field corrected T1w and FLAIR images of the MRi-Share (based

on SPM12, as described in Tsuchida et al., 2021) and UKB datasets

(based on FSL FAST, as described in Alfaro-Almagro et al., 2018) as

inputs for this tool.

2.6.3 | HyperMapper

The HPM tool is a 3D Unet model with Monte Carlo dropout layers

incorporated in the encoding layers, and has been trained with T1w

and FLAIR images of 432 subjects from multicenter studies that repre-

sented various diagnostic groups including cognitively normal, cere-

brovascular disease, Parkinson's disease, Alzheimer's disease, and

frontal temporal dementia (Mojiri Forooshani et al., 2022). The

authors have reported high accuracy on a large and diverse test data-

set representing 158 subjects from five different studies, including

one unseen dataset. Of particular interest from our perspective, it also

reported very high accuracy on the subsample of 50 test subjects with

mild WMH cases with the average of 2 ml of lesions. Unlike the PGS

tool and many other recently published methods (including all other

tools submitted to the MICCAI 2017 WMH challenge), the HPM did

not use the MWC dataset to train the models. As such, its perfor-

mance on the MWC test dataset could be evaluated against the

SHIVA-WMH. The pretrained HPM tool is publicly available from

https://github.com/AICONSlab/HyperMapp3r. We used the Docker-

contained image included in the repository to perform predictions on

the test datasets. Since this tool also has been trained on the bias-

field-corrected training data, we used the bias-field corrected T1w

and FLAIR images for all test datasets.

2.7 | Comparison of microstructural properties
inside WMH to normal-appearing white matter in
MRi-Share

The processing pipeline of DWI data to obtain diffusion tensor imag-

ing (DTI: Basser et al., 1994) and neurite orientation dispersion and

density imaging (NODDI: Zhang et al., 2012) metrics in MRi-Share has

been described in detail in Tsuchida et al. (2021). Briefly, DWI data

were preprocessed with the Eddy tool from FMRIB Software Library

(FSL, version 5.0.10: https://fsl.fmrib.ox.ac.uk/fsl) to correct for sus-

ceptibility and eddy-current distortion, then denoised using the nonlo-

cal means filter (Coupe et al., 2008; Coupe et al., 2011) using nlmeans

tool implemented in the Dipy package (0.12.0: Garyfallidis

et al., 2014). The DTI model was fit using the Dipy package, while the

NODDI model was fit using the AMICO tool (Daducci et al., 2015).

The resulting scalar images of DTI and NODDI metrics were core-

gistered to the native T1w image space using antsRegistrationSyN-

Quick script of Advanced Normalization Tools (ANTs, version 2.1:

http://stnava.github.io/ANTs/) package. For the present work, we

focused on the neurite density index (NDI) from NODDI, fractional

anisotropy (FA), and mean diffusivity (MD) from DTI metrics, which all

have been shown to be altered in WMH in MS (Alotaibi et al., 2021)

or in older subjects (Muñoz Maniega et al., 2015; Riphagen

et al., 2018).

To compare NDI, FA, and MD values inside WMH and normal-

appearing white matter (NAWM) in the 50 MRi-Share subjects with

the manual tracing of WMH, manually traced WMH masks in the

native FLAIR space were coregistered linearly to the T1w image by

applying the transformation matrix generated by the coregistration of

FLAIR to T1w with flirt tool from the FSL (Jenkinson et al., 2002). The

mask of NAWM was generated by combining both the manually

traced WMH and PVS masks, then subtracting this from the cerebral

white matter labels generated by the Freesurfer (v6.0: http://surfer.

nmr.mgh.harvard.edu/) in the native T1w space. To remove any partial

volume effects near the border of lesion or other tissue types (gray

matter and cerebrospinal fluid), the mask of cerebral white matter was

eroded once using fslmaths tool from the FSL. To avoid the partial vol-

ume effects of the cerebrospinal fluid in the WMH mask, periventricu-

lar lesion clusters within a 2 mm distance of individual ventricle maps

(generated with Freesurfer v6.0) were removed from the analysis.

Then, 46 out of 50 subjects had non-empty WMH masks and could

be included in the analysis. Mean values of NDI, FA, and MD inside

the resulting WMH and NAWM masks were computed and compared

by performing a within-subject t test for each metric.

All paired t-tests were performed in R, version 4.2.2 (R Core

Team, 2018), and visualized using ggpubr package (Kassambara, 2022).

3 | RESULTS

3.1 | Characterization of manually traced WMH in
the three cohorts

The sample of subjects with manual segmentations of WMH in the

present study comprised 50 young adults (18–35 years of age) from

the MRi-Share study, 11 middle-aged to older UKB participants

(>40 years of age), and 60 memory clinic patients (approximately

>50 years of age) from the MWC. Figure 2 shows the distribution of

total WMH lesion volume and individual lesion cluster sizes of each

participant (with the x-axis effectively ordering every subject accord-

ing to the total lesion volume) in each of the three cohorts with the

manual tracing of the WMH, in order to appreciate the range of clus-

ter sizes observed in individuals with varying load of WMH. Not sur-

prisingly, young subjects of the MRi-Share with very mild lesion load

only have small WMH clusters, and the maximum size of individual
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lesion increases with the total lesion volume, with very large lesions in

older MWC subjects with the most severe cases of WMH, likely

representing the confluence of deep and periventricular WMH. How-

ever, it should be noted that subjects with high WMH load also have

many relatively small lesion clusters, which underscores the impor-

tance of accurately segmenting small lesions for comprehensive char-

acterization of WMH. Figure 2 also demonstrates the vastly different

scales of the overall amount of WMH lesions in the three cohorts in

this study: without the log10-transformation of the scales, the total

WMH volumes for the MRi-Share subjects would cluster around

0, since most subjects have less than 1 ml of WMH in total. Repre-

senting middle-aged and older subjects, the 11 subjects from the UKB

show levels of WMH load intermediate between those of the MRi-

Share and MWC subjects.

3.2 | Detection of WMH with SHIVA-WMH
detector across a wide range of lesion loads

We used the manually traced lesions from both MRi-Share and MWC,

and enhanced training data from additional MRi-Share participants to

train the SHIVA-WMH detector. We then evaluated the performance

of our detector against three reference methods (LST-LPA, PGS, and

HPM), in the held-out evaluation test subjects comprised of 10 MRi-

Share, 11 UKB, and 10 MWC subjects. Table 2 shows the summary of

performance metrics for each method across all 31 test subjects,

except for PGS, which was not evaluated for MWC test subjects.

Overall, they indicate the superior segmentation accuracy of the

SHIVA-WMH detector over the three reference methods (LST-LPA,

PGS, and HPM), with higher sensitivity (TPR) and precision (PPV) both

at the voxel- and lesion cluster-level than any of the reference

methods, resulting in the significantly higher VL- and CL-Dice scores

(difference of 0.34, 0.27, and 0.24 in VL-Dice, all paired t tests

p < .001, and 0.50, 0.31, and 0.41 in CL-Dice, all p < .0001, against

LST-LPA, PGS, and HPM, respectively). The correlation between the

log-transformed volume of manually traced lesion and segmented

WMH across the test set subjects was also the highest for SHIVA-

WMH compared to the three reference methods (Figure 3). Although

FLAIR-only version of SHIVA-WMH had slightly worse performance

than the primary multimodal input version, it still had nominally better

VL-Dice scores (difference of 0.27, 0.20, and 0.17 with p < .001, NS,

0.5 against LST-LPA, PGS, and HPM, respectively) and significantly

better CL-Dice scores against all three reference methods tested (dif-

ference of 0.50, 0.31, and 0.41 with all p < .0001 for CL-Dice; Supple-

mental Table 1).

Because the evaluation test set comprised subjects with very dif-

ferent demographics and WMH burden, we performed more detailed

analysis by comparing the performance metrics separately for each of

the three cohorts. Figure 4 graphically illustrates quantitative compari-

sons of the two main metrics of interest, VL- and CL-Dice scores, in

each cohort. Supplemental Figure 2 shows similar cohort-specific

comparisons for FLAIR-only version of SHIVA-WMH. Table 3 pro-

vides the same summary as in Table 2, but separately for each cohort.

Qualitative comparisons of example segmentations from each method

are shown in Figure 5, separately for representative test set subjects

with either only small WMH lesions (mild) or with large confluent

lesions (severe) from each cohort (except for MRi-Share, in which

none of the subjects had severe WMH). Finally, supplemental

Figure 3 plots individual VL and CL-Dice scores as a function of maxi-

mum size of WMH cluster in each subject to further illustrate the per-

formance differences of each tool across subjects with a range of

WMH burden.

They indicate the clear advantage of the SHIVA-WMH detector

in the MRi-Share test dataset, both at the voxel- and lesion cluster-

level: Our tool shows both higher TPR and PPV than any of the three

reference methods, resulting in the significantly higher VL- and CL-

Dice scores (difference of 0.48, 0.34, and 0.43 in VL-Dice, with all

paired t tests p < .001, and 0.56, 0.42, and 0.48 in CL-Dice, with all

p < .0001 against LST-LPA, PGS, and HPM, respectively; Figure 4 and

Table 3). FLAIR-only version shows a similar pattern, albeit with

TABLE 2 Comparison of SHIVA-WMH against three reference methods across the 31 test subjects for each performance metric.

Mean (SD)

VL-TPR VL-PPV VL-Dice CL-TPR CL-PPV CL-Dice HD95

All (N = 31a)

SHIVA 0.63 (0.20) 0.76 (0.18) 0.66 (0.16) 0.66 (0.16) 0.83 (0.17) 0.71 (0.13) 2.82 (3.21)

LST-LPA 0.30**** (0.32) 0.48** (0.36) 0.32**** (0.29) 0.20**** (0.20) 0.37**** (0.31) 0.21**** (0.17) 4.55 (3.93)

PGS 0.45* (0.18) 0.41**** (0.32) 0.39*** (0.26) 0.62 (0.17) 0.34**** (0.28) 0.40**** (0.26) 3.83 (8.48)

HPM 0.34**** (0.24) 0.64 (0.38) 0.42*** (0.29) 0.25**** (0.19) 0.58** (0.33) 0.30**** (0.17) 3.45 (3.24)

Note: Mean and standard deviations (SD) of each metric across all the test subjects are shown for SHIVA-WMH and the three reference methods (LST-

LPA, PGS, HPM). For each metric, best scores are indicated in bold. Asterisk indicates the degree of statistical significance for each paired t test comparing

SHIVA-WMH against each of the reference methods.
aComparison with PGS was performed in 21 test subjects that excluded subjects from MWC.
****p < .0001.
***.0001 ⩽ p < .001.
**.001 ⩽ p < .01.
*.01 ⩽ p < .05.
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slightly lower VL- and CL-Dice scores compared to the multimodal

version and weaker significance when compared against other refer-

ence methods (Supplemental Figure 2).

In the MWC test dataset, both multimodal and FLAIR-only ver-

sions of SHIVA-WMH have significantly higher CL-Dice (difference of

0.38 with p < .001 against both LST-LPA and HPM) and numerically

better VL-Dice scores than the LST-LPA or HPM, suggesting that our

tool is detecting small lesion clusters better than these tools. While

HPM had significantly better VL-PPV than SHIVA-WMH, it came at

the cost of lower VL-TPR. In this cohort, we did not perform direct

comparison with PGS, since the model had been trained with the sub-

jects we used as the evaluation test set in the present work.

Finally, in the unseen cohort of UKB, with the intermediate level

of the overall lesion severity compared to the other two cohorts, mul-

timodal SHIVA-WMH is clearly superior to the LST-LPA and HPM,

with significantly better VL- and CL-Dice scores (difference of 0.35

and 0.22 in VL-Dice, with p < .01 and 0.05, and CL-Dice difference of

0.55 and 0.38, with both p < .001 against LST-LPA and HPM, respec-

tively). It also shows a significantly better CL-Dice than the PGS

(difference of 0.16, p < .05), in particular showing better VL- and CL-

PPV (Figure 4 and Table 3; also see Figure 5 for an example of FP in

PGS). FLAIR-only version has a similar CL-Dice score as the multi-

modal version, but shows a slightly worse VL-Dice score in this cohort

(Supplemental Figure 2).

The summary of subject-by-subject VL- and CL-Dice scores

across the range of WMH lesion sizes complements these findings in

the cohort-specific analyses: Overall, when subjects are burdened

with large WMH lesions, as in the case for most MWC subjects, VL-

Dice scores are not very different across tools, but the advantage of

SHIVA-WMH is evident in subjects with only small WMH lesions

(Supplemental Figure 3). At the level of lesion-clusters, SHIVA-WMH

consistently shows higher CL-Dice scores than the reference tools

across the entire range of WMH burden (Supplemental Figure 3). It

indicates the superior detection of individual lesion clusters by the

SHIVA-WMH compared to other tools even in subjects with the high

WMH burden, and also highlights the dangers of focusing solely on

VL-Dice scores when assessing prediction quality in the presence of

mixture of small and large lesions.

3.3 | Comparison of microstructural properties
inside WMH to NAWM in young subjects of MRi-
Share

Despite their relative sparsity and small sizes, within-subject compari-

sons of white matter properties inside and outside the manually

traced lesions revealed significant differences in NDI, FA, and MD

values in the WMH found in MRi-Share participants: compared to

NAWM, WMH showed a decreased NDI (mean difference [95% con-

fidence intervals] = �0.179 [�0.145, �0.213], paired t test p < .0001)

and FA (�0.125 [�0.104, �0.144], paired t test p < .0001) values, and

an elevated MD values (+2.2 � 10�4 [1.88 � 10�4, 2.57 � 10�4]

mm2/s, paired t test p < .0001) (Figure 6). The changes in NDI, FA,

and MD values were visible at the level of individual lesion clusters in

some cases, as in the example shown in Figure 3.

4 | DISCUSSION

Long dismissed as the “normal” radiological finding in the aging brain,

WMH is now firmly established as the most common marker of covert

cSVD (Debette & Markus, 2010; Wardlaw et al., 2015). In the present

work, we leveraged the high-quality research scans from the MRi-

Share study (Tsuchida et al., 2021) to demonstrate that small punctate

WMH can already be observed in young adults in their twenties. We

described the SHIVA-WMH detector, trained with both the MRi-

Share and publicly available MWC dataset from older subjects (Kuijf

et al., 2019), with a specific aim to optimize WMH detection across a

wider range of WMH burdens than existing methods that are ready to

be used out-of-the-box (i.e., without retraining). We demonstrated

the superior performance of our tool relative to three reference

methods in accurately segmenting WMH in the test dataset

F IGURE 3 Correlations between total white matter
hyperintensity (WMH) volume of the manually delineated lesions and
WMH segmented by each method across the test-set subjects. The
x-axis plots the log10-transformed total WMH volume (in mm3) based
on the manually traced WMH against the y-axis showing also the
log10-transformed total volume (in mm3) of WMH segmented by
each method. Each dot along the given x-value represents a single
subject, with different colors indicating WMH volume estimates
based on each method (LST-LPA in pink, PGS in turquoise, HPM in
orange, and SHIVA-WMH in green). Regression lines with confidence
intervals are also shown for each method in respective colors, as well
as Pearson's correlation coefficients (R) between the

log10-transformed volumes and associated p values.
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composed of three databases representing young, middle-aged, and

older individuals with varying degrees of WMH burden. When perfor-

mance was compared using Dice score, both at the voxel-by-voxel-

level (VL-Dice) and at the level of each lesion cluster (CL-Dice), to

evaluate the similarity between the manually traced and predicted

WMH segmentations, our tool had the highest average scores across

the test dataset, with the overall VL-Dice and CL-Dice scores of 0.66

and 0.71, respectively. Detailed evaluation in each cohort separately

indicated that the SHIVA-WMH detector achieved significantly higher

CL-Dice scores than all three reference methods across the three

cohorts, indicating the highest detection accuracy at the lesion

cluster-level. It also had significantly higher VL-Dice score in the MRi-

Share test set, and significantly or nominally higher Dice scores in

both UKB and WMC test datasets than the reference methods,

attesting to its segmentation accuracy as well. In WMC, VL- and CL-

Dice scores attained by SHIVA-WMH (mean of 0.76 for both VL- and

CL-Dice) approached or were on a par with those reported for two

trained human observers who annotated WMH in WMC training data,

whose labels were compared against the consensus labels created by

two experts (mean of 0.77/0.79 for VL-Dice and 0.74/0.76 for CL-

Dice for each of the two observer) (Kuijf et al., 2019). It can use either

multimodal inputs of coregistered T1w and FLAIR images or FLAIR

image only, although some performance metrics drop slightly for

FLAIR-only version. To our knowledge, this is the first automated

WMH detection tool that incorporated 3D FLAIR data from young,

neurologically asymptomatic adults to train and validate the method

in subjects with very mild WMH burden (<2 ml). Finally, we demon-

strated the relevancy of identifying small punctate WMH in otherwise

healthy individuals by comparing DWI-based metrics inside manually

traced WMH and NAWM: despite their small size and sparsity, WMH

in the MRi-Share subjects exhibited signs of compromised white mat-

ter integrity, with lower FA and NDI and elevated MD inside WMH

relative to NAWM. It highlights the value of having an automated tool

like our SHIVA-WMH for further investigation and characterization of

WMH as they emerge and progress into more severe forms in large-

scale population-based studies.

F IGURE 4 Voxel (VL-) and cluster-level (CL-) Dice scores of SHIVA-white matter hyperintensity (WMH) compared with lesion prediction
algorithm implemented in the lesion segmentation toolbox (LST-LPA), PGS, and HyperMapper (HPM) tools in the test-set subjects in each cohort.
Comparisons of VL-Dice (top row) and CL-Dice (bottom row) scores between SHIVA-WMH against the reference tools (LST-LPA, PGS, and HPM)
are shown, separately for MRi-Share (n = 10), UKB (n = 11), and MWC (n = 10) test subjects. Asterisk indicates the degree of statistical
significance for each paired t test comparing SHIVA-WMH against each of the reference methods: ****p < .0001, ***.0001 ⩽ p < .001,
**.001 ⩽ p < .01, *.01 ⩽ p < .05, ns p ⩾ .05.
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Prior imaging studies have shown that there are significant

increases in MD and decreases in FA in WMH compared to NAWM in

community-dwelling elderly (Muñoz Maniega et al., 2015; Riphagen

et al., 2018; Wardlaw et al., 2015). While few studies have character-

ized WMH in younger adults, one study that examined the diffusion

properties of relatively mild WMH (total lesion volume <6 ml) in 3D

FLAIR scans of neurologically asymptomatic subjects aged between

21 and 60 also reported similar changes, with a significant MD

increase and nonsignificant FA decrease in WMH compared to

NAWM (Keřkovský et al., 2019). We extend these earlier observa-

tions by demonstrating that the same changes in DTI metrics can

already be detected in even milder WMH in young university stu-

dents. Furthermore, we showed that NDI derived from the NODDI

model is sensitive to the microstructural changes in the WMH found

in these young subjects, potentially giving more specific insight into

the early pathophysiology than DTI metrics alone. It suggests that

increased water diffusivity and decreased directionality of diffusion

(indicated by MD and FA, respectively) may be driven at least partially

by lower myelination or axon density, as indicated by NDI. Although

NDI is known to be lower in WMH found in patients with MS

(Alotaibi et al., 2021; Mustafi et al., 2019), to our knowledge, this is

the first to demonstrate the sensitivity of NDI to WMH in asymptom-

atic young subjects. Our finding is consistent with early neuropatho-

logical work on punctate WMH indicating the reduced myelin content

with neuropil atrophy in perivascular tissues in the deep white matter

(Fazekas et al., 1998), and indicates that subtle microstructural

changes are already detectable with MRI even in young subjects with

very low overall WMH load.

Although the present work does not address the functional signif-

icance of the small amount of WMH in these young subjects, recent

work has highlighted the associations between higher WMH and

poorer executive task performance even in young adults aged

between 20 and 40 who exhibited a similar degree of WMH burden

as MRi-Share subjects in our study (Garnier-Crussard et al., 2020).

Further, there is evidence that the amount of WMH found in young

adults is associated with several modifiable cardiovascular risk factors,

such as body mass index, physical activity, smoking, and alcohol con-

sumption (Williamson et al., 2018). Together, it underscores the

importance of accurately charting the early emergence and progres-

sion of WMH for a better understanding of its pathophysiology, its

genetic and environmental determinants, and ultimately for early

intervention.

To this end, we combined the WMH labels of the MRi-Share with

the publicly available MWC dataset to develop the SHIVA-WMH

detector, based on our prior work that used the 3D Unet-based archi-

tecture to detect PVS, another marker of covert cSVD (Boutinaud

et al., 2021). Even though, there has been an increasing number of

studies applying Unet-based models for WMH detection, it has not

been used to push the limit of early detection in young, neurologically

asymptomatic cohorts. Further, with few exceptions (Tran

TABLE 3 Summary of performance metric comparisons between SHIVA-WMH against the three reference methods separately for each test
cohort.

Mean (SD)

VL-TPR VL-PPV VL-Dice CL-TPR CL-PPV CL-Dice HD95

MRi-Share (n = 10)

SHIVA 0.55 (0.25) 0.66 (0.22) 0.55 (0.19) 0.52 (0.18) 0.91 (0.11) 0.64 (0.14) 3.25 (4.46)

LST-LPA 0.06*** (0.11) 0.15*** (0.19) 0.07**** (0.11) 0.10*** (0.14) 0.08**** (0.11) 0.08**** (0.10) 7.82 (7.53)

PGS 0.32** (0.17) 0.19**** (0.14) 0.21*** (0.13) 0.50 (0.15) 0.15**** (0.11) 0.22**** (0.12) 2.13 (1.21)

HPM 0.10** (0.12) 0.32* (0.37) 0.12*** (0.14) 0.22* (0.26) 0.29*** (0.33) 0.16**** (0.13) 5.74 (5.56)

UKB (n = 11)

SHIVA 0.58 (0.12) 0.83 (0.16) 0.66 (0.10) 0.72 (0.09) 0.78 (0.22) 0.73 (0.15) 2.87 (3.16)

LST-LPA 0.22*** (0.16) 0.57* (0.37) 0.31*** (0.22) 0.16**** (0.09) 0.37*** (0.25) 0.18**** (0.06) 3.92 (1.61)

PGS 0.57 (0.10) 0.60* (0.31) 0.56 (0.23) 0.73 (0.11) 0.52** (0.27) 0.57* (0.23) 5.38 (11.70)

HPM 0.34** (0.15) 0.66 (0.36) 0.44* (0.21) 0.28*** (0.20) 0.64 (0.28) 0.35*** (0.18) 2.94 (0.87)

MWC (n = 10)

SHIVA 0.76 (0.15) 0.78 (0.12) 0.76 (0.11) 0.74 (0.09) 0.81 (0.13) 0.76 (0.06) 2.31 (1.72)

LST-LPA 0.63 (0.32) 0.71 (0.23) 0.58 (0.24) 0.34** (0.25) 0.66 (0.23) 0.38*** (0.17) 3.62 (2.73)

HPM 0.57 (0.19) 0.93* (0.06) 0.68 (0.17) 0.25**** (0.09) 0.80 (0.15) 0.38**** (0.11) 2.19 (1.01)

Note: Mean and standard deviations (SD) of each metric in each test cohort are shown for SHIVA-WMH and the three reference methods (LST-LPA, PGS,

HPM). For each metric in each cohort, best scores are indicated in bold. Asterisk indicates the degree of statistical significance for each paired t test

comparing SHIVA-WMH against each of the reference methods.
****p < .0001.
***.0001 ⩽ p < .001.
**.001 ⩽ p < .01.
*.01 ⩽ p < .05.
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F IGURE 6 White matter microstructural properties of small white matter hyperintensity (WMH) in magnetic resonance imaging (MRi)-Share.
The top row shows an example axial slice of an FLAIR image of an MRi-Share subject showing an isolated punctate WMH, together with blown-
up images of NDI, FA, and MD maps in the same slice to highlight the decreased NDI and FA values and increased MD values within the WMH
(in the dotted rectangles). The bottom row shows the within-subject comparisons of mean NDI, FA, or MD values inside the NAWM and WMH in
46 subjects with at least one WMH after removing WMH too close to ventricles to avoid partial volume effects from the cerebrospinal fluid in
the ventricles.

F IGURE 5 Examples of segmentation
output by SHIVA-white matter
hyperintensity (WMH) detector, lesion
prediction algorithm implemented in the
lesion segmentation toolbox (LST-LPA),
PGS, and HyperMapper (HPM) tools.
Examples of WMH segmentations by
SHIVA-WMH, LST-LPA, PGS, and HPM
are shown separately for representative

subject(s) in each cohort with either mild
(<5 ml) or severe (>5 ml) WMH load. The
top row shows the selected axial slices
from each subject, and second to last
rows show the segmentation results of
each tool, with yellow, pink, and cyan
colors indicating true positive, false
negative, and false positive voxels,
respectively.
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et al., 2022; Umapathy et al., 2021), most work on automatic segmen-

tation methods for age-related WMH so far has focused on develop-

ing and evaluating their tools on more conventional 2D FLAIR images

with thick slices (typically 3 to 5 mm). However, there is an inherent

limitation in accurately quantifying the amount of small WMH with

2D FLAIR acquisitions, since small lesions out of the plane of acquisi-

tion cannot be detected. More modern 3D FLAIR acquisitions with

isotropic resolution are known to achieve a better signal/contrast-to-

noise ratio and allow greater sensitivity to WMH lesions than 2D

acquisitions (Bink et al., 2006; Chagla et al., 2008). They are also

increasingly available in large neuroimaging databases in population-

based studies (e.g., UKB; Alfaro-Almagro et al., 2018; ADNI-3; Gunter

et al., 2017; Rhineland study; Lohner et al., 2022). Yet, several recent

works on age-related WMH detection methods that explicitly evalu-

ated their methods in participants with mild WMH burden (<5 ml) had

not included 3D FLAIR datasets for training or evaluation (Khademi

et al., 2021; Mojiri Forooshani et al., 2022; Ong et al., 2022; Rachmadi

et al., 2018). Our work is unique in taking advantage of the 1 mm iso-

tropic 3D FLAIR scans from young adults and the detailed delineation

of every visible WMH in every slice to train the 3D Unet-based

model, with the objective to apply our tool in other cohorts with simi-

lar acquisitions to accurately describe WMH burden across the adult

lifespan.

We evaluated the performance of the SHIVA-WMH detector in

the 10 subjects each from the MRi-Share and MWC datasets that had

been set aside (i.e., not seen during training), as well as in the 11 addi-

tional subjects from the UKB dataset, representing adults from the

general population in the age range and with the level of WMH bur-

den in between MRi-Share and MWC. As the reference tools for com-

parison, we selected one conventional signal intensity-based method

(LST-LPA) and two existing Unet-based methods (PGS and HPM) that

could be used out-of-the-box (i.e., with pretrained models available

for Unet-based methods). The LST-LPA is based on the logistic regres-

sion model that uses intensity and location information of FLAIR

images to classify WMH. It was originally developed to segment

WMH in MS patients (Schmidt, 2017a), but has been applied widely

to quantify age-related WMH as well (Ribaldi et al., 2021) and has also

been demonstrated to show robust performance across diverse data-

sets with age-related WMH (Heinen et al., 2019; Vanderbecq

et al., 2020). It is also by far the most common algorithm used as a ref-

erence method in studies proposing new WMH detection methods

(29 out of 37 studies reviewed in Balakrishnan et al., 2021). The PGS

is a 2D Unet-based method and the current winner of the MWC

2017 challenge (https://wmh.isi.uu.nl/results/), with the VL- and CL-

Dice scores of 0.81 and 0.79, respectively, in the held-out test dataset

of the challenge (Park et al., 2021). It combines the Unet architecture

with what the authors call a multi-scale highlighting foregrounds

approach, in which the ground truth labels are downsampled at multi-

ple scales to allow loss minimization at each layer of the Unet. This

approach has the effect of emphasizing the contributions of small

lesions and the voxels in the lesion boundaries during the network

training, and as a result should improve accurate detection of WMH

voxels with high uncertainty due to partial volume effect, including

small lesions. Another recently published Unet-based model, HPM

uses 3D input like our SHIVA-WMH detector. It was chosen based on

the high reported performance in cases of very mild WMH burden in

a multi-cohort dataset of 50 subjects with mean WMH volume of

�2 ml, with VL- and CL-Dice scores of 0.84 and 0.72, respectively

(Mojiri Forooshani et al., 2022). These scores are the highest among

several recent works that explicitly evaluated their methods in partici-

pants with mild WMH burden of less than 5 ml (Khademi et al., 2021;

Mojiri Forooshani et al., 2022; Ong et al., 2022; Rachmadi

et al., 2018). For the purpose of comparison with our tool, it also had

the advantage of being trained with multisite imaging datasets that

did not include the MWC dataset, allowing for a fair comparison of

performance with our tool in this cohort, unlike the PGS, whose train-

ing data included MWC testing data set aside in the present study.

Of the three reference methods, LST-LPA had the lowest overall

Dice scores, and performed progressively worse in the cohorts with

lower overall WMH burden. It had comparable Dice scores as SHIVA-

WMH in the MWC test set, but only at the voxel-level. Lesion-wise

CL-Dice was significantly worse than SHIVA-WMH even in this test

cohort with the largest overall WMH burden. It suggests that while it

is able to detect relatively large WMH in subjects with moderate- to

high-lesion burden, small lesions found in these subjects are missed

by LST-LPA. This observation is consistent with other studies demon-

strating the superior performance of Unet-based methods over LST-

LPA primarily in subjects with lower overall lesion burden (Khademi

et al., 2021; Li et al., 2022). Among the three reference methods, PGS

had the highest sensitivity in the MRi-Share and UKB test datasets,

with comparable VL- and CL-TPR in UKB and lesion-wise CL-TPR in

MRi-Share as SHIVA-WMH, attesting to the stated advantage of their

approach. However, the relatively high sensitivity came at the cost of

low precision in both test datasets, resulting in the significantly lower

VL- and CL-Dice scores in MRi-Share and CL-Dice score in UKB com-

pared to SHIVA-WMH. The lower precision likely results from the 2D

input they use for their Unet model, since islands of cortical ribbons

on some axial slices are difficult to distinguish from WMH without the

3D context. The underperformance of HPM was somewhat surprising,

given their high reported performance in subjects with mild WMH

burden and the fact that it has been trained with a large and diverse

dataset representing 432 individuals from 4 multicenter studies, using

the 3D input for their Unet model as in SHIVA-WMH. Although spec-

ulative, we suspect that the reason may be the nature of the training

dataset they used: All their training and testing data were from 2D

FLAIR with 3 mm slice thickness, which may have limited the advan-

tage of full 3D model. Further, in order to prepare the large number of

reference WMH labels to train their model, they used a semiauto-

mated pipeline that generated intensity-based segmentations.

Although these labels were then reviewed and manually edited by

trained human annotators, it is generally more difficult and time con-

suming to add lesions missed by the automated method than rejecting

FPs during such manual editing, which can result in more conservative

labels missing small lesions not detected by the semiautomated

method. In contrast, we used the high-quality, high-resolution manual

labels for the MRi-Share training dataset consisting of 40 subjects to
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train a model specific to this cohort, then used the predictions gener-

ated by the model in unannotated MRi-Share subjects to iteratively

train our model until optimal performance was reached in the manu-

ally traced MRi-Share and MWC validation sets. Such an approach

has been recently suggested as one of the effective solutions for

enhancing limited high-quality annotations for training DL-based

models (Tajbakhsh et al., 2020), here applied specifically to enhance

performance for more difficult cases of subjects with very low WMH

burden.

The superior performance of the SHIVA-WMH detector relative

to other reference methods in the UKB test set is worth being empha-

sized, as this test set represents data coming from an unseen cohort,

and thus constitutes an important test case for the transferability of

our detector to cohorts not seen during the training. Further, the UKB

dataset has been acquired with a modern scanner with high-quality

3D FLAIR acquisitions similar to MRi-Share, and represents one of the

intended target populations to apply our tool in future studies to char-

acterize the full extent of WMH in neurologically asymptomatic

adults. Relative to SHIVA-WMH, only PGS showed comparable sensi-

tivity to WMH found in UKB, but at the cost of lower precision,

resulting in the lower and more variable Dice scores in this cohort

than our tool. It suggests that our tool can predict variable burden of

WMH in this cohort more accurately and consistently than the refer-

ence tools tested here.

It should be noted that we compared the performance of

SHIVA-WMH against PGS and HPM without retraining the latter

two methods with the same training data used by SHIVA-WMH,

since our aim was to evaluate the direct applicability of these pub-

licly available tools, rather than to test the ability of different

Unet-based models to learn new dataset. Although beyond the

scope of this study, it is possible that innovations in the model

architectures, such as the multiscale highlighting foregrounds

approach in PGS, can further improve small lesion detection when

used in combination with the high-resolution training data we

used. Also, the present work focused on WMH detection in asymp-

tomatic or presymptomatic adults, with the assumption that WMH

found in these adults are primarily early stages of age-related

WMH of presumed vascular origin, thus combining MRi-Share and

MWC dataset for training our model. However, in reality, WMH

found in MRi-Share may represent mixed pathology, with lesions in

some subjects caused by pre- or sub-clinical inflammatory condi-

tions (Hosseiny et al., 2020). While the model learning the WMH in

a given training data is agnostic about their etiology, it can learn

any global or local spatial and intensity features of the lesions pre-

sent in the training dataset. To the extent that there are etiology-

specific patterns in WMH appearance and spatial distributions, it is

possible that SHIVA-WMH has learnt predominant WMH patterns

in the specific training dataset we used, and may be less sensitive

to lesions found in other conditions we did not explicitly focus on,

such as MS (training dataset for SHIVA-WMH did not contain any

incidental MS subjects). Beyond the sample-specific characteristics

of WMH patterns, any other sample-specific image characteristics

(scanner- and/or center-specific characteristics as a result of

specific acquisition parameters and protocols, etc.) may also influ-

ence and potentially bias the trained model. Diverse sources of

training data that represent data from four different cohort studies,

each acquired using a 3 T scanner at different institutes, safeguard

against such biases. Yet, it is possible that our model may have

over-learned any idiosyncratic image features of MRi-Share, given

the enhancement procedure that increased the proportion of MRi-

Share data in the model training. However, the superior perfor-

mance of our tool against other reference tools in the UKB cohort

that had not been seen during the training indicates more benefits

of our enhancement procedure than any detrimental effects of

over-learning and the resulting loss of generalizability. Even so, we

plan to continuously improve our tool by fine-tuning our model

using any new data available for training and evaluation. For exam-

ple, we are in the process of including the publicly available WMH

labels from MS and other clinical populations to improve the

robustness of our detector across different datasets and etiology.

4.1 | Conclusion

To summarize, we presented the SHIVA-WMH detector, a 3D-

Unet based model trained with both MRi-Share and MWC dataset

with the specific aim to improve detection of small WMH in

asymptomatic or pre-symptomatic adults in population-based stud-

ies. Our tool outperformed both a classic WMH segmentation tool

(LST-LPA) and existing state-of-the-art Unet-based tools (PGS and

HPM) in segmenting small WMH in non-clinical, community-

dwelling adults represented by MRi-Share and UKB. Our tool can

effectively segment WMH across a wider range of WMH burden

than existing methods, and thus can be a valuable tool for studies

aiming to characterize the emergence and progression of WMH

lesions. Such studies are essential for understanding the patho-

physiology and early-life factors associated with the most common

etiology of WMH in the population, namely cSVD. Our demonstra-

tion of altered diffusion properties of small WMH in MRi-Share,

bearing the hallmark of compromised microstructural integrity sim-

ilar to those found in WMH of older subjects or MS patients, also

underscores the importance of early detection and intervention. To

encourage more research on the early detection and characteriza-

tion of WMH, we make the SHIVA-WMH detector freely and

openly available at (https://github.com/pboutinaud/SHIVA_

WMH), including the current version and any future upgrades.

AUTHOR CONTRIBUTIONS

Ami Tsuchida: Conceptualization, formal analysis, investigation, data

curation, writing-original draft, visualization. Philippe Boutinaud: Con-

ceptualization, methodology, software, writing-review and editing.

Violaine Verrecchia: Data curation. Christophe Tzourio: Funding

acquisition, writing-review and editing. Stéphanie Debette: Funding

acquisition, project administration, writing-review and editing. Marc

Joliot: Conceptualization, supervision, project administration, writing-

review and editing.

16 of 20 TSUCHIDA ET AL.

 10970193, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26548 by C
H

U
 B

ordeaux, W
iley O

nline L
ibrary on [11/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/pboutinaud/SHIVA_WMH
https://github.com/pboutinaud/SHIVA_WMH


ACKNOWLEDGMENTS

The authors like to acknowledge Prof Bernard Mazoyer for the initial

conception of the project to characterize early signs of white matter

anomalies in the young subjects of MRi-Share and his reviewing of

raw T1w and FLAIR images in this database to select 50 subjects with

ranging amount of both WMH and PVS. The authors would also like

to acknowledge Iana Astafeva from the GIN and Pierre Yves Hervé

from Fealinx for participating to the software developments, data han-

dling and computations. The authors are also indebted to the follow-

ing individuals for their invaluable contribution to the MRi-Share

project: Serge Anandra, Amandine André, Gregory Beaudet, Chris-

tophe Bernard, Bruno Brochet, Aurore Capelli, Claire Cardona, Arnaud

Chaussé, Christophe Delalande, Vincent Durand, Louise Knafo, Mor-

gane Lachaize, Alexandre Laurent, Hugues Loiseau, Elena Milesi,

Marie Mougin, Maylis Melin, Guy Perchey, Clothilde Pollet, Thomas

Tourdias, Cécile Marchal, Guillaume Penchet, Cécile Dulau, Igor Sibon,

Sabrina Debruxelle, Sophie Auriacombe, Caroline Roussillon, Nicolas

Vinuesa, and the i-Share “relay” students. The authors also like to

express our gratitude to Paul Matthews (Imperial College, London,

UK) and to the personnel of the UK-Biobank imaging center at Stock-

port (UK) for their help while designing the MRi-Share image acquisi-

tion protocol, and to Maxime Descoteaux (Sherbrooke University,

Canada) for his help in implementing the DWI processing and QC

pipelines. Finally, the authors would like to express their gratitude to

the 1,870 students of the Bordeaux University who gave their con-

sent to participate in MRi-Share.

FUNDING INFORMATION

This work has been supported by a grant overseen by the French

National Research Agency (ANR) as part of the “Investissements

d'Avenir” Program ANR-18-RHUS-002. This work was supported by a

grant from the French National Research Agency (ANR-

16-LCV2-0006-01, LABCOM Ginesislab). The i-Share study has

received funding from the ANR (Agence Nationale de la Recherche)

via the “Investissements d'Avenir” Program (grant ANR-10-COHO-

05). The MRi-Share Cohort was supported by grant ANR-10-LABX-57

and supplementary funding was received from the Conseil Régional of

Nouvelle Aquitaine (ref. 4370420). The work was also supported by

the “France Investissements d'Avenir” Program (ANR-10-IDEX-03-0).

We thank the Precision and Global Vascular Brain Health Institute

(VBHI) funded by France 2030 IHU3 initiative.

CONFLICT OF INTEREST

The authors have nothing to declare.

DATA AVAILABILITY STATEMENT

MRi-Share data used in this study cannot be shared through a public

repository due to French regulations regarding sharing of the medical

imaging data. However, de-identified data can be requested to the

i-Share Scientific Collaborations Coordinator (ilaria.montagni@u-

bordeaux.fr) with a letter of intent (explaining the rationale and objec-

tives of the research proposal), and a brief summary of the planned

means and options for funding. MICCAI 2017 WMH segmentation

challenge dataset used in the present work is freely and publicly avail-

able at the challenge homepage (https://wmh.isi.uu.nl/data/). This

work also used the neuroimaging dataset obtained from the UK Bio-

bank Resource (application number 18359 and 94113). Source codes

for the statistical analysis presented in the manuscript are available on

GitHub (https://github.com/atsuch/SHIVA-WMHpaper). SHIVA-

WMH detector presented in this work is also publicly available at

https://github.com/pboutinaud/SHIVA_WMH.

ORCID

Marc Joliot https://orcid.org/0000-0001-7792-308X

REFERENCES

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R.,

Griffanti, L., Douaud, G., Sotiropoulos, S. N., Jbabdi, S., Hernandez-

Fernandez, M., Vallee, E., Vidaurre, D., Webster, M., McCarthy, P.,

Rorden, C., Daducci, A., Alexander, D. C., Zhang, H., Dragonu, I.,

Matthews, P. M., … Smith, S. M. (2018). Image processing and quality

control for the first 10,000 brain imaging datasets from UK Biobank.

Neuroimage, 166, 400–424. https://doi.org/10.1016/j.neuroimage.

2017.10.034

Alotaibi, A., Podlasek, A., AlTokhis, A., Aldhebaib, A., Dineen, R. A., &

Constantinescu, C. S. (2021). Investigating microstructural changes in

white matter in multiple sclerosis: A systematic review and meta-

analysis of neurite orientation dispersion and density imaging. Brain

Sciences, 11(9), 1151. https://doi.org/10.3390/brainsci11091151

Balakrishnan, R., Valdés Hernández, M. D. C., & Farrall, A. J. (2021). Auto-

matic segmentation of white matter hyperintensities from brain mag-

netic resonance images in the era of deep learning and big data—A

systematic review. Computerized Medical Imaging and Graphics,

88(101), 867. https://doi.org/10.1016/j.compmedimag.2021.101867

Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spec-

troscopy and imaging. Biophysical Journal, 66, 259–267. https://doi.
org/10.1016/S0006-3495(94)80775-1

Bink, A., Schmitt, M., Gaa, J., Mugler, J. P., Lanfermann, H., & Zanella, F. E.

(2006). Detection of lesions in multiple sclerosis by 2D FLAIR and

single-slab 3D FLAIR sequences at 3.0 T: Initial results. European Radi-

ology, 16, 1104–1110. https://doi.org/10.1007/s00330-005-0107-z
Boomsma, J. M. F., Exalto, L. G., Barkhof, F., van den Berg, E., de

Bresser, J., Heinen, R., Koek, H. L., Prins, N. D., Scheltens, P.,

Weinstein, H. C., van der Flier, W. M., & Biessels, G. J. (2017). Vascular

cognitive impairment in a memory clinic population: Rationale and

design of the “Utrecht-Amsterdam clinical features and prognosis in

vascular cognitive impairment” (TRACE-VCI) study. JMIR Research Pro-

tocols, 6, e60. https://doi.org/10.2196/resprot.6864

Boutinaud, P., Tsuchida, A., Laurent, A., Adonias, F., Hanifehlou, Z.,

Nozais, V., Verrecchia, V., Lampe, L., Zhang, J., Zhu, Y.-C., Tzourio, C.,

Mazoyer, B., & Joliot, M. (2021). 3D segmentation of perivascular

spaces on T1-weighted 3 tesla MR images with a convolutional auto-

encoder and a U-shaped neural network. Frontiers in Neuroinformatics,

15(641), 600. https://doi.org/10.3389/fninf.2021.641600

Cannistraro, R. J., Badi, M., Eidelman, B. H., Dickson, D. W.,

Middlebrooks, E. H., & Meschia, J. F. (2019). CNS small vessel disease:

A clinical review. Neurology, 92, 1146–1156. https://doi.org/10.1212/
WNL.0000000000007654

Chagla, G. H., Busse, R. F., Sydnor, R., Rowley, H. A., & Turski, P. A.

(2008). Three-dimensional fluid attenuated inversion recovery

imaging with isotropic resolution and nonselective adiabatic inver-

sion provides improved three-dimensional visualization and cere-

brospinal fluid suppression compared to two-dimensional flair at

3 tesla. Investigative Radiology, 43, 547–551. https://doi.org/10.

1097/RLI.0b013e3181814d28

TSUCHIDA ET AL. 17 of 20

 10970193, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26548 by C
H

U
 B

ordeaux, W
iley O

nline L
ibrary on [11/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

mailto:ilaria.montagni@u-bordeaux.fr
mailto:ilaria.montagni@u-bordeaux.fr
https://wmh.isi.uu.nl/data/
https://github.com/atsuch/SHIVA-WMHpaper
https://github.com/pboutinaud/SHIVA_WMH
https://orcid.org/0000-0001-7792-308X
https://orcid.org/0000-0001-7792-308X
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.3390/brainsci11091151
https://doi.org/10.1016/j.compmedimag.2021.101867
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1007/s00330-005-0107-z
https://doi.org/10.2196/resprot.6864
https://doi.org/10.3389/fninf.2021.641600
https://doi.org/10.1212/WNL.0000000000007654
https://doi.org/10.1212/WNL.0000000000007654
https://doi.org/10.1097/RLI.0b013e3181814d28
https://doi.org/10.1097/RLI.0b013e3181814d28


Coupe, P., Manjon, J., Robles, M., & Collins, L. D. (2011). Adaptive multire-

solution non-local means filter for 3D MR image denoising. IET Image

Processing, 6, 558.

Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., & Barillot, C. (2008).

An optimized blockwise nonlocal means denoising filter for 3-D mag-

netic resonance images. IEEE Transactions on Medical Imaging, 27,

425–441. https://doi.org/10.1109/TMI.2007.906087

Daducci, A., Canales-Rodríguez, E. J., Zhang, H., Dyrby, T. B.,

Alexander, D. C., & Thiran, J.-P. (2015). Accelerated microstructure

imaging via convex optimization (AMICO) from diffusion MRI data.

Neuroimage, 105, 32–44. https://doi.org/10.1016/j.neuroimage.2014.

10.026

Debette, S., & Markus, H. S. (2010). The clinical importance of white mat-

ter hyperintensities on brain magnetic resonance imaging: Systematic

review and meta-analysis. BMJ, 341, c3666. https://doi.org/10.1136/

bmj.c3666

Debette, S., Schilling, S., Duperron, M.-G., Larsson, S. C., & Markus, H. S.

(2019). Clinical significance of magnetic resonance imaging markers of

vascular brain injury: A systematic review and meta-analysis. JAMA

Neurology, 76, 81–94. https://doi.org/10.1001/jamaneurol.2018.3122

Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I., & Zimmerman, R. A.

(1987). MR signal abnormalities at 1.5 T in Alzheimer's dementia and

normal aging. American Journal of Roentgenology, 149, 351–356.
https://doi.org/10.2214/ajr.149.2.351

Fazekas, F., Schmidt, R., & Scheltens, P. (1998). Pathophysiologic mecha-

nisms in the development of age-related white matter changes of the

brain. Dementia and Geriatric Cognitive Disorders, 9(Suppl 1), 2–5.
https://doi.org/10.1159/000051182

Garnier-Crussard, A., Bougacha, S., Wirth, M., André, C., Delarue, M.,

Landeau, B., Mézenge, F., Kuhn, E., Gonneaud, J., Chocat, A.,

Quillard, A., Ferrand-Devouge, E., de La Sayette, V., Vivien, D., Krolak-

Salmon, P., & Chételat, G. (2020). White matter hyperintensities across

the adult lifespan: Relation to age, Aβ load, and cognition. Alzheimer's

Research & Therapy, 12, 127. https://doi.org/10.1186/s13195-020-

00669-4

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt, S.,

Descoteaux, M., Nimmo-Smith, I., & Dipy Contributors. (2014). Dipy, a

library for the analysis of diffusion MRI data. Frontiers in Neuroinfor-

matics, 8, 8. https://doi.org/10.3389/fninf.2014.00008

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training

deep feedforward neural networks, in: Teh, Y. W., Titterington,

M. (Eds.), Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, Proceedings of Machine Learning

Research. Presented at the International Conference on Artificial Intel-

ligence and Statistics, PMLR, Chia Laguna Resort, Sardinia, Italy,

pp. 249–256.
Griffanti, L., Zamboni, G., Khan, A., Li, L., Bonifacio, G., Sundaresan, V.,

Schulz, U. G., Kuker, W., Battaglini, M., Rothwell, P. M., &

Jenkinson, M. (2016). BIANCA (brain intensity abnormality classifica-

tion algorithm): A new tool for automated segmentation of white mat-

ter hyperintensities. Neuroimage, 141, 191–205. https://doi.org/10.

1016/j.neuroimage.2016.07.018

Guerrero, R., Qin, C., Oktay, O., Bowles, C., Chen, L., Joules, R., Wolz, R.,

Valdés-Hernández, M. C., Dickie, D. A., Wardlaw, J., & Rueckert, D.

(2018). White matter hyperintensity and stroke lesion segmentation

and differentiation using convolutional neural networks. NeuroImage:

Clinical, 17, 918–934. https://doi.org/10.1016/j.nicl.2017.12.022
Gunter, J. L., Borowski, B. J., Thostenson, K., Arani, A., Reid, R. I.,

Cash, D. M., Thomas, D. L., Zhang, H., DeCarli, C. S., Fox, N. C.,

Thompson, P. M., Tosun, D., Weiner, M., & Jack, C. R. (2017). ADNI-3

MRI PROTOCOL. Alzheimer's & Dementia, 13, P104–P105. https://doi.
org/10.1016/j.jalz.2017.06.2411

Heinen, R., Steenwijk, M. D., Barkhof, F., Biesbroek, J. M., van der

Flier, W. M., Kuijf, H. J., Prins, N. D., Vrenken, H., Biessels, G. J., de

Bresser, J., & TRACE-VCI study group. (2019). Performance of five

automated white matter hyperintensity segmentation methods in a

multicenter dataset. Scientific Reports, 9(16), 742. https://doi.org/10.

1038/s41598-019-52966-0

Hosseiny, M., Newsome, S. D., & Yousem, D. M. (2020). Radiologically iso-

lated syndrome: A review for neuroradiologists. American Journal of

Neuroradiology, 41, 1542–1549. https://doi.org/10.3174/ajnr.A6649
Iannone, R., Cheng, J., & Schloerke, B. (2020). gt: Easily create

presentation-ready display tables.

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved opti-

mization for the robust and accurate linear registration and motion

correction of brain images. Neuroimage, 17, 825–841. https://doi.org/
10.1016/s1053-8119(02)91132-8

Kassambara, A. (2022). ggpubr: “ggplot2” based publication ready plots.
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