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Statistical classification 
of treatment responses in mouse 
clinical trials for stratified medicine 
in oncology drug discovery
Hélène Savel 1,2,4, Florence Meyer‑Losic 2, Cécile Proust‑Lima 1,3 & Laura Richert 1,3,4,5*

Translational oncology research strives to explore a new aspect: identifying subgroups that exhibit 
treatment response even during pre‑clinical phases. In this study, we focus on PDX models and their 
implementation in mouse clinical trials (MCT). Our primary objective was to identify subgroups with 
different treatment responses using Latent Class Mixed Model (LCMM).We used a public dataset 
and focused on one treatment, encorafenib, and two indications, melanoma and colorectal cancer, 
for which efficacy depends on a specific mutation BRAF V600E. One LCMM per indication was 
implemented to classify treatment responses at the PDX level, analyzing the growth kinetics of 
treated tumors and matched controls within the PDX models. A simulation study was carried out to 
explore the performance of LCMM in this context. For both applications, LCMM identified classes 
for which the higher the proportion of mutated BRAF V600E PDX models the greater the treatment 
effect, which is aligned with encorafenib use recommendations. The simulation study showed 
that LCMM could identify classes with large differences in treatment effects. LCMM is a suitable 
tool for MCT to explore treatment response subgroups of PDX. Once these subgroups are defined, 
characterization of their phenotypes/genotypes could be performed to explore treatment response 
predictors.

Oncology research is increasingly shifting towards stratified medicine, aiming to provide each patient with the 
most appropriate treatment based on their pre-treatment (baseline)  characteristics1,2. In certain cancer types and 
treatments, patient responses to treatment can vary significantly, ranging from a complete response to disease 
progression, often influenced by specific molecular characteristics of the cancer. For instance, in melanoma and 
colorectal cancer and with encorafenib treatment, the presence of baseline BRAF V600E mutations has been 
identified as a predictor of treatment  response3–8. However, when developing a new drug, the predictive factors 
for treatment response may not yet be known. In such cases, early exploration of patient subgroups with distinct 
treatment responses and assessment of their baseline predictors can optimize the drug development process, 
allowing for a targeted focus on relevant subgroups from the outset, even during preclinical phases for drug 
discovery  research9.

In preclinical oncology research, Mouse Clinical trials (MCT) or PDX Clinical trials (PCT, and PDX for 
Patient Derived Xenograft)10,11 are experimental approaches that enable the incorporation of patient hetero-
geneity in the drug development path. Patient-Derived Xenografts (PDX) are created by implanting tumors 
from patients in immunocompromised mice and are known to retain key characteristics of the original patient 
tumor. In MCT, each PDX model represents a tumor from a different patient, and within each PDX, mice are 
randomly assigned to a vehicle control group or various treatment arms. Therefore, mice within the same PDX 
model have an identical tumor, while tumors differ across PDX models. A MCT involves multiple PDX models, 
allowing observation of treatment responses from different models in each treatment arm as described in Fig. 1. 
Similar to clinical trials, including multiple PDX models (each with a tumor from a different patient) in the MCT 
captures the heterogeneity present in derived patient tumors, with greater diversity captured as the number of 
PDX models increases.
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The exploration of predictive characteristics of treatment response in PDX models involves two steps. The 
first step is to classify treatment responses and identify subgroups of PDX models that respond differently to 
treatment. The second is to assess the baseline molecular signatures that could distinguish responders and non-
responder subgroups. Our work focuses on the first step, i.e. on methods for classifying treatment responses.

In the literature, some authors such as Gao et al.12 have developed a mouse-specific ordinal response definition 
called mRECIST, which categorizes treatment responses as complete response, partial response, stable disease or 
progressive disease based solely on the kinetics of each treated mouse. However, this method disregards informa-
tion from untreated control mice, which reflects the natural tumor progression and thus prognosis. Consequently, 
the mRECIST approach does not specifically assess causal treatment effects but describes outcomes that are likely 
confounded by natural prognosis. Another criterion used in the literature, Tumor Growth Inhibition (TGI = 1 
−  RTVtr/RTVc, with Relative Tumor Volume RTV =  TVt/TV0, t: time, 0: randomization date, tr: treated and c: 
control), takes into account the control group by forming a ratio of relative tumor volume between treated and 
control  mice10. However, there is no consensus on the threshold for this criterion, and it often leads to subop-
timal statistical power as it does not fully consider the complete data on tumor growth kinetics. Laajala et al.13 
developed a model for analyzing preclinical oncology data using mixed-effect regression models, classifying 
models into “growing” and “poorly growing” categories.

To address the limitation of existing methods for classifying tumor growth kinetics in PDX, we propose the 
use of Latent Class Mixed Models (LCMM). In epidemiology, this model is employed when acknowledging het-
erogeneity in the trajectories of a biomarker and aiming to identify and characterize classes of trajectories large 
cohorts. These classes are referred to as latent classes because the model assumes that the observed heterogeneity 
is a result of unobservable variables. For instance, it has been applied in the study of cognitive  decline14. In a 
previous work, we demonstrated that linear and non-linear mixed-effects models could robustly estimate treat-
ment effect in a MCT  design15. Therefore, our objective was to explore the performances of the LCMM method 
to classify treatment trajectories in PDX models.

Materials and methods
The Latent Class Mixed Model (LCMM) was used to distinguish treatment response subgroups, defined by tumor 
growth kinetics of control and treated mice. To consider the classification of both the kinetics of the treated 
mouse and the associated control mouse, the model was defined at the PDX level rather than the mouse level.

MCT datasets
To test the ability of the LCMM model to explore heterogeneity in a MCT we focused on encorafenib treatment 
in two indications: melanoma and colorectal cancer. This choice was made because differences in treatment 
responses are expected in this treatment-indication combination, and a mutation predictive of treatment (BRAF 
V600E) is already known, thus making these datasets suitable for the proof-of concept of our classification 
method. This mutation information was not taken into account in the modelling approach, since we propose 
LCMM as a method suitable for the exploration of responder subgroups in the absence of such prior knowledge. 
However, we used this mutation information to assess the biological plausibility of the resulting classification. 
The dataset used was the open access dataset associated with the publication by Gao et al.12. One untreated 
mouse and one mouse per studied treatment were included in each PDX model, and 33 PDX were included in 
the MCT. Treatment was administered for 21 days at the reverse translated from human dose. For this analysis, 
we focused on the first 28 days of follow-up. Details of the experiment are described in the  publication12. The data 
reported by Gao et al. used for the analysis were the tumor volume measurements and the time of measurement 
during the first 28 days of follow-up for each mouse, and the BRAF V600E mutation status for each PDX model.

Latent class mixed model
In contrast to standard mixed effect regression models which assume the trajectories of the marker under study 
come from a homogeneous population, latent class mixed models assume the population is heterogeneous and 
characterized by several distinct mean profiles of trajectory. This is achieved by defining an unobserved class 
structure with each individual or experimental unit belonging to one and only one class. In the case of MCTs, 
our aim was not to identify distinct profiles of individual trajectories at the mouse level but to identify distinct 
causal treatment effects at the PDX level. By defining the PDX as the experimental unit, we were able to take 
into account both the control and treated mouse within each PDX and define classes with different treatment 

Figure 1.  Illustration of the concept of a Mouse Clinical Trial.
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effects in terms of effect sizes between treated and untreated groups, rather than identifying only classes with 
different baseline prognosis.

The LCMM model was defined by two statistical sub-models as follows:
Let  ci be a discrete latent variable for the latent group structure:  ci = g if the experimental unit (in our case 

PDX) i (i = 1,…,N) belongs to class g (g = 1,…,G).

• Probability of latent class membership described using a multinomial logistic model defined as follows:

where ξ0g is the intercept for the class g and ξ1g is the  q1-vector of class specific parameters associated with 
the  q1-vector of time-independent covariates  Xci.

With ξ0G = 0 and ξ1G = 0 i.e. class G is the reference class. When no covariate predicts the latent class mem-
bership, this model reduces to a class-specific probability, which is the case in our application.

• Class-specific trajectory of the marker defined by a linear mixed model

In the context of MCTs, it is assumed that for the same PDX model, there is no individual mouse effect since 
mice are clones. We assumed the difference in tumor growth between the treated and the control mice was only 
due to the treatment. Under this assumption, the class-specific linear mixed model was defined for tumor volume 
(in log)  Yijk measured for each PDX i = 1,…, N, mouse k = 1, 2 and occasion j = 1, …,  ni corresponding to time  tijk 
(number of tumor volume measurements for each mouse) as follows:

where f(t)=α1t + α2(1t>8)(t − 8) is the function of time capturing the overall shape of trajectory (here two lin-
ear slopes with a change point at days 8), trt is the treatment group (treated vs control coded 1/0) and γi are the 
individual random effects that capture the correlation in the PDX repeated measures of the outcome.

The estimation of the parameters was carried out in the maximum likelihood framework using R package 
 lcmm14 in the R software version 4.1.0 (R Project for Statistical Computing, RRID:SCR_001905).

In LCMM models, the number of classes is not directly estimated. Models with 2, 3 and 4 classes were esti-
mated, and the final number of latent classes was chosen based on the Integrated Classification Log-likelihood 
criterion (ICL-the lower the better) which combines the Bayesian Information Criterion (measure of the ade-
quacy of the model to the data) and the discrimination of the classes (with a measure derived from the posterior 
probabilities of latent class membership). Given the small sample size, the selection of the final number of latent 
classes was also guided by the parsimony of the model. Once the optimal model was identified, the second step 
was to describe, within each class, the tumor growth trajectories of the treated and control mice. A classification 
was also derived from the model by assigning a PDX to the class in which it had the highest posterior probability 
(i.e., the class membership probability in the estimated model given the PDX observations) to belong.

Of note, to ensure a convergence toward the global likelihood maximum, each model was estimated 300 times 
from different random initial values.

Simulations
A simulation study was conducted to explore the performance of LCMM for treatment effect classification 
(defined by both treated and untreated tumor growth kinetics) in the context of MCTs, i.e. when considering 
a small number of experimental units (a few dozen) as opposed to its classic use with hundreds or thousands 
individuals in epidemiology.

Nine scenarios were simulated with three different patterns of treatment effect differences between the two 
classes (− 1, − 2.5 and − 5 log(mm3)/days), and three different intensities of random slope variability (at the 10th, 
50th and 90th percentiles of the random slopes estimated using the mixed linear regression models by indication 
and treatment in the public data from Gao et al.12). The kinetic profiles of these 9 scenarios are detailed in sup-
plementary Fig. 1. In these simulations, we assumed two mice (one treated and one untreated mouse) per PDX 
model with a 28-day follow up and several sample sizes of PDX models (N = 20 and 40). For each scenario, 500 
simulated datasets were generated. Tumor growth kinetics were simulated using a two classes mixed model with 
a class-specific linear trajectory, a class-specific treatment effect and individual random intercept and  slope15. 
These datasets were then analyzed with a 2-class LCMM model as described in a previous section. To assess the 
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accuracy of the resulting classification, a percentage of mismatch between the generated classes and the classes 
obtained by the estimated LCMM was defined as follows:

With N: the number of PDX models in the MCT; And  nerror: the number of PDX differently classified in the 
generated and estimated LCMM models.

Results
Classification of encorafenib treatment effect in melanoma and colorectal cancer MCT
LCMM models with 2 to 4 latent classes were estimated for each indication, specifically melanoma and CRC, 
and all models converged successfully.

Melanoma use case
Based on the ICL criterion, the model with the lowest ICL was the 4-class LCMM model (2-class LCMM: 
ICL = 4994.2, 3-class LCMM: ICL = 4858.2, 4-class LCMM: ICL = 4773.2). However, the 3-class LCMM had an 
ICL value close to the one of the 4-class model, and one class of the 4-class model contained only one PDX. 
Additionally, the assignment in each class was associated with posterior probabilities of almost 1 in the 3-class 
model, indicating its extremely high level of separation. We thus retained the 3-class LCMM.

The tumor growth kinetics of PDX in each assigned class are reported by treatment in Fig. 2, and by PDX 
in Fig. 3.

There was no treatment effect observed in class1, a weak treatment effect in class 2 and a larger treatment 
effect in class 3.

The biological plausibility of the classification was tested based on the available baseline mutation informa-
tion. The overall proportion and associated 95% confidence interval of mutated BRAF V600E PDX models 
were 36.4% [20.4; 54.9]. The proportion and associated 95% confidence interval of BRAF V600E mutated PDX 
models were 17.6% [3.8; 43.4], 40% [12.1; 73.8] and 83.3% [35.9; 99.6] in classes 1, 2, 3, respectively (Fisher exact 
test, p value = 0.015). The LCMM derived classification was thus in line with the biological existing knowledge 
of treatment effect predictors for encorafenib, where the treatment is effective in patients with a BRAF V600E 
 mutation6,7.

Colorectal cancer use case
For the colorectal cancer use case, based on the ICL criterion, the model with the lowest ICL was the 4-class 
LCMM model (2-class LCMM: ICL = 5965.1, 3-class LCMM: ICL = 5827.5, 4-class LCMM: ICL = 5751.4). 
However, the 3-class model showed already an almost perfect separation of classes with mean posterior 

%mismatch =

nerror

N
× 100

Figure 2.  Classification of tumor growth kinetics of melanoma PDX models in each treatment group as 
determined by the LCMM.
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class-membership probabilities > 0.97. Considering these criteria and giving preference to the more parsimoni-
ous adequate class number, the 3-class LCMM model was retained.

The reported tumor growth kinetics per assigned classes (Figs. 4, 5) suggest that there was a deleterious 
treatment effect in class 1, no treatment effect in class 2 and a treatment effect in class 3. In this MCT, the overall 
proportion and associated 95% confidence interval of BRAF V600E mutated PDX models were 13.6% [5.2; 27.3]. 
The proportions and associated 95% confidence interval of BRAF V600E mutated PDX models per class were 
5.2% [0.1; 26.0], 16.7% [3.6; 41.4] and 28.6% [3.7; 70.9] in classes 2, 1, 3 respectively. The frequency of BRAF 

Figure 3.  Melanoma PDX tumor growth kinetics in each latent class identified by the LCMM.

Figure 4.  Classification of tumor growth kinetics of CRC PDX models in each treatment group as determined 
by the LCMM.
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V600E mutated PDX models tended to be higher in the responder class (class 3) compared to the non-responder 
classes (class 1 and class 2) although this did not reach statistical significance (Fisher exact test, p value = 0.19). 
The LCMM derived classification was thus in line with the biological existing knowledge of treatment effect 
predictors for  encorafenib3–5,8.

Simulations
Results of the simulation study are reported in Fig. 6. They indicate that, for two realistic sample sizes of MCT 
(N = 20 or 40 PDX), with different levels of inter-PDX variability of tumor growth (random slope), the greater 
the difference in treatment effect between classes, the better the classification of treatment response derived from 
LCMM. In view of these results, applying this method to a real dataset can allow identifying classes in cases 
of large treatment effect differences between classes. This result is in line with one of the translational research 
objectives which is to identify responders to treatment models versus non-responders that have by definition a 
significant difference of treatment effect.

Discussion
In MCTs, identifying subgroups of PDX models with a treatment response is a major challenge. Therefore, an 
informed choice of the most appropriate statistical method is of importance to reduce the risk of bias in esti-
mating treatment effect and to have an objective definition of treatment responders. The LCMM allows for the 
classification of tumor growth kinetics, considering both the control and treated groups (reducing the risk of 
bias in estimating treatment effect), without requiring prior knowledge of the kinetic profile. The application of 
this model on two specific use cases successfully distinguished treatment responses. Furthermore, the resulting 
classification was plausible in terms of prior biological knowledge indicating that treatment response varies 
depending on BRAF V600E  mutation3–8.

The simulation study showed that the use of LCMM can only distinguish classes with a large difference in 
treatment effect in the context of small sample sizes in MCTs. Indeed, the greater the difference in treatment 
effect between classes, the lower the percentage of mismatch. In the preclinical MCT application, the LCMM is 
used in the context of drug discovery research, with the aim of identifying subgroups of treatment responders 
(with a significant treatment effect) vs. non-responders (with no treatment effect). To be of interest for decision 
making in the development plan, these two subgroups should have a large difference in treatment effect, which 
is in line with the results of the simulation study and supports the value of using LCMM to classify tumor growth 
kinetics of PDX models.

After identifying the treatment-response classes using a LCMM model and a biological interpretation of the 
results, further bioinformatics and data science analyses could be conducted to discover baseline tumor signa-
tures distinguishing the classes, such as their phenotypes or genotypes. If such baseline signatures, driving the 
treatment response, were discovered, these could be considered in the clinical development plan, for instance by 
selecting subgroups of patients with the highest likelihood of responding to the treatment in early phase trials 
or by designing trials specifically to assess subgroup treatment effects in human participants as basket trial or 
umbrella trial  designs16–18. If no classes or no associated baseline signatures were discovered in the MCT, explora-
tion of potential subgroup treatment effects could nevertheless be pursued in the clinical phases.

In conclusion, in the context of MCTs, LCMM is a suitable statistical method for identifying subgroups of 
PDX models with large differences in treatment effects. This contributes to the aim of better selecting patients 
with the best chance of responding to treatment in early phase clinical trials.

Figure 5.  CRC PDX tumor growth kinetics in each latent class identified by the LCMM.
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Data availability
Data used for this analysis are available in the supplementary data associated with Gao et al.12 publication. Quali-
fied researchers may request access to the computer codes used to generate the simulated data by contacting the 
first author of this manuscript.
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