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THE MONOID OF NUMBERS OF THE FORM 1 < aq/bp < a.

LAURENT FALLOT

Abstract. This paper is a study of the set of rational numbers of the form

1 < aq/bp < a with a and b co-prime integers. The set F(a,b) of these numbers,

with an appropriate binary law, is a monoid isomorphic to (N,+, 0). We

identify the sequences of minimum and maximum record holders in F(a,b) and
prove that the first one converges to 1 while the second one converges to a. We

conclude that F(a,b) is dense in the set of the real numbers comprise between

1 and a.

1. Introduction

Working on Collatz problem also known as the 3x+1 problem or Syracuse prob-
lem and many more, we initiate a study of numbers of the form 2q/3p where p is
any positive integer and q is the smallest integer such that 2q/3p > 1. This study
gave some properties that are generalizable to numbers of the form aq/bp where
1 < a < b are co-prime integers. We introduce in this paper, the generalization of
these results.

We propose a study of numbers of the form aq

bp where 1 < a < b are co-prime

integers, p ∈ N and q ∈ N is such that 1 ≤ aq

bp < a. Let F(a,b) denotes the set of
these numbers.

F(a,b) is clearly countable. Moreover, the function ϕ(a,b) that naturally maps N
to F(a,b) permits to define an unconventional binary law on F(a,b) making of F(a,b)

a monoid inferring that ϕ(a,b) : N → F(a,b) is a monoid isomorphism.
Later, we define two sequences of F(a,b), one strongly depending on each other.

Each of these sequences enumerates the record holders of F(a,b) of one type: mini-
mum or maximum. Despite an apparent irregularity of F(a,b), the definition of these
sequences is global and does not depend on local properties. One of this sequence
converges to 1 while the other one converges to a.

By the use of the sequence containing the minimum record holder of F(a,b), we

conclude that F(a,b) is dense in [1, a]R. Moreover, the union of the 2kF(a,b) on k ∈ Z
admits R+ as its closure.

2. Context

The Collatz problem is based on a function whose definition is understandable
to everyone. This problem was initiate during the 30’s and is not solved till today.
Many people, researchers or not, from different backgrounds have tried to reformu-
late the problem in their own jargon, but none has yet solved this conjecture.
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INP, Avenue des Facultés, CS60099, 33400 Talence, France

E-mail address: Laurent.Fallot@bordeaux-inp.fr.
Date: December 22, 2023.

2020 Mathematics Subject Classification. 11B05,11B34,11B83.
Key words and phrases. sequence of rational numbers, rational numbers, record holders, subset

dense, Collatz problem.

1



2 THE MONOID OF NUMBERS OF THE FORM 1 < aq/bp < a.

We do not intend to solve it in this paper. We just use it as the context of this
work. A starting point of this function may be Wikipedia [6]. For more references
on this problem, we cite the overview of Lagarias [2] which is regularly updated.

There are several definitions of this function. Each of these definitions gives a
problem similar to the initial one.

For the purpose of this presentation of this work context, we use the compressed
form of the function. It may be defined as T : N → N with T (n) = n/2 if n is even,
else T (n) = (3n+1)/2. Collatz problem claims that for any n ∈ N−{0} there exist
k ∈ N such that T k(n) = 1.

Terras [5] presents some results on the weak Collatz conjecture which consists in
proving that for any n ∈ N, there is a k ∈ N such that T k(n) < n. He particularly
defines the stopping time of n as the lowest k such that T k(n) < n.

Silva[4] for his part, claims that for any n < 2k and any a ∈ N, T k(2ka + n) =
3pa+T k(n) where p is the number of times the odd part of T is applied. From this,
without going into details, it is possible to prove that if n has a stopping time of k,
then for any a ∈ N, 2ka + n has a stopping time lower than or equal to k. Silva’s
tests on the stopping time of 2ka + n do not show any 2ka + n having a stopping
time strictly lower than k. All of them accept k as a stopping time as Silva claims
in Proposition 6 of its paper[4].

Today, we do not have any proof that 2ka+n has exactly k as its stopping time.
Trying to build its proof by contradiction leads to prove that T k(n) < n as soon
as 2k/3p > 1 which also seems to be verified by tests. An attempt to prove this
new proposition by the use of the remainder representation introduced by Terras
[5] quickly leads to have to prove that 2k/3p + 1/3p > 2k−p/3p + 1.

From these problems to be solved born an interest into getting a better knowledge
of the numbers of the form 1 < 2q/3p < 2. The study of these numbers gives some
interesting properties. None of these properties use any condition but 1 < 2 < 3
and 2 and 3 are co-primes.

Below, we propose a generalization of these properties to numbers of the form
1 < aq/bp < a where a and b are two co-prime integers satisfying 1 < a < b.

3. Conventions and quick properties

Before we start our study, let us agree on some notations and definitions. Then,
we introduce some quick properties easily obtained from definitions.

The writing ⌈x⌉ denotes the ceiling function applied to x ∈ R. That is ⌈x⌉ is
the smallest integer greater than or equal to x. Thus, ⌈x⌉ is the only integer n
verifying x ≤ n < x+ 1.

By the same way, ⌊x⌋ denotes the floor function applied to x ∈ R. That is ⌊x⌋ is
the greatest integer lower than or equal to x. So, ⌊x⌋ is the only integer n verifying
x− 1 < n ≤ x.

Let a and b be two co-prime positive integers such that 1 < a < b. We are on the
way to study rational numbers of the form aq

bp where p is any positive integer and

q is the smallest positive integer such that 1 ≤ aq

bp . That is q = ⌈p log(b)/ log(a)⌉
where log denotes the natural logarithm function. The set of these rational numbers
will be denoted by F(a,b).

The definition of such rational numbers infers that given a, b and p, q is unique.
More, to obtain 1 ≤ aq

bp we need that p ≤ q because a < b. In summary, q − p is
a positive or null integer depending only on a, b and p. Let us use the notation
d(a,b)(p) for this difference. Thus, for any f ∈ F(a,b), there exist a unique p such

that f = a
p+d(a,b)(p)

bp by the definition of F(a,b) inferring that d(a,b)(p) is also unique.
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Finally, we define the function ϕ(a,b) as follow.

ϕ(a,b) : N → F(a,b)

p → ϕ(a,b)(p) =
a
p+d(a,b)(p)

bp

Let us claim now some quick properties of F(a,b) and ϕ(a,b).

Proposition 3.1. Given two co-prime positive integers 1 < a < b, the only integer
that F(a,b) contains is 1.

Proof. Note first that ϕ(a,b)(0) =
a
0+d(a,b)(0)

b0 = ad(a,b)(0). To have 1 ≤ ϕ(a,b)(0) < a,
we need that d(a,b)(0) = 0. Thus, ϕ(a,b)(0) = 1 and 1 ∈ F(a,b).

Now, for any rational number r of the form m
n , the assertion r ∈ N infers that

m is a multiple of n. Take any f ∈ F(a,b). The number f is necessarily of the form
a
p+d(a,b)(p)

bp by the definition of F(a,b). As a and b are co-prime, the only possible case

such that bp divides ap+d(a,b)(p) is bp = 1. In such a case, p = 0 and d(a,b)(p) = 0.
As a consequence, f = ϕ(a,b)(0) = 1. So, F(a,b) cannot contain any positive integer
other than 1. □

Let us now state that any member of F(a,b) has a unique representation of the

form a
p+d(a,b)(p)

bp .

Proposition 3.2. Given two co-prime integers a and b verifying that 1 < a < b
and two positive integers p1 and p2, ϕ(a,b)(p1) = ϕ(a,b)(p2) if and only if p1 = p2.

Proof. On the one hand, the fact that p1 = p2 is sufficient to immediately obtain
ϕ(a,b)(p1) = ϕ(a,b)(p2) from the definitions of ϕ(a,b) and d(a,b). Indeed, assume that
p1 = p2. The uniqueness of d(a,b)(p) for a given p implies that d(a,b)(p1) = d(a,b)(p2).

Thus, a
p2+d(a,b)(p2)

bp2 = a
p1+d(a,b)(p1)

bp1 and ϕ(a,b)(p1) = ϕ(a,b)(p2).
On the other hand, to justify that p1 = p2 is necessary for ϕ(a,b)(p1) = ϕ(a,b)(p2),

let us reason by contradiction.
Suppose that given two positive integers p1 and p2 such that p1 ̸= p2 we have

ϕ(a,b)(p1) = ϕ(a,b)(p2). We can assume that p2 < p1 without any loss of gener-

alities. By hypothesis, we have ϕ(a,b)(p1) = ϕ(a,b)(p2). This reads a
p1+d(a,b)(p1)

bp1 =
a
p2+d(a,b)(p2)

bp2 . Thus a
p1+d(a,b)(p1)

bp1 /a
p2+d(a,b)(p2)

bp2 = 1. A factorization of this equation

gives a
p1−p2+d(a,b)(p1)−d(a,b)(p2)

bp1−p2
= 1. Because a and b are co-prime, we need to have

p1−p2+d(a,b)(p1)−d(a,b)(p2) = 0 and p1−p2 = 0. So p1 = p2 which contradicts the

hypothesis that they are different. In conclusion, to get a
p1+d(a,b)(p1)

bp1 = a
p2+d(a,b)(p2)

bp2

we must have p1 = p2 and Proposition 3.2 holds. □

4. The function ϕ(a,b) is an isomorphism of monoids.

In this section, we first establish that ϕ(a,b) is a bijection. Then, we define an
operation on F(a,b) induced by ϕ(a,b) from the addition on N. After a more precise
description of this operation, we conclude that F(a,b) is a commutative monoid.
Finally, we state that ϕ(a,b) : N → F(a,b) is a monoid isomorphism.

We claim the following quick theorem.

Theorem 4.1. Whatever the two co-prime integers 1 < a < b are, the set F(a,b) ={
ϕ(a,b)(p) =

a
p+d(a,b)(p)

bp , p ∈ N
}

where d(a,b)(p) is the smallest integer such that

1 < a
p+d(a,b)(p)

bp is a countable set.
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Proof. The set F(a,b) is countable if and only if there exist at least one bijection
between N and it by the definition of the property ”is countable”. Let us prove
that ϕ(a,b) defined in section 3 is a bijection.

Firstly, the domain of ϕ(a,b) is N. Effectively, for any finite p ∈ N, bp is different
from 0 by the hypothesis b is positive. Then, as the exponential function ax tends
to +∞ when x → +∞, there exist an infinity of q ∈ N such that aq > bp. Let us
take the smallest q so that this proposition is verified. As we supposed that a < b,

aq > bp infers that q > p and we can write that q = p+ d(a,b)(p). Thus,
a
p+d(a,b)(p)

bp

exist and is a member of F(a,b) by the construction of this set. This is summarized
by the domain of ϕ(a,b) is N.

Secondly, as F(a,b) = ϕ(a,b)(N) by its definition, so any f ∈ F(a,b) has an an-
tecedent in N.

Lastly, Proposition 3.2 claims that any f ∈ F(a,b) cannot have more than one
antecedent in N.

In conclusion, ϕ(a,b) is a bijection and F(a,b) is countable. □

Now, define an operation on F(a,b) induced by ϕ(a,b) from the addition on N.

Definition 4.2. Given any 1 < a < b, two co-prime positive integers, the symbol
”⋆” denotes the binary operation from F(a,b) ×F(a,b) in F(a,b) defined by

ϕ(a,b)(p1) ⋆ ϕ(a,b)(p2) = ϕ(a,b)(p1 + p2).

In this definition we use the symbol ”⋆” to denote this operation to avoid possible
confusions with ”·”, the multiplication on R which is also used later.

Now, we can claim the following theorem.

Theorem 4.3. For any a and b co-prime positive integers satisfying 1 < a < b,
ϕ(a,b) : (N,+, 0) → (F(a,b), ⋆, 1) is a monoid isomorphism.

Proof. This theorem may be easily deduced from the definition of ⋆, from Proposi-
tion 4.1 and from Proposition 3.1.

Take any pair (f1, f2) ∈ F(a,b) × F(a,b). As ϕ(a,b) is a bijection by Theorem 4.1,
there exist (p1, p2) ∈ N × N such that f1 = ϕ(a,b)(p1) and f2 = ϕ(a,b)(p2). Now,
p1 + p2 ∈ N so that ϕ(a,b)(p1 + p2) ∈ F(a,b) by the definition of F(a,b). Thus ⋆ is an
intern law.

The associativity of ⋆ may be easily obtained from the associativity of + on N
and Proposition 3.2. Indeed, take any f1, f2 and f3 three members of F(a,b). By
Theorem 4.1, for each of the fi, i = 1, 2, 3 there exist a positive integer pi such
that fi = ϕ(a,b)(pi). The definition of ⋆ induces that

ϕ(a,b)(p1) ⋆ (ϕ(a,b)(p2) ⋆ ϕ(a,b)(p3)) = ϕ(a,b)(p1) ⋆ ϕ(a,b)(p2 + p3)
= ϕ(a,b)(p1 + (p2 + p3))
= ϕ(a,b)((p1 + p2) + p3).

Finally, applying two times the definition of ⋆ we obtain

ϕ(a,b)(p1) ⋆ (ϕ(a,b)(p2) ⋆ ϕ(a,b)(p3)) = (ϕ(a,b)(p1) ⋆ ϕ(a,b)(p2)) ⋆ ϕ(a,b)(p3)

proving by the same way that ⋆ is associative.
The operation ⋆ is commutative. Effectively, Take f1 = ϕ(a,b)(p1) and f2 =

ϕ(a,b)(p2) two members of F(a,b). By definition of ⋆, f1 ⋆ f2 = ϕ(a,b)(p1 + p2).
The commutativity of + in N gives ϕ(a,b)(p1 + p2) = ϕ(a,b)(p2 + p1). That is
f1 ⋆ f2 = f2 ⋆ f1.

Now, by Proposition 3.1, for any f = ϕ(a,b)(p) ∈ F(a,b), we can write that
f ⋆ 1 = ϕ(a,b)(p) ⋆ ϕ(a,b)(0) = ϕ(a,b)(p + 0) = ϕ(a,b)(p). By the commutativity of ⋆
we obtain f ⋆ 1 = 1 ⋆ f = f . So 1 is the neutral element of F(a,b).
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To conclude, (F(a,b), ⋆) is a commutative monoid. Moreover, the definition of ⋆
claims that ϕ(a,b)(p1+p2) = ϕ(a,b)(p1)⋆ϕ(a,b)(p2) and by Proposition 3.1 ϕ(a,b)(0) =
1. So ϕ(a,b) is a morphism of monoids and is even an isomorphism of monoids by
Theorem 4.1. □

Now that we state that (F(a,b), ⋆) is a commutative monoid, let us have a closer

look at how the operation ⋆ acts on the fractions of the form a
p+d(a,b)(p)

bp .

Theorem 4.4. Given 1 < a < b two co-prime positive integers. Let f1 and f2 be
two members of F(a,b). Then

f1 ⋆ f2 =

{
f1 · f2 if f1 · f2 < a
1
a · f1 · f2 if a ≤ f1 · f2

where ”·” denotes the multiplication of two real numbers.

Proof. We know that f1 ⋆ f2 ∈ F(a,b) by Theorem 4.3. Define p1 and p2 such
that f1 = ϕ(a,b)(p1) and f2 = ϕ(a,b)(p2). By the definition of ϕ(a,b) we have

f1 = a
p1+d(a,b)(p1)

bp1 and f2 = a
p2+d(a,b)(p2)

bp2 . By the way, f1 ⋆ f2 = ϕ(a,b)(p1 + p2) =
a
p1+p2+d(a,b)(p1+p2)

bp1+p2
. Moreover, 1 ≤ f1 · f2 < a2.

Consider separately the two cases introduced by Theorem 4.4.

Case 1 Suppose that 1 ≤ f1 · f2 < a. We have, f1 · f2 = a
p1+d(a,b)(p1)

bp1 · a
p2+d(a,b)(p2)

bp2 .

This reads 1 ≤ f1 · f2 = a
p1+p2+d(a,b)(p1)+d(a,b)(p2)

bp1+p2
< a. So f1 · f2 ∈ F(a,b).

This infers that ϕ(a,b)(p1+p2) = f1 ·f2. More, d(a,b)(p1+p2) = d(a,b)(p1)+
d(a,b)(p2) by identification. To conclude that the first case of Theorem 4.4
holds.

Case 2 Suppose now that a ≤ f1 · f2 < a2. Clearly, 1 ≤ 1
a · f1 · f2 < a. Note that

1
a · f1 · f2 = a

p1+p2+d(a,b)(p1)+d(a,b)(p2)−1

bp1+p2
. Thus, 1

a · f1 · f2 = ϕ(a,b)(p1 + p2) ∈
F(a,b). Furthermore, we get d(a,b)(p1 + p2) = d(a,b)(p1) + d(a,b)(p2) − 1 by
identification. Thus, the second case of Theorem 4.4 also holds.

□

To conclude with this section, we can extend ϕ(a,b) on Z getting by the same

way a group (F̃a,b, ⋆) extending (F(a,b), ⋆). As it is out of interest in this paper, we
just give some indications on how to proceed without going into details.

Define ϕ̃a,b(p) the extension of ϕ(a,b) on Z by ϕ̃a,b(p) = ϕ(a,b)(p) and ϕ̃a,b(−p) =
1

ϕ(a,b)(p)
where p > 0. Note that 1 ≤ ϕ̃a,b(p) < a and 1

a ≤ ϕ̃a,b(−p) ≤ 1 when 0 ≤ p.

Now, define F̃a,b = ϕ̃a,b(Z). Finally, extends ⋆ on F̃a,b by the use of the same

definition as for F(a,b). Clearly, (F̃a,b, ⋆) is a commutative monoid as (F(a,b), ⋆) is.

Moreover, for every p ∈ Z, ϕ̃a,b(p) ⋆ ϕ̃a,b(−p) = 1. So (F̃a,b, ⋆) is a group and ϕ̃a,b

is an isomorphism of groups between (Z,+, 0) and (F̃a,b, ⋆, 1).

5. Record holders

To establish the proof of the main theorem of this paper, we proceed as follow.
Firstly, we build a sequence of F(a,b) that converges to 1. In the same time, we
get another convergent sequence which limit is a. Secondly, we prove that any
x ∈ [1, a]R is the limit of a convergent sequence. Thirdly, we deduce that F(a,b) is
dense in [1, a]R. Finally, we conclude that our main theorem holds.

For our purpose, we need to build a sequence u(a,b) of F(a,b) that converges to
1. The aim of this section is to define such a sequence.
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Below, by minimum record holder understand any ϕ(a,b)(p) such that ϕ(a,b)(p) =
inf{ϕ(a,b)(p

′), 1 ≤ p′ ≤ p}. Reciprocally, a maximum record holder is any ϕ(a,b)(p)
such that ϕ(a,b)(p) = sup{ϕ(a,b)(p

′), 1 ≤ p′ ≤ p}.
We observe record holders numerically obtained for a = 2 and b = 3. We

highlight how they may be obtained and how the minimum record holders and
maximum ones interact. We define the corresponding sequences and prove that
they contain all the record holders and only them.

By the way, we obtain that u(a,b) is composed of all the minimum record holders
of F(a,b). But, to obtain u(a,b), we have to define a second one, v(a,b), containing all
the maximum record holders of F(a,b) and only them. Both sequences are strongly
related one to each other so that we have to define and manage them in the same
time.

To get an idea of these two sequences, let us observe the record holders of the
sequence

(
ϕ(2,3)(p)

)
p∈N.

Table 1 summarizes the record holders of the form ϕ(2,3)(p) for 1 ≤ p ≤ 215.
These results were obtained with a specific script written for Maxima[1][3], a Com-
puter Algebra System under GPL license. The used algorithm consists in a simple
for loop on p which computes d(a,b)(p) and ϕ(a,b)(p). Each time it founds a new
record holder, the script put this number and its related informations at the end of
an initially empty list.

To highlight the interaction between the minimum record holders and the max-
imum ones, Table 1 is divided vertically into two parts. The left part lists the
minimum record holders while the right one describes the maximum record hold-
ers. For the same purpose, the records are sorted by increasing p-value.

Each row of the table corresponds to a new record holder. If it is a minimum
one, the right part is left empty. Reciprocally, for a maximum record holder, the
left part is left blank. An exception to this rule is the first row. It describes
ϕ(2,3)(1) the first member of F(2,3) that is considered by our script. As it is the
first explored number, we assume that it is the first minimum record holder and
the first maximum one at the same time. So we list it as so.

For each of the two vertical parts, the first column gives the record holder
ϕ(2,3)(p). The second column contains the value of p for this record holder. The
third column collects the computed value of d(2,3)(p). The fourth column named
∆p is the difference between the value of p of the current record holder and the
value of p of the previous record holder of the same type. The fifth and last column
named ∆d(p) details the difference between d(2,3)(p) of the current record holder
and the same value for the previous record holder of the same type.

Observe the evolution of the maximum record holders. Note that we do not
consider ϕ(2,3)(0). We avoid it because it is in fact inf{f ∈ F(a,b)} and it is the only
integer contained in this set. Our analysis starts with ϕ(2,3)(1).

The first one is 22

31 as previously announced as it is the first considered ϕ(2,3)(p).

The second one is 24

32 is a maximum record holder which may be seen as the product
of the last maximum record holder found by the last minimum one. Look at the
following maximum record holders. We can see that this behaviour repeats each
time.

Observe now the evolution of the minimum record holders. By the same way,
we can see that we can obtain the next minimum record holder by multiplying the
last minimum we found by last maximum record holder found divided by 2.

Note that this sequence is divided into phases where one of the two record holders
evolves while the other one stays invariant. Let us try to understand when this
happens.
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Table 1. Repartition of the record holders ≤ 215 for a = 2 and b = 3

Minimum record holders Maximum record holders
ϕ(p) p d(p) ∆p ∆d(p) ϕ(p) p d(p) ∆p ∆d(p)

22

3
1 1 1 1 22

3
1 1 1 1

24

32
2 2 1 1

25

33
3 2 2 1

28

35
5 3 2 1

212

37
7 5 5 3

220

312
12 8 5 3

227

317
17 10 12 7

246

329
29 17 12 7

265

341
41 24 12 7

285

353
53 32 41 24

2149

394
94 55 53 31

2233

3147
147 86 53 31

2317

3200
200 117 53 31

2401

3253
253 148 53 31

2485

3306
306 179 53 31

2570

3359
359 211 306 179

21055

3665
665 390 306 179

21539

3971
971 568 665 389

22593

31636
1636 957 665 389

23647

32301
2301 1346 665 389

24701

32966
2966 1735 665 389

25755

33631
3631 2124 665 389

26809

34296
4296 2513 665 389

27863

34961
4961 2902 665 389

28917

35626
5626 3291 665 389

29971

36291
6291 3680 665 389

211025

36956
6956 4069 665 389

212079

37621
7621 4458 665 389

213133

38286
8286 4847 665 389

214187

38951
8951 5236 665 389

215241

39616
9616 5625 665 389

216295

310281
10281 6014 665 389

217349

310946
10946 6403 665 389

218403

311611
11611 6792 665 389

219457

312276
12276 7181 665 389

220511

312941
12941 7570 665 389

221565

313606
13606 7959 665 389

222619

314271
14271 8348 665 389

223673

314936
14936 8737 665 389

224727

315601
15601 9126 665 389

225782

316266
16266 9516 15601 9126

250509

331867
31867 18642 15601 9126

Take a phase where the maximum record holder evolves. For instance, we have

the subsequence which start with 28

35 . Note that 28

35 is the last minimum record

holder that we found until now while 24

32 is the last maximum one. Now 24

32 ·
28

35 = 212

37 ≈ 1.87288523 < 2 and this number is the next maximum record holder.

Furthermore, 212

37 · 28

35 = 220

312 ≈ 1.97308074 < 2 is the new maximum record holder.

But 220

312 · 28

35 = 228

317 ≈ 2.07863650 > 2 and the phase of maximum record holder
growth stops. A new phase starts in which minimum record holder decreases. It

starts at 220

312 and the next minimum record holder is 228

317 /2 = 227

317 ≈ 1.03931825.
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The last maximum record holder found is 220

312 . Pursue until the end of this phase
and observe that each time the product of the last minimum record holder found

by 220

312 gives a result greater than a. Once 265

341 obtained as the last minimum record

holder, we have 265

341 · 220

312 = 285

353 ≈ 1.99582809 < 2. Then starts a new phase where
the maximum record holder increases.

Go further in Table 1 to observe that this pattern repeats in the whole table.
So, while the product of the last maximum record holder found by the minimum
one is lower than 2, we obtain a new maximum record holder in Table 1, otherwise
we get a new minimum record holder.

Generalize and expand this behaviour with 1 < a < b, two co-prime integers,
to define two asynchronous sequences of F(a,b). For the sack of simplicity, we
mimic Table 1 by defining a sequence s(a,b) whose elements are pairs s(a,b)i =

(u(a,b)i
, v(a,b)i) where u(a,b) is the sequence that contains the minima we found

while v(a,b) contains the maxima.

Definition 5.1. Let a and b be two co-prime integers such that 1 < a < b. We
recursively define a sequence s(a,b) = ((u(a,b), v(a,b))) of pairs of R× R by s(a,b)0 =

(u(a,b)0
, v(a,b)0) =

(
ϕ(a,b)(1), ϕ(a,b)(1)

)
and

(u(a,b)i+1
, v(a,b)i+1

) =

{
(u(a,b)i

, u(a,b)i
v(a,b)i) when u(a,b)i

v(a,b)i < a

( 1au(a,b)i
v(a,b)i, v(a,b)i) when a ≤ u(a,b)i

v(a,b)i.

Our next goal is to prove that the distinct u(a,b)i
and the distinct v(a,b)i are

record holders of F(a,b) and all the record holders of F(a,b) are present either in
u(a,b) or v(a,b) depending on their type.

Theorem 5.2. Take any pair of co-prime integers 1 < a < b. Let u(a,b) and v(a,b)
be the two sequences defined in Definition 5.1. The set {u(a,b)i

, i ∈ N} is the set of

all the minimum record holders of F(a,b) and the set {v(a,b)i, i ∈ N} is the set of all
the maximum record holders of F(a,b)

Decompose the proof of Theorem 5.2 into lemmas. The first one states that any
member of s(a,b) is in F(a,b) ×F(a,b).

Lemma 5.3. The sequence s(a,b) is a sequence of F(a,b) ×F(a,b).

Proof. Let us prove Lemma 5.3 by induction.
Base case. Clearly, ϕ(a,b)(1) ∈ F(a,b) by the definition of this set. As an immediate
consequence, s(a,b)0 = (ϕ(a,b)(1).ϕ(a,b)(1)) ∈ F(a,b) ×F(a,b).

Induction case. Suppose that s(a,b)i = (u(a,b)i
, v(a,b)i) ∈ F(a,b)×F(a,b) for a given

i and prove that s(a,b)i+1
= (u(a,b)i+1

, v(a,b)i+1
) ∈ F(a,b) ×F(a,b).

As u(a,b)i
is supposed to be a member of F(a,b), there exist p1 such that u(a,b)i

=

ϕ(a,b)(p1) and 1 < u(a,b)i
< a. For the same reasons, there exist p2 such that

v(a,b)i = ϕ(a,b)(p2) and 1 < v(a,b)i < a.

Note that 1 < u(a,b)i
v(a,b)i < a2 so we have two possibilities: 1 < u(a,b)i

v(a,b)i <

a and a ≤ u(a,b)i
v(a,b)i < a2. Let us consider these two possibilities separately.

Case 1: 1 < u(a,b)i
v(a,b)i < a. In this case, Definition 5.1 defines u(a,b)i+1

= u(a,b)i

and v(a,b)i+1
= u(a,b)i

v(a,b)i. The hypothesis of induction says that u(a,b)i+1
=

u(a,b)i
∈ F(a,b).

From another point of view, the hypothesis of this case is 1 < u(a,b)i
v(a,b)i < a

inferring that 1 < ϕ(a,b)(p1)ϕ(a,b)(p2) < a. With the help of Theorem 4.4 we
get ϕ(a,b)(p1)ϕ(a,b)(p2) = ϕ(a,b)(p1) ⋆ ϕ(a,b)(p2) = ϕ(a,b)(p1 + p2). In conclusion,
v(a,b)i+1

= ϕ(a,b)(p1 + p2) ∈ F(a,b) by the construction of this set.
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Case 2: a ≤ u(a,b)i
v(a,b)i < a2. In this case, Definition 5.1 defines u(a,b)i+1

=
1
au(a,b)i

v(a,b)i and v(a,b)i+1
= v(a,b)i. It is immediate to see that v(a,b)i+1

= v(a,b)i ∈
F(a,b) from the hypothesis of induction.

Concerning u(a,b)i+1
, it is supposed that a ≤ u(a,b)i

v(a,b)i < a2. That leads

to 1 < 1
aϕ(a,b)(p1)ϕ(a,b)(p2) < a. Theorem 4.4 claims that 1

aϕ(a,b)(p1)ϕ(a,b)(p2) =
ϕ(a,b)(p1)⋆ϕ(a,b)(p2) = ϕ(a,b)(p1+p2) by Definition 4.2. Thus, u(a,b)i+1

= ϕ(a,b)(p1+

p2) ∈ F(a,b).
So, whatever the case is, s(a,b)i+1

= (u(a,b)i+1
, v(a,b)i+1

) is a member of F(a,b) ×
F(a,b).

To conclude, by induction we proved that s(a,b) is a sequence of F(a,b)×F(a,b). □

Before going further, note that for any i ∈ N, if s(a,b)i = (ϕ(a,b)(p1), ϕ(a,b)(p2))

then, either s(a,b)i+1
= (ϕ(a,b)(p1), ϕ(a,b)(p1)⋆ϕ(a,b)(p2)) when ϕ(a,b)(p1)·ϕ(a,b)(p1) <

a or s(a,b)i+1
= (ϕ(a,b)(p1) ⋆ ϕ(a,b)(p2), ϕ(a,b)(p2)) when a < ϕ(a,b)(p1) · ϕ(a,b)(p1).

Thus the following lemma that may be considered as a corollary of Lemma 5.3.

Lemma 5.4. The sequence s(a,b) defined in Definition 5.1 may be also defined as
s(a,b)0 = (ϕ(a,b)(1), ϕ(a,b)(1)) and for any i ∈ N,

(u(a,b)i+1
, v(a,b)i+1

) =

{
(u(a,b)i

, u(a,b)i
⋆ v(a,b)i) when u(a,b)i

v(a,b)i < a
(u(a,b)i

⋆ v(a,b)i, v(a,b)i) when a ≤ u(a,b)i
v(a,b)i.

Next lemma claims that neither u(a,b)i
nor v(a,b)i may be infinitely constant.

Lemma 5.5. For all i ∈ N, there exist an integer k > 0 such that u(a,b)i+k
̸= u(a,b)i

and v(a,b)i+k
̸= v(a,b)i.

Proof. Take any i ∈ N and observe the subsequence (s(a,b)i+k
)k>0 extracted from

s(a,b). Definition 5.1 introduces two different cases. Let us consider them separately.
Case 1: u(a,b)i

v(a,b)i < a. In such a case, Definition 5.1 declares that v(a,b)i+1
=

u(a,b)i
v(a,b)i ̸= v(a,b)i. So, for any k ≥ 1, v(a,b)i+k

̸= v(a,b)i. Now, u(a,b)i+1
= u(a,b)i

.

Suppose that for any k > 0, u(a,b)i+k
= u(a,b)i

. This implies that for any k > 0,

u(a,b)i+k
v(a,b)i+k

< a. It is easy to see that, in such a case, for any k > 0, v(a,b)i+k
=

u(a,b)
k
i
· v(a,b)i. As u(a,b)i

∈ F(a,b), u(a,b)i
> 1 and the sequence (u(a,b)

k
i
· v(a,b)i)k∈N

is a strictly increasing sequence which tends to +∞. As a consequence, there exist
k > 0 such that u(a,b)

k
i
· v(a,b)i > a. Take the lowest k so that u(a,b)

k
i
· v(a,b)i > a.

For this k, u(a,b)i+k+1
= 1

au(a,b)i+k
v(a,b)i+k

by Definition 5.1. This contradicts the

hypothesis assuming that for any k > 0, u(a,b)i+k
= u(a,b)i

. So this hypothesis does

not hold and there exist a k > 0 so that u(a,b)i+k
̸= u(a,b)i

. As v(a,b)i+k
̸= v(a,b)i,

we are done for this case.
Case 2: a ≤ u(a,b)i

v(a,b)i. In this case, Definition 5.1 sets the next term of u(a,b) as

u(a,b)i+1
= 1

au(a,b)i
v(a,b)i ̸= u(a,b)i

and v(a,b)i+1
= v(a,b)i. From this, we can affirm

that for any k ≥ 1, u(a,b)i+k
̸= u(a,b)i

.

Let us suppose now that for any k > 0, a ≤ u(a,b)i+k
v(a,b)i+k

. By a way similar

to the one used in previous case, we can prove that u(a,b)i+k
= u(a,b)i

(
v(a,b)i

a

)k

. As

v(a,b)i ∈ F(a,b), v(a,b)i < a and
v(a,b)i

a < 1. So the sequence

(
u(a,b)i

(
v(a,b)i

a

)k
)

k∈N

converges to 0. This means that there exist k > 0 so that u(a,b)i

(
v(a,b)i

a

)k

< 1

which contradicts the hypothesis assuming that such a k does not exist. We can
conclude that there exist k > 0 such that u(a,b)i+k

̸= u(a,b)i
and v(a,b)i+k

̸= v(a,b)i.

In conclusion of this reasoning, in both cases we obtain that there exist k > 0
such that u(a,b)i+k

̸= u(a,b)i
and v(a,b)i+k

̸= v(a,b)i.
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So under the conditions of Lemma 5.5 its conclusion holds. □

In summary of Lemma 5.5 and its proof, on the one hand, we can see that u(a,b)

monotonously decreases because when this sequence varies u(a,b)i
is multiplied by

v(a,b)i

a < 1. Moreover, u(a,b) never stays infinitely constant. Furthermore, u(a,b)

admits 1 as a lower bound because all of its elements are members of F(a,b). Thus,
u(a,b) converges.

On the other hand, v(a,b) monotonously increases. Indeed, when v(a,b)i changes,
we multiply it by u(a,b)i

> 1. More, v(a,b) never stays infinitely constant. Now, all
the v(a,b)i ∈ F(a,b). Therefore, a is a upper bound of v(a,b). In conclusion, v(a,b)
also converges.

Thus the following lemma that we use later to prove the next theorem.

Lemma 5.6. As they are defined in Definition 5.1, the sequence u(a,b) converges
to a limit l1 ≥ 1 and the sequence v(a,b) converges to a limit l2 ≤ a.

Moreover, the proof of Lemma 5.5 points out that if u(a,b) remains constant

between the indices i and i+k then v(a,b)i+k
= v(a,b)i ·u(a,b)

k
i
. Reciprocally, if v(a,b)

does not change between the indices i and i+ k then u(a,b)i+k
= u(a,b)i

(
v(a,b)i

a

)k

.

This is our next lemma.

Lemma 5.7. As u(a,b) and v(a,b) are defined in Definition 5.1, if u(a,b) remains

constant between the indices i and i + k then v(a,b)i+k
= v(a,b)i · u(a,b)

k
i
. Recip-

rocally, if v(a,b) does not change between the indices i and i + k then u(a,b)i+k
=

u(a,b)i

(
v(a,b)i

a

)k

As ϕ(a,b) is a bijection, its inverse denoted ϕ−1
(a,b) is also a bijection. This function

maps any f ∈ F(a,b) to ϕ−1
(a,b)(f) = p ∈ N such that ϕ(a,b)(p) = f .

Now we can introduce the proof of Theorem 5.2.

Proof of Theorem 5.2. Define first the sequence π = (πi)i∈N where for every i ∈ N,
πi = sup{ϕ−1

(a,b)(u(a,b)i
), ϕ−1

(a,b)(v(a,b)i)}. This sequence is a monotonously strictly

increasing sequence. Effectively, take any i ∈ N, suppose that ϕ−1
(a,b)(u(a,b)i

) = p1

and ϕ−1
(a,b)(v(a,b)i) = p2. Both are necessarily positive. Now, either u(a,b)i+1

=

u(a,b)i
⋆ v(a,b)i and v(a,b)i+1

= v(a,b)i or u(a,b)i+1
= u(a,b)i

and v(a,b)i+1
= u(a,b)i

⋆

v(a,b)i. Further, u(a,b)i
⋆v(a,b)i = ϕ(a,b)(p1)⋆ϕ(a,b)(p2) = ϕ(a,b)(p1+p2). As p1+p2 >

p1 and p1 + p2 > p2 then, πi+1 = p1 + p2 > πi = sup{p1, p2}.
Now, as u(a,b) is monotonously decreasing, it is sufficient to prove that there

is no p, πi < p < πi+1 such that ϕ(a,b)(p) < u(a,b)i
whatever i is. Indeed, take

any i ∈ N. Suppose that u(a,b)i
is the last minimum record holder found. If for

any πi < p < πi+1, ϕ(a,b)(p) ≥ u(a,b)i
, then whatever the case u(a,b)i+1

= u(a,b)i

or u(a,b)i+1
< u(a,b)i

is, there is no minimum record holder f such that πi <

ϕ−1
(a,b)(f) < πi+1. In the second of the two possible cases mentioned above, u(a,b)i+1

is the following minimum record holder under the above condition.
By the same reasoning, we can prove that it is sufficient that for all i ∈ N and

all p ∈ N, πi < p < πi+1, none of the ϕ(a,b)(p) > v(a,b)i.
Prove by induction that for all i ∈ N and all p ∈ N such that πi < p < πi+1,

u(a,b)i
< ϕ(a,b)(p) < v(a,b)i.

Base cases. As ϕ(a,b)(1) is the first member of F(a,b) we consider, let it be the first
minimum record holder and the first maximum one. So π0 = 1. The only possible
counter-example is ϕ(a,b)(0) = 1 but it is out of purpose here.



THE MONOID OF NUMBERS OF THE FORM 1 < aq/bp < a. 11

Now, the next member that we consider is ϕ(a,b)(1) ⋆ ϕ(a,b)(1) = ϕ(a,b)(2) by
Lemma 5.4. It may be either u(a,b)1

or v(a,b)1.

Firstly, suppose that ϕ(a,b)(1)ϕ(a,b)(1) < a. So, v(a,b)1 = ϕ(a,b)(2) and we start a
phase where v(a,b) evolves leaving u(a,b) unchanged. There is no integer p verifying
1 < p < 2. Thus there cannot exist another record holder of the form ϕ(a,b)(p),
π0 < p < π1.

Further, as long as the current phase runs, u(a,b)i
= u(a,b)0

and v(a,b)i = v(a,b)i−1
⋆

u(a,b)0
inferring that πi = i + 1. Suppose now that at a given rank P , a <

u(a,b)0
v(a,b)P . This rank exists by Lemma 5.5. Then u(a,b)P+1

= u(a,b)0
⋆ v(a,b)P =

ϕ(a,b)(P + 2) and πP+1 = P + 2. So, from p = 1 to p = P + 1 all the ϕ(a,b)(p)
are maximum record holders. They are all retained in v(a,b)0, · · · , v(a,b)P . Further-
more, ϕ(a,b)(P +2) is the first minimum record holder different from ϕ(a,b)(1). It is
retained in u(a,b)P+1

. As a consequence, there is no possibility of a missed record

holder ϕ(p) where 1 ≤ p ≤ P + 2.
Secondly, in the case that a < ϕ(a,b)(1)ϕ(a,b)(1), starts a phase modifying u(a,b)

instead of v(a,b) and the same reasoning leads to a similar result.
Let us say that this phase stops at rank P , then all the ϕ(a,b)(p), 1 ≤ p ≤ P + 1

are kept in u(a,b)0
, · · · , u(a,b)P

. The first maximum record holder is ϕ(a,b)(P +2) =
v(a,b)P+1

. In this case also, there are no missed record holder.

Induction step. Let us make use of P as it is defined in the above base case.
Assume that for a given i ∈ N, i > P + 1 there is no missed record holder ϕ(a,b)(p)
where p < πi and prove that there is no record holder of the form ϕ(a,b)(p) where
p satisfies πi < p < πi+1.

Let us reason by case and by contradiction in each case.
Minimum record holders. Suppose their exist πi < p < πi+1 so that ϕ(a,b)(p) <
u(a,b)i

. Deduce from this hypothesis that their exists a missed minimum record

holder ϕ(a,b)(p
′) with 1 ≤ p′ < πi.

Let k be the largest positive integer such that u(a,b)i−k
= u(a,b)i

. Note that k

may be null when u(a,b)i−1
̸= u(a,b)i

. By the construction of the sequence s(a,b),

the choice of k infers that u(a,b)i−k−1
̸= u(a,b)i−k

. Then, we have

(5.1) u(a,b)i−k
= u(a,b)i−k−1

⋆ v(a,b)i−k−1
= u(a,b)i−k−1

·
v(a,b)i−k−1

a

while

(5.2) v(a,b)i−k−1
= v(a,b)i−k

.

The definition of the sequence π infers that ϕ−1
(a,b)(v(a,b)i) ≤ πi < p.

The definition of ϕ(a,b) says that

(5.3) ϕ(a,b)(p) =
ap+d(a,b)(p)

bp
.

By Lemma 5.3, v(a,b)i ∈ F(a,b). Define p1 = ϕ−1
(a,b)(v(a,b)i). Thus v(a,b)i = ϕ(a,b)(p1)

and

(5.4) v(a,b)i =
ap1+d(a,b)(p1)

bp1
.

Let us have a look at
a·ϕ(a,b)(p)

v(a,b)i

and prove that this rational number is a minimum

record holder that has not been retained in u(a,b).

Firstly, let us state that
a·ϕ(a,b)(p)

v(a,b)i

∈ F(a,b).
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From (5.3) and (5.4) we deduce that

(5.5)
a · ϕ(a,b)(p)

v(a,b)i
=

ap−p1+d(a,b)(p)−d(a,b)(p1)+1

bp−p1
.

As p − p1 > 0 by hypothesis, d(a,b)(p) ≥ d(a,b)(p1). Then, both exponents are

strictly positive. So
a·ϕ(a,b)(p)

v(a,b)i

is of the same form as any member of F(a,b).

Now, v(a,b)i < a because v(a,b)i ∈ F(a,b) by Lemma 5.3. As a consequence,

ϕ(a,b)(p) <
a·ϕ(a,b)(p)

v(a,b)i

. As ϕ(a,b)(p) ∈ F(a,b), we obtain that 1 < ϕ(a,b)(p) <

a·ϕ(a,b)(p)

v(a,b)i

.

Lemma 5.7 claims that v(a,b)i = v(a,b)i−k
u(a,b)

k
i−k

. This implies that

(5.6)
a · ϕ(a,b)(p)

v(a,b)i
=

a · ϕ(a,b)(p)

v(a,b)i−k
u(a,b)

k
i−k

.

Also u(a,b)i−k
∈ F(a,b) so u(a,b)i−k

> 1 by Lemma 5.3. Taking into account that

k may be null u(a,b)
k
i−k

≥ 1. Thus, (5.6) infers that
a·ϕ(a,b)(p)

v(a,b)i

≤ a·ϕ(a,b)(p)

v(a,b)i−k

. Now,

by hypothesis ϕ(a,b)(p) < u(a,b)i
= u(a,b)i−k

. Thus
a·ϕ(a,b)(p)

v(a,b)i

<
a·u(a,b)i−k

v(a,b)i−k

. Equa-

tion (5.1) claims u(a,b)i−k
= u(a,b)i−k−1

v(a,b)i−k−1

a . As a consequence,
a·u(a,b)i−k

v(a,b)i−k

=

u(a,b)i−k−1
because v(a,b)i−k

= v(a,b)i−k−1
by (5.2). Then

(5.7)
a · ϕ(a,b)(p)

v(a,b)i
< u(a,b)i−k−1

< 2.

In conclusion of this development 1 <
a·ϕ(a,b)(p)

v(a,b)i

< 2. It is also of the form of any

member of F(a,b). Then
a·ϕ(a,b)(p)

v(a,b)i

∈ F(a,b) and, by (5.7),

(5.8)
a · ϕ(a,b)(p)

v(a,b)i
< u(a,b)i−k−1

.

As u(a,b) monotonously decreases, for all j ≤ i− k − 1,
a·ϕ(a,b)(p)

v(a,b)i

< u(a,b)j
.

Now let us look at the position of
a·ϕ(a,b)(p)

v(a,b)i

in the sequence u(a,b).

Equation (5.5) affirms that
a·ϕ(a,b)(p)

v(a,b)i

= a
p−p1+d(a,b)(p)−d(a,b)(p1)+1

bp−p1
and we know

that
a·ϕ(a,b)(p)

v(a,b)i

∈ F(a,b). This leads to
a·ϕ(a,b)(p)

v(a,b)i

= ϕ(a,b)(p−p1) with d(a,b)(p−p1) =

d(a,b)(p)− d(a,b)(p1) + 1 by identification.

Now, πi+1 = ϕ−1
(a,b)(u(a,b)i

) + ϕ−1
(a,b)(v(a,b)i). Define p2 = ϕ−1

(a,b)(u(a,b)i
). Then,

πi+1 = p1 + p2. Furthermore, by hypothesis, p < πi+1 which reads p < p1 +

p2. So ϕ−1
(a,b)(

a·ϕ(a,b)(p)

v(a,b)i

) = p − p1 < p1 + p2 − p1 = p2. By the definition of

k, u(a,b)i−k
= u(a,b)i

. As a consequence ϕ−1
(a,b)(u(a,b)i−k

) = p2 and (5.8) claims
a·ϕ(a,b)(p)

v(a,b)i

< u(a,b)i−k−1
.

In Summary,
a·ϕ(a,b)(p)

v(a,b)i

∈ F(a,b),
a·ϕ(a,b)(p)

v(a,b)i

< u(a,b)i−k−1
by (5.8). Moreover,

ϕ−1
(a,b)(

a·ϕ(a,b)(p)

v(a,b)i

) < ϕ−1
(a,b)(u(a,b)i−k

).

This infers that
a·ϕ(a,b)(p)

v(a,b)i

is a minimum record holder before u(a,b)i−k
that has

not be retained in u(a,b) which contradicts the hypothesis of induction. Thus, such
a ϕ(a,b)(p) does not exist and there is no minimum record holder ϕ(a,b)(p) with p
strictly comprise between πi and πi+1.
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Maximum record holders. As the proof of the validity of Theorem 5.2 in this case
is very similar to the proof of the previous case, we only highlight the main lines.

Introduce a proof by contradiction and assume that there exist p ∈ N, πi < p <
πi+1 so that ϕ(a,b)(p) > v(a,b)i.

Define k as the largest integer so that v(a,b)i = v(a,b)i−k
. As a consequence

v(a,b)i−k
= u(a,b)i−k−1

⋆ v(a,b)i−k−1
= u(a,b)i−k−1

· v(a,b)i−k−1
. Also, u(a,b)i−k−1

=

u(a,b)i−k
and u(a,b)i

= u(a,b)i−k

(
v(a,b)i−k

a

)k

.

Let p1 denotes ϕ−1
(a,b)(u(a,b)i

). We have p1 ≤ πi < p.

Now, consider
ϕ(a,b)(p)

u(a,b)i

. We have
ϕ(a,b)(p)

u(a,b)i

= a
p−p1+d(a,b)(p)−d(a,b)(p1)

bp−p1
inferring that

is of the same form as any F(a,b) member. As u(a,b)i
> 1,

ϕ(a,b)(p)

u(a,b)i

< ϕ(a,b)(p) < a.

Also,
ϕ(a,b)(p)

u(a,b)i

=
ϕ(a,b)(p)

u(a,b)i−k

(
a

v(a,b)i−k

)k

. As a
v(a,b)i−k

> 1 and k ≥ 0,
ϕ(a,b)(p)

u(a,b)i

≥
ϕ(a,b)(p)

u(a,b)i−k

. Now, by hypothesis ϕ(a,b)(p) > v(a,b)i so
ϕ(a,b)(p)

u(a,b)i

>
v(a,b)i

u(a,b)i−k

. To finish

this part, u(a,b)i−k
= u(a,b)i−k−1

, v(a,b)i = v(a,b)i−k
and v(a,b)i−k

= u(a,b)i−k−1
·

v(a,b)i−k−1
so

ϕ(a,b)(p)

u(a,b)i

> v(a,b)i−k−1
> 1. In conclusion,

ϕ(a,b)(p)

u(a,b)i

∈ F(a,b).

In summary, we have
ϕ(a,b)(p)

u(a,b)i

∈ F(a,b) and
ϕ(a,b)(p)

u(a,b)i

> v(a,b)i−k−1
. Now, v(a,b) is a

monotonously increasing sequence so that for every j ≤ i−k− 1,
ϕ(a,b)(p)

u(a,b)i

> v(a,b)j .

Define now p2 = ϕ−1
(a,b)(v(a,b)i). With the same logic as in the previous case we

obtain that ϕ−1
(a,b)(

ϕ(a,b)(p)

u(a,b)i

) < p2 = ϕ−1
(a,b)(v(a,b)i−k

).

The conclusion of this reasoning is that
ϕ(a,b)(p)

u(a,b)i

is a maximum record holder

coming before v(a,b)i−k
and this record holder has not been retained in v(a,b). This

is in contradiction with the hypothesis of induction.
Then, such a ϕ(a,b)(p) does not exist.
So, there is no record holder ϕ(a,b)(p) with πi < p < πi+1. Thus, none can be

omitted.
In conclusion, we proved by induction that there is no omitted record holder in

the sequence
(
ϕ(a,b)(p)

)
p∈N−{0}. Thus Theorem 5.2 holds. □

In next section we fix the limit of u(a,b) and v(a,b).

6. Limit of u(a,b) and v(a,b)

In this section we introduce the limits of u(a,b) and v(a,b).
Before this, rephrase a little bit the definition of the convergence of a real se-

quence in a more convenient manner for our purpose.

Proposition 6.1. For any sequence u = (ui)i∈N of real numbers, u converges to
l ∈ R, l > 0 if and only if for all ε > 0 there exist N ∈ N so that for every
i > N, 1

1+ε l < ui < l · (1 + ε).

Proof. Firstly, let us prove that the condition is necessary.
Take any sequence u = (ui)i∈N of real numbers that converges to 0 < l ∈ R.

Take any ε > 0 and define ε1 such that 1− ε1
l = 1

1+ε . This gives ε1 = lε
1+ε so ε1 > 0

as l is supposed to be positive.
By hypothesis, u converges to l. This means that there exist N1 so that for every

i > N1, l − ε1 < ui. This inequality rewrites l(1− ε1
l ) < ui. That is 1

1+ε l < ui by
the definition of ε1.

Now, lε > 0 infers that there exist N2 such that for every i > N2, ui < l + lε =
l(1 + ε).
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Define N = sup{N1, N2}. Then for every i > N , 1
1+ε l < ui < l(1 + ε). Thus,

for every ε > 0, there exist N ∈ N such that for every i > N , 1
1+ε l < ui < l(1 + ε).

That is this condition is necessary.
Secondly, let us prove that the condition is sufficient.
Take a sequence u and l > 0 satisfying that for all ε > 0 there exist N ∈ N so

that for every i > N, 1
1+ε l < ui < l(1 + ε) and prove that u converges to l.

Take any ε > 0 and define ε1 = ε
l . As l > 0 by hypothesis, ε1 > 0.

By hypothesis, there exist N ∈ N so that for every i > N, 1
1+ε1

l < ui < l(1+ε1).

Take such a N and consider any i > N . Then 1
1+ε1

l < ui < l(1 + ε1).

As 1− ε21 < 1, the inequality 1− ε1 < 1
1+ε1

holds. So, l(1− ε1) < ui < l(1 + ε1)
which reads l − lε1 < ui < l + lε1 or more precisely l − ε < ui < l + ε by the
definition of ε1. In summary, u converges to l.

So the condition of Proposition 6.1 is sufficient for u to converge to l.
In conclusion, Proposition 6.1 holds. □

As a remark, the condition l ̸= 0 is strictly necessary otherwise we should get
0 < ui < 0 which is impossible. Even with the use of non strict inequalities, we
should get 0 ≤ ui ≤ 0 which limits u to be the constant sequence ui = 0 from a
given rank N . Moreover, there may exist a generalization of this property for any
l ̸= 0. But, as Proposition 6.1 is sufficient for our purpose, we let this property as
it is.

This section aims to prove the following theorem.

Theorem 6.2. For any co-prime integers a and b satisfying 1 < a < b, the se-
quences u(a,b) and v(a,b) defined in Definition 5.1 both converges and

lim
i→+∞

u(a,b)i
= 1 and lim

i→+∞
v(a,b)i = a.

To reach this goal, we have to prove several lemmas.
We know that s(a,b) is divided into phases. During each of them either u(a,b) is

modified and v(a,b) remains constant or v(a,b) changes and u(a,b) is left the same.
These two features appear alternatively. Understand that a phase where u(a,b)

changes is followed by another one that modifies v(a,b) itself followed by a phase
acting on u(a,b) and so on.

Note now that s(a,b) may start indifferently by a phase modifying either u(a,b) or
v(a,b). For instance, for a = 2 and b = 3 the sequence starts with the modification
of v(a,b) as seen in Table 1.

The other possibility happens when a = 7 and b = 8 for instance. Effectively,

u(7,8)0
= v(7,8)0 = ϕ7,8(1) =

49
8 . Now 49

8 · 49
8 = 74

82 ≈ 37.515625 > 7. So u(7,8)1
= 73

82

and v(7,8)1 = v(7,8)0.
A consequence of this presentation of the results is that u and v evolve asyn-

chronously and it may be quite difficult to manage it. To define their respective
limit, we propose to extract a subsequence from each one so that these two new
sequences evolve synchronously.

Let u(a,b) denotes the subsequence of u(a,b) and v(a,b) the one for v(a,b). To do
so, we index each phase by its order of appearance in s(a,b).

Remind now that the phase of s(a,b) indexed by 1 may modify either u(a,b) or

v(a,b) depending on
(
ϕ(a,b)(1)

)2
compared to a. But all the phases with an odd

index modify the same sequence as the first one. On the opposite, all the phases
with an even index change the other sequence. We call an odd[resp. even] phase, a
phase with an odd[resp. even] index.

Describe now how u(a,b) and v(a,b) are extracted from u(a,b) and v(a,b). We keep
the first member of each sequence : u(a,b)0

= v(a,b)0 = ϕ(a,b)(1). Then we retain
only the last element of each phase.
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Thus, if
(
ϕ(a,b)(1)

)2
< a, the first phase and all the odd ones modify v(a,b) while

even ones modify u(a,b). So, when
(
ϕ(a,b)(1)

)2
< a, for any i > 0, v(a,b)i receives

the last element of the phase 2i− 1 and u(a,b)i
is the last element of the phase 2i.

Reciprocally, when a <
(
ϕ(a,b)(1)

)2
, all the odd phases modify u(a,b) while the

even ones changes v(a,b). So, when a <
(
ϕ(a,b)(1)

)2
, for any i > 0, u(a,b)i

receives
the last element of the phase 2i− 1 and v(a,b)i is the last element of the phase 2i.

This may be summarized as: a pair composed of an odd phase indexed 2i − 1
and the following one indexed 2i defines the pair (u(a,b)i

, v(a,b)i). Thus, u(a,b) and
v(a,b) may be seen as synchronously defined.

Let us introduce some more notations and give some more precisions related
to phases. The notation h(η) identifies the index of head of the phase η, its first
element. The index of its last element called its tail, is denoted by t(η). The last
element of phase η is also the first element of phase η+1. So two consecutive phases
overlap by one element and t(η) = h(η + 1). Moreover, λ(η) = t(η) − h(η) counts
the number of elements the phase η generates that is its length minus 1.

Let us describe what is λ(η).

Lemma 6.3.

λ(η) =


⌊

log a−log v(a,b)h(η)

log u(a,b)h(η)

⌋
when phase η modifies v(a,b),⌊

log u(a,b)h(η)

log a−log v(a,b)h(η)

⌋
when phase η modifies u(a,b).

Proof. Firstly, let us suppose that phase η modifies v(a,b). This means that for

every 0 ≤ k ≤ λ(η), u(a,b)h(η)+k
= u(a,b)h(η)

and v(a,b)h(η)+k
= v(a,b)h(η)u(a,b)

k
h(η)

by Lemma 5.7. Furthermore, phase η modifies v(a,b) so for every 0 ≤ k < λ(η),
u(a,b)h(η)+k

v(a,b)h(η)+k
< a by the construction of s(a,b). Replacing the two fac-

tors by their respective value we get u(a,b)h(η)
v(a,b)h(η)u(a,b)

k
h(η)

< a which may be

rewritten as v(a,b)h(η)u(a,b)
k+1
h(η)

< a. This is verified particularly for k = λ(η) − 1.

Thus, v(a,b)h(η)u(a,b)
λ(η)
h(η) < a. Now, phase η stops at t(η) = h(η)+λ(η). This infers

that a < v(a,b)h(η)u(a,b)
λ(η)+1
h(η) . In summary,

v(a,b)h(η)u(a,b)
λ(η)
h(η) < a < v(a,b)h(η)u(a,b)

λ(η)+1
h(η) .

The natural logarithm of this relationship gives

log v(a,b)h(η) + λ(η) log u(a,b)h(η)
< log a < log v(a,b)h(η) + (λ(η) + 1) log u(a,b)h(η)

.

Some basic manipulations lead to

λ(η) <
log a− log v(a,b)h(η)

log u(a,b)h(η)

< λ(η) + 1.

This may be rewritten

log a− log v(a,b)h(η)

log u(a,b)h(η)

− 1 < λ(η) <
log a− log v(a,b)h(η)

log u(a,b)h(η)

.

That is λ(η) =

⌊
log a−log v(a,b)h(η)

log u(a,b)h(η)

⌋
which is the expected result.

Secondly, let us suppose that phase η modifies u(a,b). The sequence v(a,b) does
not change so for every 0 ≤ k ≤ λ(η), v(a,b)h(η)+k

= v(a,b)h(η). Now, Lemma 5.7

claims that for every 0 ≤ k ≤ λ(η), u(a,b)h(η)+k
= u(a,b)h(η)

(
v(a,b)h(η)

a

)k

. Phase η
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modifies u(a,b) so for every 0 ≤ k < λ(η), a < u(a,b)h(η)

(
v(a,b)h(η)

a

)k

v(a,b)h(η) by

the definition of s(a,b). This may be rewritten 1 < u(a,b)h(η)

(
v(a,b)h(η)

a

)k+1

This is

particularly the case for k = λ(η) − 1. Thus, 1 < u(a,b)h(η)

(
v(a,b)h(η)

a

)λ(η)

. Phase

η stops at t(η) = h(η) + λ(η) implying that u(a,b)h(η)

(
v(a,b)h(η)

a

)λ(η)

v(a,b)h(η) < a.

This reads u(a,b)h(η)

(
v(a,b)h(η)

a

)λ(η)+1

< 1. The two obtained inequalities may be

summarized as

u(a,b)h(η)

(v(a,b)h(η)

a

)λ(η)+1

< 1 < u(a,b)h(η)

(v(a,b)h(η)

a

)λ(η)

.

The application of the natural logarithm function to that double inequality gives

log u(a,b)h(η)
+ (λ(η) + 1)(log v(a,b)h(η) − log a) < 0

< log u(a,b)h(η)
+ λ(η)(log v(a,b)h(η) − log a).

Or

(λ(η) + 1)(log v(a,b)h(η) − log a) < − log u(a,b)h(η)
< λ(η)(log v(a,b)h(η) − log a).

The three expressions are negative then we rewrite this inequality as

λ(η)(log a− log v(a,b)h(η)) < log u(a,b)h(η)
< (λ(η) + 1)(log a− log v(a,b)h(η)).

Lastly, a division by log a− log v(a,b)h(η) leads to

λ(η) <
log u(a,b)h(η)

log a− log v(a,b)h(η)
< λ(η) + 1.

That is
log u(a,b)h(η)

log a−log v(a,b)h(η)

− 1 < λ(η) <
log u(a,b)h(η)

log a−log v(a,b)h(η)

or

λ(η) =

⌊
log u(a,b)h(η)

log a− log v(a,b)h(η)

⌋
.

This is what Lemma 6.3 affirms in the second case. □

In-fine, another manner to explain Lemma 6.3 may be λ(k) is the highest integer
so that (uh(k))

λ(k)vh(k) < a in the first case and, in the second case, λ(k) is the

highest integer such that 1 < uh(k)

( vh(k)

a

)λ(k)
.

Next lemma is a direct application of Lemma 5.7 to explain the relationship
between the head of a phase and its tail.

Lemma 6.4. Consider any phase indexed by η of s(a,b). If this phase modifies

v(a,b), then u(a,b)t(η)
= u(a,b)h(η)

and v(a,b)t(η) = (u(a,b)h(η)
)λ(η)v(a,b)h(η). Re-

ciprocally, if phase η modifies u(a,b), then v(a,b)t(η) = v(a,b)h(η) and u(a,b)t(η)
=

u(a,b)h(η)

(
v(a,b)h(η)

a

)λ(η)

.

Proof. As announced above, this lemma is an immediate consequence of Lemma 5.7.
Indeed, by the definition of a phase, only one of the two sequences v(a,b) or u(a,b)

changes. Thus each of the results described in Lemma 6.4 are just the particular
case of Lemma 5.7 when k = λ(η). □

The following lemma gives a recursive definition of u(a,b) and v(a,b). These two
sequences are so inter-dependant, that it is quite impossible to define one without
defining the second one.
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Lemma 6.5. Given 1 < a < b two co-prime integers, the sequences u(a,b) and v(a,b)
may be recursively defined by: u(a,b)0

= v(a,b)0 = ϕ(a,b)(1) and for any 0 < i,

• if (ϕ(a,b)(1))
2 < a then

v(a,b)i+1
= v(a,b)i · (u(a,b)i

)λ1

u(a,b)i+1
= u(a,b)i

·
(

v(a,b)i+1

a

)λ2

where λ1 is the highest positive integer such that v(a,b)i · (u(a,b)i
)λ1 < a and

λ2 is the highest positive integer such that 1 < u(a,b)i
·
(

v(a,b)i+1

a

)λ2

.

• if a < (ϕ(a,b)(1))
2 then

u(a,b)i+1
= u(a,b)i

·
(

v(a,b)i

a

)λ1

v(a,b)i+1
= v(a,b)i · (u(a,b)i+1

)λ2

where λ1 is the highest positive integer such that 1 < u(a,b)i
·
(

v(a,b)i

a

)λ1

and

λ2 is the highest positive integer such that v(a,b)i · (u(a,b)i+1
)λ2 < a.

Even if the statement of this lemma may seem cumbersome, its proof is no less
simple.

Describe it before we start its validation. Since the first phase of the sequence
s(a,b) may modify either v(a,b) or u(a,b) depending on (ϕ(a,b)(1))

2 compared to a,
we have two possible behaviours. Consequently, Lemma 6.5 consider these two
cases separately. In the first case, v(a,b) changes on every odd phases while u(a,b)

is modified during even ones. So, Lemma 6.5 first express v(a,b)i+1
from v(a,b)i and

u(a,b)i
. Then it gives the expression of u(a,b)i+1

from u(a,b)i
and v(a,b)i+1

. In the

second case, it is the opposite. That is every odd phases modify u(a,b) when even
ones act on v(a,b). Lemma 6.5 reflects this behaviour by giving first the expression
of u(a,b)i+1

from u(a,b)i
and v(a,b)i. Then it describes how to obtain v(a,b)i+1

from

v(a,b)i and u(a,b)i+1
.

Now, let us introduce the proof of Lemma 6.5.

Proof. Let us consider the two possible cases separately.
First Case: (ϕ(a,b)(1))

2 < a. This condition infers that all odd phases of s(a,b)
modify v(a,b) while all the even ones change u(a,b). As a consequence, for every
i ∈ N−{0}, v(a,b)i is the last element of phase 2i− 1 and u(a,b)i

is the last element
of phase 2i. This may be described by v(a,b)i = v(a,b)t(2i−1)

and u(a,b)i
= u(a,b)t(2i)

.

Now, the phases are build so that t(η) = h(η+1). This infers that v(a,b)t(2i−1)
=

v(a,b)h(2i).

Then, phase 2i does not change v(a,b) so v(a,b)t(2i) = v(a,b)t(2i−1)
. Here too the

construction of phases applies. So v(a,b)h(2i+1)
= v(a,b)t(2i−1)

and u(a,b)h(2i+1)
=

u(a,b)t(2i)
.

Lemma 6.4 claims that v(a,b)t(2i+1)
= (u(a,b)h(2i+1)

)λ(2i+1)v(a,b)h(2i+1)
. More,

v(a,b)t(2i+1)
= v(a,b)t(2i−1)

= v(a,b)i and u(a,b)h(2i+1)
= u(a,b)t(2i)

= u(a,b)i
. Use

these equalities in previous equation to obtain v(a,b)t(2i+1)
= (u(a,b)i

)λ(2i+1)v(a,b)i.

Note that v(a,b)t(2i+1)
= v(a,b)i+1

so that v(a,b)i+1
= (u(a,b)i

)λ(2i+1)v(a,b)i.

The definition of λ(2i + 1) plus Lemma 6.3 give that λ(2i + 1) is the highest
positive integer such that (u(a,b)h(2i+1)

)λ(2i+1)v(a,b)h(2i+1)
< a. Then after the

substitutions of u(a,b)h(2i+1)
by v(a,b)i+1

and of v(a,b)h(2i+1)
by u(a,b)i

we obtain

that λ1 = λ(2i+ 1).
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Now, during phase 2i+1 u(a,b) remains constant. So u(a,b)t(2i+1)
= u(a,b)h(2i+1)

.

Furthermore, the head of phase 2i+2 is the tail of phase 2i+1. Thus, Lemma 6.4

infers that u(a,b)t(2i+2)
= u(a,b)h(2i+2)

(
v(a,b)h(2i+2)

a

)λ(2i+2)

. The application of the

appropriated substitutions as for v(a,b) above gives that u(a,b)i+1
= u(a,b)t(2i+2)

=

u(a,b)i

(
v(a,b)i+1

a

)λ(2i+2)

.

The same reasoning as for λ1 proves that λ2 = λ(2i+ 2).
Thus, the conclusion of Lemma 6.5 in this case holds under the conditions it

defines.
Second Case: (ϕ(a,b)(1))

2 < a. The same method of proof as in the first case applies
also here. We have just to correctly reorder the two phases. The phase 2i−1 alters
sequence u(a,b) which gives the expression of u(a,b)i+1

from u(a,b)i
and v(a,b)i given

in Lemma 6.5. In this case, also, λ1 = λ(2i+1). Follows a phase that modifies v(a,b)
giving v(a,b)i+1

as a function of u(a,b)i+1
and v(a,b)i as introduced in Lemma 6.5.

Here too, λ2 = λ(2i+ 2).
To conclude that Lemma 6.5 holds. □

Lemma 6.5 gives a description of u(a,b) and v(a,b) that infers that for each i ∈
N − {0} u(a,b)i+1

̸= u(a,b)i
and v(a,b)i+1

̸= v(a,b)i. The sequence u(a,b) is extracted

from sequence u(a,b) which monotonously decreases without any duplication of a
term so u(a,b) is a strictly monotonously decreasing sequence. More, u(a,b) converges
because it also admit 1 as a lower bound and it shares the same limit as u(a,b). By
the same reasoning, v(a,b) is a strictly monotonously increasing sequence which
converges to the same limit as v(a,b).

In the sack of simplicity, let us symmetrize the problem so that we have to deal
with two sequences having the same behaviours.

Firstly, observe that v(a,b)i+1
is obtained by the product of v(a,b)i by a power

of u(a,b)i
or u(a,b)i+1

following the case. But, on its side, u(a,b)i+1
is obtained by

the product of u(a,b)i
by a power of

v(a,b)i

a or
v(a,b)i+1

a depending on the case. So

the idea to manage the sequence
v(a,b)

a instead of v(a,b). Note that,
v(a,b)

a is also a
strictly monotonously increasing sequence but its upper bound is 1 instead of a.

Further, all the terms of
v(a,b)

a are lower than one but they are all different from
0. So the sequence a

v(a,b)
contains only finite rational numbers. Now, as v(a,b)

is an strictly monotonously increasing sequence, a
v(a,b)

is a strictly monotonously

decreasing one. More,
v(a,b)

a admits 1 as a upper bound so, a
v(a,b)

admits 1 as a

lower bound.
Let us call w(a,b) = a

v(a,b)
this sequence and highlight how u(a,b) and w(a,b)

interact.

Lemma 6.6. Given 1 < a < b two co-prime integers, the sequences u(a,b) and
w(a,b) may be recursively defined by u(a,b)0

= ϕ(a,b)(1) and w(a,b)0
= a

ϕ(a,b)(1)
and

for any 0 < i,

• if u(a,b)0
< w(a,b)0

then

w(a,b)i+1
=

w(a,b)i

(u(a,b)i
)λ1

u(a,b)i+1
=

u(a,b)i

(w(a,b)i+1
)λ2

where λ1 is the highest positive integer such that (u(a,b)i
)λ1 < w(a,b)i

and

λ2 is the highest positive integer such that (w(a,b)i+1
)λ2 < u(a,b)i

.
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• if w(a,b)0
< u(a,b)0

then

u(a,b)i+1
=

u(a,b)i

(w(a,b)i
)λ1

w(a,b)i+1
=

w(a,b)i

(u(a,b)i+1
)λ2

where λ1 is the highest positive integer such that (w(a,b)i
)λ1 < u(a,b)i

and

λ2 is the highest positive integer such that (u(a,b)i+1
)λ2 < w(a,b)i

.

Proof. The proof of this lemma relies on Lemma 6.5. Thus, let us build a proof by
cases based on Lemma 6.5 statement.

Before going further in the proof, by definition w(a,b) = a
v(a,b)

inferring that

v(a,b) = a
w(a,b)

as none of the v(a,b)i and w(a,b)i
can be null. That is, for every

i ∈ N, v(a,b)i =
a

w(a,b)i

.

The base case may be immediately obtained from the definition of w(a,b). Indeed,
u(a,b) is the same between the two lemmas so u(a,b)0

= ϕ(a,b)(1). Now, w(a,b) =
a

v(a,b)

by its definition so w(a,b)0
= a

v(a,b)0

= a
ϕ(a,b)(1)

.

Now, let us take care of the equivalence of the condition that separates both
cases used in Lemma 6.5 with the one used in Lemma 6.6. In Lemma 6.5, the
criterion is (ϕ(a,b)(1))

2 < a. We can consider that it is u(a,b)0
v(a,b)0 < a as it was

the case for u(a,b) and v(a,b). If we replace v(a,b)0 by its expression a
w(a,b)0

, we get

u(a,b)0
< w(a,b)0

after some manipulations of the inequality. This is the criterion of
Lemma 6.6.

Reason now by case.
Case 1: (ϕ(a,b)(1))

2 < a. In this case Lemma 6.5 claims that

v(a,b)i+1
= v(a,b)i(u(a,b)i

)λ1

where λ1 is the highest positive integer such that v(a,b)i(u(a,b)i
)λ1 < a.

Focus on the description of v(a,b)i+1
. A substitution of v(a,b) by a

w(a,b)
in this

assertion gives a
w(a,b)i+1

= a
w(a,b)i

(u(a,b)i
)λ1 . A simplification by a followed by an

inversion of the equation lead to w(a,b)i+1
=

w(a,b)i

(u(a,b)i
)λ1

. This is the expression of

w(a,b)i+1
we are waiting for in this case.

Now, focus on the definition of λ1. Lemma 6.5 defines λ1 as the highest positive
integer such that v(a,b)i(u(a,b)i

)λ1 < a. Replace v(a,b) by a
w(a,b)

in the condition to

obtain a
w(a,b)i

(u(a,b)i
)λ1 < a. A multiplication of this inequality by

w(a,b)i

a > 0 leads

to (u(a,b)i
)λ1 < w(a,b)i

. So, λ1 is the highest positive integer such that (u(a,b)i
)λ1 <

w(a,b)i
. This is the definition of λ1 given by Lemma 6.6 in this case.

Furthermore, in this case, Lemma 6.5 states that u(a,b)i+1
= u(a,b)i

·
(

v(a,b)i+1

a

)λ2

where λ2 is the highest positive integer such that 1 < u(a,b)i
·
(

v(a,b)i+1

a

)λ2

.

Here too, focus firstly on the definition of u(a,b)i+1
. Again, substitute v(a,b) by

a
w(a,b)

in this assertion. We get u(a,b)i+1
= u(a,b)i

·
( a

w(a,b)i+1

a

)λ2

. We can simplify

the fraction by a. Then a simple rewriting leads to u(a,b)i+1
=

u(a,b)i

(w(a,b)i+1
)λ2

. This is

the expression of u(a,b)i+1
given by Lemma 6.6.

To finish with this case, consider the definition of λ2. Lemma 6.5 defines λ2

as the highest positive integer such that 1 < u(a,b)i
·
(

v(a,b)i+1

a

)λ2

. Once more,
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substitute v(a,b) by a
w(a,b)

in this assertion. This gives 1 < u(a,b)i
·
( a

w(a,b)i+1

a

)λ2

.

Simplify the fraction then apply some basic rewritings to get (w(a,b)i+1
)λ2 < u(a,b)i

,

the condition that defines λ2 in Lemma 6.6 in this case.
Case 2: a < (ϕ(a,b)(1))

2 < a2. In the same way as for the first case, it is possible
to establish conclusions of Lemma 6.6 for this case.

Indeed, the intermediate results are the same. We just need to exchange the
indices i ↔ i+ 1 in the correct places and exchange λ1 ↔ λ2 and we are done.

In conclusion Lemma 6.6 holds. □

Now comes a lemma that confirms that both sequences decrease and admit 1 as
a lower bound. It also introduces the conservation of the initial order of u(a,b)0

and
w(a,b)0

.

Lemma 6.7. Given a and b two integers verifying 1 < a < b. Define u(a,b) and
w(a,b) as in Lemma 6.6.

For any i ∈ N, if u(a,b)0
< w(a,b)0

then

1 < u(a,b)i+1
< w(a,b)i+1

< u(a,b)i
< w(a,b)i

else

1 < w(a,b)i+1
< u(a,b)i+1

< w(a,b)i
< u(a,b)i

.

Proof. As described in Lemma 6.6, the two possible cases are totally symmetric.
So it is sufficient to build the proof for one of the two cases. The proof for the other
one is the same with just some minor adaptations.

Both of u(a,b)0
and w(a,b)0

are strictly greater than 1. Indeed, u(a,b)0
= ϕ(a,b)(1)

and by the definition of ϕ(a,b) only ϕ(a,b)(0) = 1 and ϕ(a,b)(p) > 1 for any p ̸= 0.
Concerning w(a,b)0

= a
ϕ(a,b)(1)

, the definition of ϕ(a,b) infers that 1 < ϕ(a,b)(1) < a.

So, 1
a < 1

ϕ(a,b)(1)
< 1 that is 1 < a

ϕ(a,b)(1)
< a.

Now, assume that 1 < u(a,b)0
< w(a,b)0

and let us prove by induction that for
any i ∈ N, 1 < u(a,b)i+1

< w(a,b)i+1
< u(a,b)i

< w(a,b)i
.

Take any i ∈ N and suppose that 1 < u(a,b)i
< w(a,b)i

. Prove that 1 < u(a,b)i+1
<

w(a,b)i+1
< u(a,b)i

< w(a,b)i
.

This is the first case of Lemma 6.6. The exponent λ1 is defined as the highest
integer so that (u(a,b)i

)λ1 < w(a,b)i
. This may be written as (u(a,b)i

)λ1 < w(a,b)i
<

(u(a,b)i
)λ1+1. Divide this by (u(a,b)i

)λ1 to get 1 <
w(a,b)i

(u(a,b)i
)λ1

< u(a,b)i
. Note that

Lemma 6.6 says that w(a,b)i+1
=

w(a,b)i

(u(a,b)i
)λ1

so we get 1 < w(a,b)i+1
< u(a,b)i

. Now

λ2 is defined as the highest positive integer such that (w(a,b)i+1
)λ2 < u(a,b)i

. By the

same way, (w(a,b)i+1
)λ2 < u(a,b)i

< (w(a,b)i+1
)λ2+1. Divide this by (w(a,b)i+1

)λ2 to

get 1 <
u(a,b)i

(w(a,b)i+1
)λ2

< w(a,b)i+1
. As Lemma 6.6 states that

u(a,b)i

(w(a,b)i+1
)λ2

= u(a,b)i+1
,

we obtain 1 < u(a,b)i+1
< w(a,b)i+1

< u(a,b)i
< w(a,b)i

.

In conclusion of this, it is sufficient that 1 < u(a,b)i
< w(a,b)i

to get 1 <
u(a,b)i+1

< w(a,b)i+1
< u(a,b)i

< w(a,b)i
. This conclusion includes 1 < u(a,b)i+1

<

w(a,b)i+1
, the hypothesis of induction at rank i+ 1.

Now we can apply this to i = 0 which gives 1 < u(a,b)1
< w(a,b)1

< u(a,b)0
<

w(a,b)0
. By induction we proved the first case of Lemma 6.7.

As said above, the proof for the second case is the same. □

Now, both of the sequences strictly decrease and admit a lower bound, so they
converge. Let us prove that they share the same limit.
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Lemma 6.8. For any 1 < a < b two co-prime integers, the two sequences u(a,b)

and w(a,b) have the same limit.

Proof. We know that u(a,b) and w(a,b) both converge. Say that lim
i→+∞

u(a,b)i
= l1

and lim
i→+∞

w(a,b)i
= l2. Let us consider the first case of Lemma 6.6. In this case,

Lemma 6.7 claims that for any i ∈ N, u(a,b)i
< w(a,b)i

. So w(a,b) is an upper bound
for u(a,b) inferring that l2 ≥ l1. But, the same lemma also states that for any i,
w(a,b)i+1

< u(a,b)i
implying that u(a,b) is an upper bound of the subsequence of

w(a,b) starting at i = 1. As a consequence l1 ≥ l2. Then the only possibility we
have is l2 = l1.

The same method of proof applied to the second case of Lemma 6.6 leads to the
same result. So, Lemma 6.8. □

Now introduce the last lemma of this section.

Lemma 6.9. Let 1 < a < b be two co-prime integers an u(a,b) and w(a,b) the two
sequences defined in Lemma 6.6. Then

lim
i→+∞

u(a,b)i
= lim

i→+∞
w(a,b)i

= 1.

Proof. Let us prove Lemma 6.9 by contradiction.
Suppose that there exist l ∈ R, l > 1 so that lim

i→+∞
u(a,b)i

= lim
i→+∞

w(a,b)i
= l.

This limit is supposed greater than 1 so that we can define δ > 0 such that l = 1+δ.
Consider the first case of Lemma 6.6. By hypothesis, lim

i→+∞
w(a,b)i

= l. Propo-

sition 6.1 claims that for every ε > 0, there exist N ∈ N such that for every
integer i > N , w(a,b)i

< l(1 + ε). Take such an 0 < ε < δ. Take any N

so that for every integer i > N , w(a,b)i
< l(1 + ε). Take now any i > N .

Thus, l < w(a,b)i
< l(1 + ε) because w(a,b) monotonously decreases to l. Now,

u(a,b)i
< w(a,b)i

by Lemma 6.7. More, u(a,b) also decreases and admit l as limit by

hypothesis. Thus l < u(a,b)i
< l(1+ε). Define now, λ1 as the highest integer so that

(u(a,b)i
)λ1 < w(a,b)i

So, we have 1
(l(1+ε))λ1

< 1
(u(a,b)i

)λ1
< 1

lλ1
. Finally we obtain

l
(l(1+ε))λ1

<
w(a,b)i

(u(a,b)i
)λ1

< l(1+ε)
lλ1

. Essentially, this infers that w(a,b)i+1
< 1+ε

lλ1−1 . In

the worst case, λ1 = 1 giving that w(a,b)i+1
< 1 + ε in any case. As ε has been

chosen so that ε < δ thus w(a,b)i+1
< 1 + δ = l. Now, w(a,b) strictly decreases

inferring that l cannot be its limit denying the hypothesis that it is its limit. So,
w(a,b) cannot have a limit l > 1 but it accepts a limit l ≥ 1. So its limit is 1.
By Lemma 6.8, we also get that lim

i→+∞
u(a,b)i

= lim
i→+∞

w(a,b)i
= 1 in this case, the

conclusion of Lemma 6.9.
Here too, the same method of proof applies to the second case.
To conclude that Lemma 6.9 holds. □

From Lemma 6.9 it is possible to obtain the proof of Theorem 6.2.

Proof of Theorem 6.2. Start by the limit of u(a,b). By Lemma 6.9 lim
i→+∞

u(a,b)i
=

1. Now, Lemma 5.6 we know that u(a,b) also converges. As u(a,b) is an infinite
subsequence of u(a,b) both must have the same limit. Thus, lim

i→+∞
u(a,b)i

= 1.

Concerning v(a,b) now. We have by Lemma 6.9 lim
i→+∞

w(a,b)i
= 1. By the def-

inition of w(a,b), v(a,b) = a
w(a,b)

. The function x → a
x is continue on R − {0} and

especially around 1. Thus, lim
i→+∞

v(a,b)i =
a

lim
i→+∞

w(a,b)i

= a. Finally, v(a,b) also con-

verges by Lemma 5.6. In conclusion, lim
i→+∞

v(a,b)i = lim
i→+∞

v(a,b)i = a because v(a,b)

is a subsequence of v(a,b). In summary, the conclusion of Theorem 6.2 holds. □
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7. F(a,b) is dense in [1, a]R

In this section, we introduce the main theorem of this paper and two of its
corollaries. Let [1, a]R denote the set of all real numbers x verifying 1 ≤ x ≤ a. We
claim the following theorem.

Theorem 7.1. For any co-prime integers a and b verifying 1 < a < b, the set
F(a,b) is dense in [1, a]R.

Proof. The segment [1, a]R with the usual topology of R, is a metric space. Thus
we have to prove that the closure F(a,b) of F(a,b) is [1, a]R.

First, prove by contradiction that F(a,b) ⊂ [1, a]R. Suppose their exist l > a that
is the limit of any convergent sequence σ of F(a,b). This hypothesis infers that there
exist an infinity of σi as near as we want of l. So there must exist an infinity of
σi ∈ F(a,b) such that a < σi < l + ε. By definition of F(a,b), this is impossible. So,
there is no sequence of F(a,b) that converges to any l > 2.

The same reasoning leads to that any l < 1 cannot be the limit of any sequence
of F(a,b). Thus F(a,b) ⊂ [1, a]R.

Reciprocally, by the definition of the closure of set, F(a,b) ⊂ F(a,b). Theorem 6.2

infers that a ∈ F(a,b) and 1 ∈ F(a,b) ⊂ F(a,b).
Now, take any x ∈]1, a[R, x ̸∈ F(a,b) and prove that x may be the limit of at

least one sequence of F(a,b).
Let us build such a sequence σ. The real number x verifies x > 1 so that there

exist an infinity of u(a,b)i
, 1 < u(a,b)i

< x by the fact that u(a,b) converges to 1. We

cannot have u(a,b)i
= x because x ̸∈ F(a,b). Let us write that σ0 = sup{u(a,b)i

: i ∈
N and u(a,b)i

< x}. Let us define σi+1 from σi for any i ∈ N now.
Base case. Consider x

σ0
. By the construction of σ0, σ0 < x. Then 1 < x

σ0
.

By the convergence of u(a,b) to 1, there exist an infinity of u(a,b)i
< x

σ0
. Define

i1 = inf{i ∈ N : u(a,b)i
< x

σ0
}. Then σ0 ⋆ u(a,b)i1

∈ F(a,b) by the definition

of ⋆. σ0 · u(a,b)i1
< σ0 · x

σ0
by the definition of i1. Thus σ0 · u(a,b)i1

< x < a

so σ0 ⋆ u(a,b)i1
= σ0 · u(a,b)i1

. More, as u(a,b)i1
> 1, σ0 < σ0 · u(a,b)i1

. Define
σ1 = σ0 · u(a,b)i1

.

The same process may be iterated to define i2 and σ2 from σ1, then i3 and σ3

from σ2, · · · , ij+1 and σj+1 from σj , and so on.
The sequence σ build such a way is a strictly monotonously increasing sequence.

More, it accepts x as an upper bound. So σ converges to a limit lower than or equal
to x.

Now, suppose that σ converges to a limit l < x and define δ > 0 such that
x
l = 1 + δ. Take any ε, 0 < ε < δ. By Proposition 6.1 and the hypothesis that σ

converges to l, there exist N ∈ N such that for every n > N , 1
1+ε l < σn. Take the

lowest n verifying 1
1+ε l < σn and have a look at the following terms of σ.

The construction of σ defines in+1 = inf{i ∈ N : u(a,b)i
< x

σn
} and σn+1 =

σn · u(a,b)in+1
. This also means that u(a,b)in+1

is the greatest element of u(a,b) such

that u(a,b)i
< x

σn
because u(a,b) decreases.

Now, as σ monotonously increases and is supposed to converge to l, we need
to have σn+1 = σn · u(a,b)in+1

< l. More, 1
1+ε l < σn so that 1

1+ε l · u(a,b)in+1
< l.

Thus u(a,b)in+1
< 1 + ε. In addition, 1 + δ < x

σn+1
< x

σn
because l > σn+1 > σn.

So u(a,b)in+1
< x

σn+1
. There cannot exist an i < in+1 such that u(a,b)i

< x
σn+1

otherwise u(a,b)i
< x

σn
with i < in+1 which denies the definition of in+1. Thus,

in+2 = in+1 and σn+2 = σn+1 ·u(a,b)in+1
= σn+1 · (u(a,b)in+1

)2. As σ is supposed to

converge to l, this feature must hold indefinitely. Only u(a,b)in+1
= 1 would permit
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this but this is impossible. So l cannot be the limit of σ. Thus σ can only converge
to x.

In conclusion, x ∈ F(a,b). As this is valid for any x ∈ [1, a]R, we obtain that

[1, a]R ⊂ F(a,b) and, as a consequence, [1, a]R = F(a,b).
So F(a,b) is dense in [1, a]R. □

Now that we state Theorem 7.1, we can highlight some of its extensions.
Define akF(a,b) = {ak · f : f ∈ F(a,b)} for any positive integer k. An immediate

consequence of Theorem 7.1 is that akF(a,b) is dense in [ak, ak + 1]R. So

Corollary 7.1.1. Given a and b two co-prime positive integers satisfying 1 < a < b,⋃
k∈N

akF(a,b) = [1,+∞[R.

We can complete this corollary two ways. Either by considering k ∈ Z or by
considering the sets of the inverse of members of akF(a,b) that is the sets { 1

akf
:

f ∈ F(a,b)}. Let us choose the first possibility as it is a natural extension of the

previous corollary. Take any k ∈ N then a−kF(a,b) is dense in [1/ak, 1/ak−1] thus

Corollary 7.1.2. Given a and b two co-prime positive integers satisfying 1 < a < b,⋃
k∈Z

akF(a,b) = R+

where R+ denotes the set of all the positive real numbers.

8. Summary and discussion

Section 3 introduces ϕ(a,b) and F(a,b) and highlights that 1 is the only integer
that F(a,b) contains. More important as we use it all along this paper, we state

that any member of F(a,b) has a unique representation of the form 2
p+d(a,b)(p)

p .

Section 4 defines a binary law ” ⋆ ” on F(a,b) that makes of ϕ(a,b) : (N,+, 0) →
(F(a,b), ⋆, 1) a monoid isomorphism.

Despite the irregularity of F(a,b), its record holders are bound by a regular expres-
sion without particular cases. Effectively, section 5 introduces the two sequences
u(a,b) and v(a,b) linked one to each other. Particularly we state that u(a,b)i

⋆ v(a,b)i
is a new record holder.

The following section fix the respective limit of u(a,b) and v(a,b).
Last section claims that F(a,b) is dense in [1, a]R inferring by the same way that⋃

k∈Z
2kF(a,b) is dense in R+.

Note that this paper describes some results which may be used in other fields
of interest. For instance, Proposition 6.1 permits us to find the limits of several
sequences. It seems to be particularly convenient for sequences defined by a product
or a fraction as we can see above.

Also, Lemma 6.9 may be generalized. Effectively it may be applied to any pair
of sequences u and v defined as in Lemma 6.6 with the restrictions that u0 > 1,
v0 > 1 and their is no k ∈ N such that there exist i ∈ N for which either ui = vki or
vi = uk

i . The last condition is necessary so that none of the ui or vi equals 1 which
would stop the sequences.

More generally on the numbers a and b. Some quick tests tend to prove that the
condition a and b are co-prime is not necessary. If a = αγ and b = βγ with α < β,
γ = gcd(a, b) and β and γ are co-prime, the members of the set F(a,b) are of the

form α
p+d(a,b)(p)γ

d(a,b)(p)

βp . The same properties as for a and b co-prime seem to apply

under the condition that β and γ are co-prime. It is more difficult when this is not
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the case as the fraction α
p+d(a,b)(p)γ

d(a,b)(p)

βp is not the the smallest representative of

its class in Q.
The same observation seems to hold if b = βak, β and a being co-primes. Effec-

tively, the members of F(a,b) would be of the form aq

βp inferring that F(a,b) = F(a,β).

But, if it exist k ∈ N such that b = ak, for any p, we have ϕ(a,b)(p) =
apk

bp = 1
and the set F(a,b) = {1}. So this case is out of interest. On the same way, if a = 1,

then F(a,b) = {1/bk : k ∈ N} and its behaviour is totally different.
Alas, these result are insufficient to solve our initial problem. Even, the sequence

u(a,b) converges to 1 which reduces the possibilities that 2k/3p+1/3p > 2k−p/3p+1.

But 2k−p/3p + 1 also decreases. Then 2k/3p + 1/3p > 2k−p/3p + 1 may still hold
for any p where 1 < 2k/3p < 2.
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