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Abstract

The ability to generate and control locomotor movements depends on complex interactions between many areas of the nervous
system, the musculoskeletal system, and the environment. How the nervous system manages to accomplish this task has been
the subject of investigation for more than a century. In vertebrates, locomotion is generated by neural networks located in the
spinal cord referred to as central pattern generators. Descending inputs from the brain stem initiate, maintain, and stop locomo-
tion as well as control speed and direction. Sensory inputs adapt locomotor programs to the environmental conditions. This
review presents a comparative and historical overview of some of the neural mechanisms underlying the control of locomotion
in vertebrates. We have put an emphasis on spinal mechanisms and descending control.

brain stem; central pattern generator; locomotion; spinal cord

INTRODUCTION

Locomotion is one of the most fundamental behaviors. It
allows animals to move in their environment for different
purposes such as social interactions, food seeking, reproduc-
ing, or escaping from predators. The neural mechanisms
underlying locomotion have been examined in several ani-
mal species for more than a century. Because locomotion is a
rhythmical motor activity, early neuroscientists used this
easily identifiable output to design correlative and causal
experiments to understand how the brain and spinal cord
control behavior. This visionary idea is still used to this day
by neuroscientists, who are now deciphering the genetically
defined cell types controlling locomotion. Interestingly, the
organization of the neural networks controlling locomotion
is very similar in different vertebrate species (Fig. 1; for
review see Ref. 1). Although not covered here, these net-
works share common principles with those described in
invertebrates, which also generate standardized rhythmic

and patterned motor activities in many circumstances (for
review see Refs. 2, 3).

In the absence of sensory inputs and supraspinal struc-
tures, the neural networks located in the spinal cord can
independently generate the rhythmic pattern of muscle
contractions responsible for locomotion (Fig. 1). There was
an intense debate in the 1970s relative to the complexity of
the neural activity that is programmed centrally. Some
suggested that the central program consists of a simple
alternate activity between a flexor and an extensor compo-
nent without the complex timing seen in different flexor
muscles and different extensor muscles during natural
locomotion. On the other hand, it was suggested that a
central program produces detailed and complex muscle
synergies as seen during natural locomotion (Refs. 4–8;
reviewed in Ref. 9). Graham Brown (10, 11) had provided
the first evidence that the locomotor rhythm and pattern
were generated centrally, whereas Sherrington (12) pro-
posed that locomotor movements resulted from a series of
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sensory reflexes. After removing the descending and sen-
sory inputs, Sten Grillner and colleagues (5, 6, 13) showed
that the spinal locomotor networks could still generate an
elaborate complex sequence of muscle activations that
was remarkably similar to that seen during locomotion in
natural conditions. Consequently, the spinal neural net-
works generating this detailed locomotor pattern were
named central pattern generators (CPGs; Refs. 5, 6, 14), as
previously proposed from studies performed in inverte-
brates (3, 16, 17).

While the roles of spinal cord in the control of locomotion
were being clarified in the 1960s and 1970s, researchers were
acquiring new information on the role of supraspinal
structures. A group of Russian scientists headed by Grigori
Orlovsky discovered in cats that a specific area of the brain
stem, the mesencephalic locomotor region (MLR), plays a
crucial role in controlling the locomotor output (18).
Stereotyped locomotor movements can be induced in
response to electrical or chemical stimulation of the MLR.
Similar findings were later obtained in several species
(reviewed in Ref. 19 and more recently in Refs. 20–23). The
strength of the MLR stimulation determines the speed, the
gait (e.g., walk/trot/gallop in cat; Ref. 18), and the locomo-
tor mode (e.g., stepping and swimming in salamander;
Ref. 24). In recent years significant progress was made in
our understanding of the roles of spinal and supraspinal
structures in the control of locomotion, and some of the
key findings are summarized below.

SPINAL MECHANISMS RESPONSIBLE FOR
THE GENERATION OF LOCOMOTOR
RHYTHM

ACentury of CPGModels

In lower vertebrates that use their axial body parts to
swim, a conceptual organization of the CPG was inherited
from the “half-center CPG model” proposed by Graham
Brown (11), which was further supported by Lundberg (7, 8).
According to this model, rhythmic left-right alternated activ-
ity can be generated in each spinal segment by two hemiseg-
ments interconnected by mutual inhibition, and removal
of mutual inhibition abolishes the rhythm (Fig. 2A). This
view is supported by some studies in which acute surgical
destruction of commissural connections was done (33, 34).
However, the vast majority of other studies in lamprey and
other vertebrates are in accordance with another conceptual
organization proposed by Sten Grillner and referred to as the
“unit burst generator” CPGmodel (Fig. 2B) (25). According to
this model, the hemisegmental networks are able to produce
rhythmic activity in isolation from one another, i.e., inde-
pendently of mutual inhibition. In lamprey and amphibians
a single spinal hemisegment carefully isolated surgically can
generate rhythmic activity when tonically stimulated phar-
macologically or electrically (Refs. 35–45, for review see Ref.
46; see also Ref. 47). The exact anatomical boundaries of
these oscillatory centers are unresolved. Some authors pro-
posed that the swimming CPG in larval zebrafish could also

Figure 1. Schematic representation of the
main supraspinal structures involved in
the control of locomotion in vertebrates.
The reticular formation contains the reticu-
lospinal command neurons for locomotion
initiation, speed control, steering, and
locomotor termination. These command
neurons are under control of the mesen-
cephalic locomotor region (MLR) and of
the less known diencephalic locomotor
region (DLR). The basal ganglia send tonic
inhibition to the locomotor centers, and
such inhibition is temporarily decreased
during locomotion initiation. The motor
cortex can provide inputs at all levels of
the circuitry described above. CPG, cen-
tral pattern generator.
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consist of an unsegmented, “continuous” network of rhyth-
mogenic microcircuits (48, 49).

In quadrupeds, the neural circuits controlling each limb
appear to be distributed, and therefore the unit burst genera-
tor CPGmodel has been proposed to account for the complex-
ity and flexibility of the limb locomotor pattern (Refs. 25, 50,
51; see also Refs. 52–54). The neural networks generating loco-
motormovements of forelimbs and hindlimbs are in the cervi-
cal and lower thoracic/lumbar regions of the spinal cord (55–
61). Spinal sections and pharmacological manipulations fur-
ther show that these rhythmogenic regions consist of neural
networks distributed on the left and right sides, which inde-
pendently control each limb and are linked by commissural
connections coordinating the limbs at different locomotor
speeds (62–64). This model could be improved to account for
spontaneous deletions of motoneuron activity (65) and the
phasic gating of reflex pathways during locomotion (66).

Studies based on optogenetics in newborn mice revealed
that rhythm generation in hindlimb spinal segments is
mediated by multiple subpopulations of excitatory inter-
neurons able to generate the rhythm on each side inde-
pendently, or flexor and extensor activity independently,
as predicted by the unit burst generator CPG model (Ref.
54; reviewed in Ref. 67). Within the segments controlling a
single hindlimb, a minimal neural circuit sufficient to gen-
erate reciprocal inhibition between flexor and extensor
bursts has been identified in newborn mice (68, 266). It
comprises two classes of genetically defined inhibitory
interneurons: V1 neurons (69) and V2b neurons (70). Some
of these neurons could correspond to the Renshaw cells
and reciprocal Ia inhibitory interneurons previously
defined in the cat (71–74). The latter interneurons were
found to be rhythmically active during MLR-induced fic-
tive locomotion in the cat (75).

A

B
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Figure 2. Main conceptual models of central pattern gener-
ators (CPGs) for locomotion over the last century. A: the
“half-center CPG model.” In this model proposed by
Graham Brown in 1914 (11), and further supported by
Lundberg (9), mutual inhibition between two hemisegments
of the CPG (i.e., either flexor or extensor within a limb con-
troller or left and right hemisegments in the body axis con-
troller) is necessary for the rhythm to be generated. A
prediction from this model is that isolated hemisegments
cannot oscillate. Flexible coordination of multiple segments
is limited with this model. B: the “unit burst generator CPG
model.” In this model proposed by Grillner in 1981 (25), each
unit burst generator controls a group of close synergists
(flexors or extensors, left or right axial muscles) at a given
joint (hip/knee/ankle/digits or vertebra). Mutual inhibition
between two hemisegments of the CPG is not necessary for
the rhythm to be generated. A prediction from this model is
that isolated hemisegments can oscillate. The bursting units
at different joints can be combined in different ways,
depending on afferent/descending inputs onto their con-
nectivity, to generate the various limb or axial motor pat-
terns associated with the different locomotor gaits. C: the
“two-level CPG model.” In this model proposed by Perret
and Cabelguen in 1980 (26; see also Ref. 27), and sup-
ported by Rybak et al. in 2006 (28), two layers of neurons
can independently generate the rhythm and the pattern.
This model explains the nonresetting deletions and the dou-
ble burst recorded in bifunctional muscles and in their moto-
neurons. It provides a relevant framework to integrate
descending and sensory inputs on different network com-
ponents, thereby allowing high reconfigurability of the coor-
dination. D: the emerging “speed-dependent recruitment
CPG model.” This model was proposed by McLean et al. in
2007 (29) and further supported by the teams of El Manira
(30, 31) and Kiehn (32). In this model, different layers of inter-
neurons are recruited as a function of speed. Some compo-
nents of the network can be added or derecruited as a
function of speed.
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Beyond Flexion and Extension: Bifunctional Muscles
Reflect the Complexity of CPG Organization

During fictive locomotion, the limb motor pattern has
been shown to be more complex than a simple synchronous
activation of all flexor motoneurons alternating with a syn-
chronous activation of all extensormotoneurons in cats (Ref.
6; for review see Refs. 76, 77) and in neonatal rodent prepara-
tions (78). The nerves of some hindlimb or forelimb muscles
(“monofunctional muscles”) discharge simply as flexors or
extensors with one single burst of activity per cycle, whereas
the nerves to other muscles (“bifunctional muscles”) display
more complex and versatile discharge patterns, including
double bursts, during each locomotor cycle (Fig. 2C) (6, 26,
79–84). The different fictive patterns displayed by nerves
of hindlimb bifunctional muscles have been related to dif-
ferent gaits (e.g., walk/gallop, forward/backward walking).
Therefore, each limb CPG can generate the complex and
detailed pattern of activation of the different limb muscles
seen during different gaits, indicating that each limb con-
troller is more complex than a simple neural network pro-
ducing synchronous activation of all flexor muscles
alternating with synchronous activation of all extensor
muscles (half-center CPG model; see Refs. 7, 8). The com-
plexity of the CPG output was well illustrated by record-
ings of motoneurons of bifunctional muscles, which
display complex membrane potential oscillations during
fictive locomotion (26, 84, 85). These complex oscillations
result from a mixture of excitatory and inhibitory synaptic
inputs from the limb CPGs during both the flexor and ex-
tensor phases of the fictive step cycle (83, 84). Changing
the balance between flexor and extensor synaptic influen-
ces through descending or afferent inputs appears to be a
simple and subtle way to shift the motor pattern expressed
by bifunctional muscles according to demand (26).

The Emergence of a Two-Level CPGModel

The idea that the CPG controlling limb movements can be
subdivided into two functionally independent, but hier-
archically connected, subcomponents (two-level CPGmodel)
was suggested on the basis of the variations of the fictive
locomotor pattern in the thalamic cat (all brain tissue
removed above the thalamus), occurring spontaneously or
consecutively to exteroceptive limb stimulation (Refs. 26, 86,
87; Fig. 2C). In this conceptual model, a first component
(“rhythm generator” or “clock”) sets the locomotor rhythm
and acts on a second component (“pattern-formation net-
work”) that produces the individual pattern of activity
within the cycle. Interestingly, specific location of interneur-
ons responsible for rhythm generation or pattern formation
was characterized in the lumbar spinal cord of neonatal
mice (88). Several findings suggest that some of the inter-
neurons comprising reflex pathways like those activated by
flexor reflex afferents belong to the pattern-formation net-
work (79, 87). Studies on the rhythmic modulation of reflex
responses during fictive locomotion have provided indirect
evidence that proprioceptive and cutaneous inputs control
differentially the two subcomponents of the limb CPG (for
review see Ref. 66). Whether the two-level CPG concept
applies to the axial locomotor circuitry (e.g., in zebrafish,
tadpole, or lamprey) is unclear. In zebrafish for instance, the

subpopulations of segmental V2a interneurons are necessary
and sufficient to generate locomotor activity (see for review
Ref. 1).

A computational model of the hindlimb CPG based on a
two-level CPG organization (Fig. 2C) and incorporating affer-
ent signals was shown to reproduce the patterns of activity
of hindlimb flexors and extensors and most of the effects of
proprioceptive inputs during stepping (89). Genetically iden-
tified neuronal types of the hindlimb CPG were recently
added to the model (90–93). In the future, these modeling
studies will likely include models of muscles that exhibit
complex and variable locomotor patterns (cf. Ref. 94). The
flexibility of the locomotor patterns displayed by bifunc-
tional limb muscles strongly suggests that these muscles
play a crucial role in the adaptation of limb movements to
changing environment and goal. This implies that they are
the main targets of peripheral and supraspinal inputs (see
Ref. 66 for in-depth review). Importantly, the unit burst gen-
erator CPG model can also account for complex motor pat-
terns as summarized in Ref. 95.

SUPRASPINAL STRUCTURES CONTROLLING
LOCOMOTION

Overview

Locomotion is controlled through the activation of an
ensemble of supraspinal regions playing different roles
(Fig. 1). A significant part of these regions are connected in
a linear fashion from forebrain to lower hindbrain. There
is now growing evidence that supraspinal structures play a
crucial role in starting, maintaining, and stopping locomo-
tion. These structures can also integrate sensory inputs to
adapt locomotor behavior according to both internal and
external environmental conditions. Steering and speed
control result from the interplay of supraspinal and spinal
neural mechanisms.

The role of forebrain structures in the control of locomo-
tion is not fully resolved. It has been suggested that the pos-
terior parietal cortex contributes to planning locomotion by
providing an estimate of the position of an animal with
respect to objects in its path. In contrast, motor cortex would
contribute primarily to the execution of gait modifications
by modulating the activity of groups of synergistic muscles
active at different times during the gait cycle (Refs. 96–98;
for review see Refs. 99, 100). In addition, the basal ganglia
send descending projections to the brain stem for controlling
locomotion (Refs. 101–103; for review see Ref. 20). These are
believed to play a crucial role in the selection of locomotor
behaviors (Refs. 104–106; see also Ref. 107).

The MLR: an Emerging Target for Parkinson’s Disease
and Spinal Cord Injury

A striking feature of the supraspinal control of locomotion
is the presence of locomotor centers specifically dedicated to
initiating and controlling locomotion (for review see Refs.
76, 104, 108–114). As indicated above, one such region is the
MLR. Its existence has been confirmed in several vertebrate
species (for review see Refs. 19, 104, 112, 114, 115; for more
recent review see Refs. 20–23, 116). Stimulation of the MLR
induces swimming in fishes and lampreys, flying in birds,
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and walking in tetrapods. The MLR controls locomotion not
by projecting directly to the spinal cord but via projections to
reticulospinal (RS) neurons in the pons and medulla, which,
in turn, project to the spinal cord (104, 117–125). In lamprey,
MLR neurons provide glutamatergic and nicotinic inputs to
reticulospinal neurons (126, 127). An important aspect is that
the MLR provides bilateral inputs on downstream reticulo-
spinal neurons while inducing locomotion (128). The MLR
also sends cholinergic input to a group of muscarinoceptive
interneurons that in turn provide glutamatergic input to
reticulospinal neurons (129). Recent studies in mice uncov-
ered the genetic identity of MLR neurons and their role in
the control of locomotor movements in vivo (Refs. 102, 124,
130–134; for review see Refs. 20, 22, 23). Interestingly, some
MLR neurons encode aspects of behavior beyond locomotion
(for review see Ref. 116). Some neurons projecting to the re-
spiratory centers increase respiratory activity in lamprey
(135) and mice (136). Some neurons projecting to the spinal
cord control rearing, and others projecting to basal ganglia
output station encode forelimbmovements (137).

The MLR plays a role in locomotor control in humans.
Damage to the MLR produces marked locomotor deficits
(Refs. 138, 139, reviewed in Ref. 140). Functional MRI
revealed that the MLR is active during mental imagery of
walking and running in healthy volunteers (141). Deep brain
stimulation is now carried out in the MLR as a target to
improve locomotor function in patients with Parkinson’s dis-
ease (Refs. 142–150; for review see Refs. 23, 151) as well as in
patients suffering from other gait disorders such as primary
progressive freezing of gait (152, 153) or progressive supranu-
clear palsy (154). In Parkinson’s disease, deep brain stimula-
tion of the MLR led to conflicting results that may result
from the diversity of genetically defined MLR cell types, as
uncovered in recent rodent studies (for review see Ref. 23).
Some MLR cells induce locomotion, whereas others stop it.
Therefore, selective stimulation of a subset of glutamatergic
neurons in subparts of the MLR (cuneiform nucleus and cau-
dal pedunculopontine nucleus) is needed to improve loco-
motor function in rodent models of Parkinson’s disease (155,
156). Overall, the recent increase in interest for the MLR in
the clinical field stresses an urgent need for understanding
its function.

In rats with a partial spinal cord lesion, electrical stimula-
tion of the MLR was shown to improve locomotor function
(157, 158). Recently, optogenetic stimulation of glutamatergic
neurons of the cuneiform nucleus, the dorsal part of the
MLR, was shown to improve locomotor recovery after spinal
cord injury in mice (159). The activity of these MLR neurons
appears to be necessary for recovery (159). These studies will
likely motivate the use of MLR stimulation to improve loco-
motor function in spinal cord-injured patients.

The inputs and outputs of the MLR have been identified
in several animal species. The basal ganglia involved in the
selection of motor programs project to the MLR. The organi-
zation of the basal ganglia is highly conserved throughout
the vertebrate phylum, including lampreys (160). It has been
demonstrated that the MLR of lampreys receives direct do-
paminergic and glutamatergic inputs from a brain region ho-
mologous to the substantia nigra compacta (161, 268). This
projection was confirmed in salamanders and rats (162). In
addition, a direct dopaminergic projection from the zona

incerta to the MLR has been identified in mice (163). The
MLR is thus under descending dopaminergic and glutama-
tergic control. In lamprey, the dopaminergic component
amplifies the glutamatergic component through the activa-
tion of D1 receptors, resulting in faster locomotor move-
ments (140, 161). In mammals, the specific contribution of
these two neurotransmitter systems remains to be estab-
lished. The hypothalamus also projects to the MLR (110, 164),
with additional direct projections to reticulospinal cells
(164).

Other locomotor centers have been reported, although in
a less detailed manner. The diencephalic locomotor region
(DLR), which sends input to reticulospinal neurons, was
shown to initiate and control locomotion in lamprey (165,
166) (Fig. 1). In mammals the DLR region likely corresponds
to the subthalamic locomotor region (167, 168). In those
experiments, it is unclear whether the subthalamic nucleus
was stimulated or the closely located zona incerta, whose
stimulation is also associated with locomotor activity and
postural adjustments (169–172) and which is known to send
projections to the MLR, including dopaminergic ones (163).
The subthalamic nucleus sends direct and indirect projec-
tions to the MLR (for review see Ref. 19) and is therefore also
an interesting substrate to control locomotor activity. The
inputs and outputs of the DLR have been better documented
in the lamprey than in other vertebrate species. Stimulation
of the DLR elicits monosynaptic excitatory postsynaptic
potentials, polysynaptic excitatory postsynaptic potentials,
and inhibitory postsynaptic potentials in hindbrain reticulo-
spinal neurons. Stimulation of the DLR was shown to induce
rhythmic firing of reticulospinal neurons as well as rhythmic
bursts of discharge in spinal ventral roots (165). Injection of
GABA agonists in the DLR inhibits locomotion, whereas
GABA antagonists facilitate the induction of locomotion,
indicating that GABAergic projections provide tonic inhibi-
tion of the DLR that once turned off can release locomotion
(166). It was shown by the same authors that populations of
GABAergic neurons in the pallium and striatum project to
the DLR.

Another locomotor center is the cerebellar locomotor
region, which was shown to send input to reticulospinal neu-
rons and to elicit locomotion in cats (173). In zebrafish, neu-
rons of the medial longitudinal fasciculus (nMLF) also play
an important role in locomotor initiation, speed, and bout
duration, through direct projections to spinal locomotor cir-
cuits (174).

Reticulospinal Neurons: Vertebrate Equivalent of
Invertebrate “Command Neurons”?

The spinal CPGs receive powerful inputs from reticulospinal
cells, and since the early studies of Orlovsky and his group
(175, 176) it has been recognized that these supraspinal neurons
play a crucial role in the descending control of locomotion.
Lamprey reticulospinal cells are functionally heterogeneous,
including excitatory and inhibitory neurons (177). Since the
early studies by Carl Rovainen on the physiology of lamprey
reticulospinal neurons (178, 179), major advances have been
made in understanding the contribution of these neurons to
the descending control of locomotion. Reticulospinal neurons
resemble command neurons described in invertebrates (180,
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181). They project directly to locomotor CPG neurons in the spi-
nal cord and in turn receive inputs from several sensory
modalities to adapt their activity in response to conditions pre-
vailing in the external and internal environments (Ref. 182 in
lamprey, Ref. 174 in zebrafish). Specific populations of lamprey
reticulospinal cells initiate, maintain, or stop locomotion (126,
183–185). Other reticulospinal populations control locomotor
speed, adjust posture, or produce forward versus backward
swimming (186–189). Studies on themammalian reticulospinal
system have recently established the presence and role of ge-
netically defined excitatory and inhibitory reticulospinal cells
(124, 190, 191).

In recent years, the role of reticular glutamatergic V2a
neurons has been examined in zebrafish and mice. In the
zebrafish, glutamatergic V2a neurons in the hindbrain were
identified by their expression of the transcription factor
Chx10 (192). They project to the spinal cord, and their opto-
genetic activation elicits locomotion, whereas their inactiva-
tion stops it (192). Recordings of these neurons revealed that
they are rhythmically active during swimming (192). In con-
trast, in mice the group of Ole Kiehn showed that V2a neu-
rons located at the ponto-medullary border acted as stop
neurons. They halt locomotion when optogenetically acti-
vated on both sides, whereas they decrease the occurrence of
spontaneous stopping when their synaptic output is blocked
(193). Activation of some brainstem V2a neurons was
observed during stops in vivo by calcium imaging in mice
(194). Unilateral activation of V2a neurons induces ipsilateral
turns in vivo in mice (195, 196). Virus injections in mice
revealed that V2a reticulospinal neurons projecting to the
cervical and lumbar segments differentially control head
turns or decrease in locomotor speed, respectively (196). The
activity of brainstem V2a neurons that control turning
maneuvers is controlled by direct inputs from superior colli-
culus (195). Whether similar V2a reticular neurons were
recorded in zebrafish andmice is not fully resolved. In zebra-
fish, V2a reticular neurons receive input from the MLR (125).
In mice, some V2a neurons receive inputs from the MLR
according to calcium imaging experiments, and they express
the early response gene c-fos after a long bout of locomotor
activity (122). However, a monosynaptic tracing study showed
that V2a reticular neurons do not receive input from the MLR
in mice, so the extent to which the MLR controls V2a neurons
inmammals is not fully resolved (195).

In lamprey, three different populations of reticulospinal
cells were identified according to their activity pattern dur-
ing locomotion. Start cells are transiently active at the begin-
ning of the locomotor bout, maintain cells are active
throughout the locomotor bout, and stop cells are transiently
active at the beginning and the end of a locomotor episode
(185). The activity pattern of the latter cell group was present
not only when locomotion was elicited by MLR stimulation
but also during sensory-evoked or spontaneous locomotion
(185). Pharmacological activation of these cells was shown to
stop ongoing locomotion, whereas their inactivation impaired
the termination process (185). Like what was reported inmice,
the lamprey stop cells are predominantly located in an area
homologous to the caudal pons of mammals. Interestingly, in
lamprey these stop cells receive input from theMLR, confirm-
ing that the MLR has direct access to a stopping mechanism
(183, 184).

Inhibitory reticulospinal cells have also been shown to
stop ongoing locomotion in the Xenopus tadpole (197) and in
mice (124). In Xenopus, these cells are activated by sensory
inputs (197). In mice, optogenetic activation of inhibitory
neurons in various reticular nuclei of the caudal brain stem
stopsmovement (124).

A study in lamprey has shown that reticulospinal neurons
not only play a role in activating the spinal neurons respon-
sible for generating locomotion but also activate interneur-
ons involved in phase-dependent modulation of reflexes or
reflex reversal. These observations demonstrate that de-
scending inputs from the brain stem also control the flux of
sensory information reaching spinal interneurons involved
in generating locomotion (198).

CONTROLLING THE SPEED OF
LOCOMOTION: SPINAL AND SUPRASPINAL
CONTRIBUTIONS

Speed-Dependent Networks

In vertebrate swimmers, the neural mechanisms responsi-
ble for controlling locomotor speed involve both supraspinal
and spinal structures. The MLR has been shown to act like a
gas pedal by controlling the power of locomotor output (Ref.
199; for review see Ref. 161). In every animal species where
the MLR was identified, increasing the stimulation strength
of this region linearly increased the locomotor output, indi-
cating that the MLR controls the speed of locomotion by
modulating the excitatory drive onto reticulospinal neurons
that in turn directly activate spinal CPG neurons (e.g., lam-
prey: Ref. 126, salamander: Refs. 24, 123, mouse: Refs. 124,
130–132, 134, 155, 190, 191, zebrafish: Ref. 125, reviewed in
Refs. 20, 22, 23).

The spinal mechanisms underlying locomotor speed control
were also recently investigated. A first series of studies in larval
zebrafish revealed that different layers of motoneurons and
interneurons neurons are recruited as a function of swimming
speed (29, 200) (Fig. 2D). In adult zebrafish, double patch-
clamp experiments during locomotor activity revealed that
separate classes of ipsilaterally projecting glutamatergic V2a
interneurons selectively activate slow, intermediate, and fast
motoneuronal pools (31, 201). Interestingly, speed-dependent
activity was also observed in commissural excitatory V0V inter-
neurons in adult zebrafish (202). In adult zebrafish, inhibitory
commissural interneurons were also shown to be recruited in a
speed-dependent manner (203). Axial motoneurons them-
selves contribute to the generation of the swimming rhythmby
acting on premotor CPG interneurons through electrical cou-
pling (Ref. 204; see however Ref. 205 in lamprey). These sepa-
rate neural modules allow for the increase of swimming speed
by sequentially adding slow, intermediate, and fast microcir-
cuits likely through the activation of descending inputs from
the brain stem motor command centers. Although the organi-
zation of the descending excitatory drive to these different sub-
classes of neurons remains unknown, reticulospinal cells
receiving a direct input from the MLR are good candidates. In
adult zebrafish, brain stem glutamatergic neurons with axons
in the medial longitudinal fasciculus were found to be impor-
tant in the control of speed-related spinalmodules (174).
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In tetrapods, a modular reciprocal organization of premo-
tor inhibitory and excitatory networks has been suggested
for the hindlimb CPG in the neonatal mouse (32, 206).
Whether the modules can be further subdivided into specific
subunits driving slow, intermediate, and fast motoneuron
pools (as indicated above) remains to be determined. An
additional complexity is the high variability in the motor
unit composition between limb muscles in the adult stage
(207).

Asymmetric Control of Stance and Swing Phases and
Forelimb-Hindlimb CPG Differences

In adult tetrapods, a change in stepping speed is accom-
plished by varying the duration of the stance phase, while
the swing phase remains relatively invariant (reviewed in
Ref. 76). This extensor/flexor asymmetry is an inbuilt
property of the limb CPG as shown by electrophysiological
recordings in decerebrate/spinal cats and optogenetics in
in vitro isolated spinal cords of neonatal mice (54, 208).
This suggests that the bursting capabilities of rhythm-gen-
erating flexor circuits are stronger than those of the
rhythm-generating extensor circuits (cf. Refs. 93, 209).
Simulations of the mammalian CPG revealed that the
flexor burst can be kept constant, whereas the duration of
the extensor burst could vary by 10-fold when the excita-
tory drive to the extensor part of the network was changed
(95). However, descending signals from the brain stem
(e.g., indirect inputs from the MLR) and proprioceptive
signals can contribute to produce the different modes of
phase-cycle period changes observed during locomotion
(208, 210).

Quadrupeds commonly switch between gaits or between
locomotor modes as they change their speed of locomotion
(211). For example, in salamanders ground locomotor speed
increases by switching from walking to trotting (i.e., change
in gait) and in water by switching from trotting to swimming
(i.e., change in locomotor mode) (212–215). Studies using
selective ablation of genetically identified commissural
interneurons in neonate rodents suggest a gait-dependent
organization of the commissural neuron population at the
pelvic girdle (see Ref. 67 for review). Data in neonatal mice
suggest that a group of inhibitory interneurons ensures hind-
limb alternation during slow walking frequencies, whereas a
distinct group of excitatory interneurons is recruited at
higher frequencies to maintain left-right hindlimb alterna-
tion (32).

It is likely that forelimb and hindlimb CPGs are organized
differently. An early study suggested that the commissural
connections between forelimb CPGs are less flexible than
those between hindlimb CPGs. The coordination pattern
between forelimb CPGs is always a left-right alternation dur-
ing spontaneous fictive locomotion in the cat (216). In con-
trast, several fictive coordination patterns between hindlimb
CPGs have been reported, each one corresponding to a spe-
cific gait (walk, trot, or gallop) (6, 56, 216, 217). Furthermore,
forelimb-axial coupling appears to be stronger than the hind-
limb-axial coupling during fictive locomotion in salaman-
ders (215). Differences between the intrinsic frequencies of
the forelimb and hindlimb CPGs have also been reported
(Refs. 55, 80, 217; see Ref. 61, however). Taken together, these

functional differences between the cervical and pelvic girdle
CPGs are likely related to the observation that the hindlimbs
are more involved in gait changes than the forelimbs (218).

Switches in Coordination during Fictive Locomotion:
What Do They Tell Us?

Spontaneous abrupt switches between fictive gaits have
been observed in thalamic, decerebrate, and high spinal-par-
alyzed cats, thus revealing that spinal motor circuits are suf-
ficient to govern gait changes (216, 217, 219). Switches
between rostrocaudal waves and caudorostral waves were
also reported during fictive locomotion in lampreys (39, 40)
and salamanders (215, 220). The central pathways and the
mechanisms underlying fictive gait switches are not fully
understood. Simulations of the lamprey locomotor circuitry
showed that switches in coordination between rostro-caudal
and caudo-rostral waves can easily be accounted for (267).
The mechanism proposed is the trailing oscillator hypothe-
sis, according to which the oscillator of higher excitability
leads the oscillator chain (39, 40). The rostral oscillator leads
the chain during rostrocaudal traveling waves (forward
swimming), and the caudal oscillator leads the chain during
caudorostral traveling waves (backward swimming) (39, 40,
267). Similarly, in a modeling study of the salamander loco-
motor circuitry (221) local uncontrolled fluctuations of the
tonic pharmacological drive evoked by glutamatergic ago-
nists in the bath could play a role in the status of saturation
of forelimb versus hindlimb oscillatory centers, and this
would in turn influence the propagation direction of the
traveling wave in the axial circuit. Several findings suggest
that propriospinal neurons connecting the lumbar and cervi-
cal enlargements could also be involved, but the relative
strength of ascending and descending influences seems to
depend on the preparation used (55, 58, 59, 80, 216). A study
using genetic tools has revealed a complex functional organi-
zation of the propriospinal pathways in mice (222). The
ascending tracts (e.g., the ventral spinocerebellar tract) that
give off collaterals at more rostral spinal segmental levels
and exhibit rhythmic activity during fictive locomotion
could contribute to intergirdle coordination (76). It is likely
that the central interactions between the forelimb and hind-
limb networks are functionally separated, in accordance
with the different functional modules described within each
limb CPG (223). This modular design increases the dynamics
of the interlimb coordinating network by increasing its num-
ber of degrees of freedom. Amodel of interlimb coordination
considering part of this modular organization replicates the
speed-dependent expression of locomotor gaits and transi-
tions between them as observed in vivo (224).

The switch between two hindlimb fictive gaits is always
complete within one or two cycles (216). This supports the
view that switch from one fictive hindlimb gait to another
results from a transition from one motor program to another
(225). However, other mechanisms can be involved during
real locomotion. Indeed, several observations in vertebrates
suggest that the movement-related inputs from the limbs
can couple or decouple the fore- and hindlimbs during real
locomotion (225–232). In line with this, spinal cats can walk
forward or backward depending on the direction of the
treadmill (233). Inputs from supraspinal structures also likely
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play a critical role in intergirdle coordination switches dur-
ing real locomotion (234–237). This could explain why both
gradual and abrupt switches between gaits are observed in
intact animals (238), whereas only abrupt switches are
observed during fictive locomotion (216, 219).

In conclusion, the central coordination of the four limbs
can be viewed as resulting from the interactions between
forelimb and hindlimb CPGs with several different pre-
ferred modes of coupling. However, the forelimb and
hindlimb CPGs sometimes may be uncoupled and run
freely in various fictive preparations (59, 80, 217) and in
split-belt experiments in cats (239). This emphasizes the
important role of the movement-related afferent feedback
in interlimb coordination.

Coordination between Limb and Axial CPGs during
Locomotion

It should be stressed here that in searching for the central
mechanisms underlying interlimb coordination it is neces-
sary to include the network controlling the body axis. During
locomotion in cats and humans, there are two bursts of EMG
activity in lower back muscles for each step cycle (Refs. 240–
242; for review Ref. 243). During alternate stepping in high
decerebrate cats the backmuscles have two bursts of activity
per step cycle, but during gallop the backmuscle activity is a
single burst of �200-ms duration that starts some 75 ms
before the onset of activity in the quadriceps (242).

Interestingly, during pharmacologically induced fictive
locomotion in the high spinal cat (lesion at the upper cervi-
cal level) the muscle nerves innervating the lumbar back
muscles display a variety of rhythmic patterns correspond-
ing to the different gaits observed in freely moving animals
(219). Systematic investigations of the different motor pat-
terns produced by in vitro isolated spinal cords of several
lower vertebrates have revealed a high degree of flexibility in
the intersegmental coordination pattern, i.e., in the operat-
ing mode of the CPG controlling the body axis (39, 40, 215,
244). Intersegmental phase lags range from positive values
(i.e., backward-propagating motor waves) to negative val-
ues (i.e., forward-propagating motor waves). Importantly,
each fictive axial motor pattern is characterized by a dis-
tinct combination of intersegmental phase lags and cycle
durations (215, 244). The flexibility in the fictive axial
motor pattern has been related to the diversity of locomo-
tor modes observed in vivo (Refs. 39, 40, 215, 221, 244; see
also Ref. 245).

The mechanisms of axial motor pattern selection (i.e.,
switch between locomotor modes) remain to be identified.
Studies in lower vertebrates have demonstrated that some
spinal neurons (multifunctional neurons) are shared
by several rhythmic axial motor patterns whereas others
(specialized neurons) are dedicated to a specific pattern (Ref.
246; for review see Ref. 247). As an example, a core of neu-
rons producing left-right alternation is used during forward
and backward swimming in larval zebrafish, whereas sepa-
rate groups of neurons are recruited to produce the interseg-
mental coordination pattern specific of each swimming
mode (248).

Some findings in lamprey, larval zebrafish, and Xenopus
tadpole further suggest that tonic inputs from distinct brain

stem nuclei and sensory inputs from specific areas of the
body (e.g., head/tail) play a critical role in switching between
axial locomotor modes (249–251). This suggests that each
type of sensory or descending input activates a specialized
spinal network dedicated to producing just one behavior. An
alternative view is that a single spinal network is sufficient to
produce multiple rhythmic motor patterns through its recon-
figuration induced by descending and afferent inputs (252).

Modeling and robotics experiments suggest that in sala-
manders a single spinal network controlling the axial muscu-
lature generates traveling waves during swimming but is
made to generate standing waves when under the influence
of limb controllers during walking (253). One possible mech-
anism for locomotor mode transition might be a gating pro-
cess by which the MLR drive would not be transmitted from
reticulospinal neurons to the limb controllers when it
exceeds a certain threshold. Another possibility would be a
spinal mechanism by which the limb oscillators, but not the
axial ones, would have a limited capability to oscillate at
high frequency (“saturation”) (253).

The intrinsic frequency of the limb CPGs is lower than
that of the axial CPG in adult salamanders (253), Xenopus at
metamorphic climax (“froglet”, Ref. 254) and newborn rats
(Ref. 255; see Ref. 256, however). The difference in the intrin-
sic frequencies of limb and axial oscillators in salamanders
provides an explanation for the abrupt increase of frequency
during the switch from stepping to swimming when limb
oscillators saturate (253). A similar mechanism might
explain the abrupt transition between slow and fast swim-
ming in zebrafish (257, 258). In froglet, the coupling of the
axial and the hindlimb CPGs for swimming appears to be
under aminergic control to set the swimming mode (“tail
based” or “limb based”) to the demands of the animal (254).

A neurobiological study in salamander suggests that the
central coupling between the limbs and the axial CPGs is
mainly local, i.e., it involves a coupling of limb oscillators to
the nearest axial oscillators, as opposed to a coupling to large
parts of the axial CPG (215). A numerical simulation has sug-
gested that this configuration of the locomotor network is
able to generate several of the various locomotor modes and
gaits (swimming, forward and backward land stepping, for-
ward aquatic stepping) expressed by salamanders, as well as
transition between them, when under control of only two
drives, which can be provided by the brain stem or by sen-
sory feedback (259). Further experiments are needed to eluci-
date the mechanisms involved.

CONCLUSIONS
Studies in different animalmodels have yielded important

advances in our understanding of the control of locomotion.
Whereas mammalian studies have traditionally provided im-
portant information at the system level, studies in lamprey
and Xenopus tadpole, with their simpler nervous systems,
have additionally elucidatedmany of the cellular and synap-
tic mechanisms underlying locomotion thanks to electro-
physiological, anatomical, and imaging experiments. More
recently, optogenetic techniques used in zebrafish and in
mice now pave the way for characterizing the role of geneti-
cally identified neurons. With a powerful set of genetic tools
in development, the salamander is now becoming an
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attractive model to understand the development of limb
controllers and their interaction with axial networks, as well
as their control by the brain and sensory feedback, before
and after regeneration of the nervous system (260). From a
historical perspective, the complementary approaches from
all these preparations undoubtedly contribute to increase
the speed at which neuroscientists can reach a better under-
standing of the neural control of locomotion. Although not
explored here, muscle anatomy, muscle dynamics, and sen-
sory feedback also contribute in addition to the CPGs to the
production of different gaits (261–263). Because of the com-
plexity of the interactions between these components, a
global approach combining neurosciences, modeling, and
genetics is needed to understand locomotion (260, 264, 265).
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