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 11 

ABSTRACT 12 

Heinrich Events (HEs) are dramatic episodes of marine-terminating ice discharge and 13 

sediment rafting during periods of cold North Atlantic climate. However, the causal chain of 14 

events leading to their occurrence is unresolved. Here, we demonstrate that enhanced surface 15 

melting of land-terminating margins of the southern Fennoscandian Ice Sheet (FIS) is a recurring 16 

feature of Heinrich Stadials (HSs), the cold periods during which HEs occur. We use neodymium 17 

isotopes to show that the Channel River transported detrital sediments from the interior of 18 

eastern Europe to the Bay of Biscay in the Northeast Atlantic Ocean ca. 158 to 154 ka. Based on 19 

similar evidence from the last glacial period, we infer that this interval corresponds to the 20 

melting and retreat of the southern FIS margin despite contemporaneous cooling in the North 21 

Atlantic and central Europe. The FIS melting episode occurred just prior to a HE, consistent with 22 



 

 

findings from the more recent HSs 1, 2, and 3. Based on this evidence, we clarify a sequence of 23 

events that precedes HEs. Precursor melting of North Atlantic-adjacent ice sheets induces an 24 

initial Atlantic meridional overturning circulation (AMOC) slowdown. Atmospheric changes 25 

during the resulting HS cause summertime warming in northern Europe that drives enhanced FIS 26 

melting. Subsequent meltwater discharge to the North Atlantic further weakens the AMOC and 27 

warms the intermediate water masses that contribute to HEs. 28 

 29 

INTRODUCTION 30 

 The widespread melting of North (N.) Atlantic-adjacent ice sheets during periods of 31 

exceptionally cold polar climate is a paradoxical feature of recent glacial periods (e.g., Barker et 32 

al., 2015; Toucanne et al., 2015). Heinrich Events, in which armadas of icebergs discharge from 33 

marine-terminating ice margins into the N. Atlantic, punctuate the termination of cold Heinrich 34 

Stadials. HSs likely are caused by ocean surface cooling in response to freshwater-induced 35 

disruptions of the AMOC (e.g., Clark et al., 2007; Ivanovic et al., 2018). HEs then are triggered 36 

by the melting of marine-terminating grounded ice by the poleward transport of subsurface heat 37 

(700-1100 m depth, Alvarez-Solas et al., 2013) from low latitudes in response to further 38 

weakening of the AMOC (Shaffer et al., 2004; Marcott et al., 2011; Alvarez-Solas et al., 2013). 39 

However, the continental sources of freshwater that induce this AMOC destabilization during 40 

HSs remain debated. 41 

 During the last glacial period, HEs were preceded by the melting of terrestrial-42 

terminating FIS margins. These FIS melting episodes, focused in the continental interior of 43 

Europe, lasted from the onset of HSs until the resulting HE as revealed by detailed study of HS1 44 

(~18-15 ka), HS2 (~26-23 ka), and HS3 (~31-29 ka) (Toucanne et al., 2015). Here, we document 45 



 

 

sedimentary and geochemical evidence of terrestrial-terminating FIS margin melting during a 46 

period of extensive N. Atlantic cooling ca. 158-152 ka. Our results demonstrate that FIS melting 47 

during HSs precedes and contributes to the AMOC disruption that leads to HEs during both the 48 

last and penultimate glacial periods. Enhanced surface melting of the FIS prior to HEs is 49 

consistent with summertime warming in Europe during stadials (Schenk et al., 2018; Bromley et 50 

al., 2018).  51 

 Terminal moraines show that the British-Irish Ice Sheet (BIIS) and FIS coalesced in the 52 

North Sea ca. 160 ka during the Drenthe Stage of Marine Isotope Stage (MIS) 6 (Gibbard et al., 53 

1988). When the BIIS and FIS coalesced, rivers of Britain, France, and the North European Plain 54 

(NEP; Fig. 1) integrated as tributaries of the Channel River, the sea level lowstand precursor of 55 

the modern English Channel (Fig. 1; Busschers et al., 2008). The Channel River drainage basin 56 

extended across much of northern Europe and drained large quantities of meltwater to the Bay of 57 

Biscay (e.g., Zaragosi et al., 2001; Toucanne et al., 2009, 2015). Sediments deposited off the 58 

Channel River mouth therefore record the timing and nature of ice sheet melting. 59 

 60 

METHODS 61 

FIS melting in the continental interior of Europe during MIS 6 is supported by the Nd 62 

isotopic composition of detrital sediments from Bay of Biscay core MD03-2692. This core is 63 

located in front of the former Channel River and records sedimentary discharge with high fidelity 64 

(Fig. 1; 46°49.72′ N, 9°30.97′ W, 4064 m; Eynaud et al., 2007). The Nd isotopic compositions of 65 

detrital sediments from the Channel River fingerprint their geographic origin within Europe 66 

(Toucanne et al., 2015). Following Toucanne et al. (2015), we determine that anomalously non-67 

radiogenic Nd isotope signatures in the core sediments correspond to periods of southern FIS 68 



 

 

margin melting and retreat. To reconcile the Nd isotope signatures of the MD03-2692 sediments 69 

with their continental sources, we acquired Saalian (MIS 6-10) glacigenic sediments deposited 70 

by the Baltic Ice Stream in Denmark and Poland (Ehlers et al., 2011) (Fig. 1). 71 

Nd isotope ratios were measured for the fine-fractions (<63 μm) of both the MD03-2692 72 

core sediments (n=55; Table S1) and glacigenic sediments from the NEP (n=17; Table S2). We 73 

focus on the <63 μm fraction because the meltwaters from ice margins predominantly transport 74 

the clay and silt fractions of continental detritus (Brown and Kennett, 1998; Boswell et al., 75 

2018). All samples were prepared per Bayon et al. (2002) prior to isolation of the Nd by ion-76 

exchange chromatography. Nd isotope measurements were performed on a Thermo Scientific 77 

Neptune MC-ICP-MS at the Pôle Spectrométrie Océan, France, using a sample-standard 78 

bracketing method. Procedural Nd blanks were negligible compared to the amount of Nd in the 79 

studied samples. We estimate the 2σ uncertainty of our measurements to be ±0.3 ε-units based on 80 

replicate analyses of the JNdi-1 standard solution (143Nd/144Nd = 0.512115 ± 0.000009, 2σ, 81 

n=31). We report 143Nd/144Nd ratios in εNd notation, [(143Nd/144Nd)sample/(143Nd/144Nd)CHUR − 1] 82 

× 104, using the (143Nd/144Nd)CHUR value of 0.512638 (Jacobsen and Wasserburg, 1980). 83 

The MIS 6 chronology for MD03-2692 (Table S3) is constructed by tuning the 84 

abundances of the polar planktic foraminifera N. pachyderma (s.s. sinistral) in the core to those 85 

from the ODP 983 core (Barker et al., 2015) that has been recently synchronized to the synthetic 86 

Greenland ‘Speleo-Age’, a U-Th based chronology (Barker et al., 2011). The dominance of N. 87 

pachyderma in the sediments corresponds to periods of intense cooling, and we presume that the 88 

onset of these cold periods, interpreted to represent the southward migration of the polar front, is 89 

concurrent across the N. Atlantic (Barker et al., 2015). From this initial chronology, we observe 90 

that the high-resolution Ca/Fe ratios of MD03-2692 sediments, reflecting climatically-driven 91 



 

 

biogenic carbonate fluxes, are closely aligned with the synthetic Greenland temperatures 92 

(GLT_syn) of Barker et al. (2011). This coupling of Ca/Fe ratios and GLT_syn allows us to fine-93 

tune the final age model (e.g., Hodell et al., 2013) (Table S3; Fig. S1). 94 

 95 

LINKING BALTIC SEDIMENT TO SOUTHERN FIS MARGIN RETREAT 96 

Throughout most of MIS 6, the εNd values of the core sediments vary between -10.8 and 97 

-12.0 (Fig. 2F). These values are consistent with downstream Channel River sources (e.g., 98 

Ireland, Great Britain, and France), including the BIIS (Toucanne et al., 2015). As inferred from 99 

the radiogenic Nd signatures and two-fold increase in mass accumulation rate (MAR) of detrital 100 

sediments at the core site (Fig. 2F, G), enhanced melting of the BIIS began ca. 160 ka. However, 101 

the εNd of the core sediments from 158 to 154 ka reached values of -14.0 (Fig. 2F), revealing 102 

that the dominant portion of Channel River sediments were sourced from the eastern NEP (-14.4) 103 

by 156 ka. This Baltic sediment provenance demonstrates that the southern margin of the FIS 104 

was melting, retreating, and dispatching large quantities of sediment to the Channel River (Fig. 105 

2F, G). Benthic foraminifera record an ~12 m sea level equivalent (SLE) reduction in the size of 106 

global ice sheets ca. 159 to 156 ka (Fig. 2A; Waelbroeck et al., 2002). This ice volume decrease 107 

is synchronous with a substantial retreat of the southern FIS margin from the Drenthe maximum 108 

to a spatial extent even more restricted than the subsequent Warthe limits (Fig. 1; Toucanne et 109 

al., 2009). Considering the size of the FIS ca. 160 ka (~60 m SLE, Lambeck et al., 2006), a large 110 

volume of FIS meltwater was discharged through the Channel River (Fig. 2F). The 111 

corresponding increase in Channel River flow led to greater volumes of anchor ice (from 112 

wintertime freezing of the river bed) that were transported to the Bay of Biscay during the spring 113 

thaw (Toucanne et al., 2009). In total, the melting episode resulted in a 2.5 m section of 114 



 

 

seasonally laminated IRD termed ‘Channel River IRD’ and massive muds in the deep Bay of 115 

Biscay (Fig. 2E, G). This accumulation is 1.5 times greater than at Termination I (ca. 18-17 ka, 116 

Zaragosi et al., 2001). 117 

To verify that the ca. 156 ka event reflects FIS margin melting, we draw on evidence 118 

from the last glacial period. Terrestrial-based paleogeographical reconstructions of the FIS 119 

(Hughes et al., 2016) reveal that the southern FIS margins retreated in phase with Channel River 120 

discharge events identified during HS1, HS2, and HS3 (Fig. 3). Based on the similarity of 121 

sedimentary and geochemical evidence, we infer that the terrestrial-terminating FIS margin was 122 

melting and retreating from ~158 to 154 ka (Fig. 2A, F, G). 123 

 124 

ICE SHEET MELTING AND AMOC SLOWDOWN DURING STADIALS 125 

 FIS melting in the continental interior ca. 158-154 ka occurs during a period of cooling 126 

that extends from ~158-152 ka in the N. Atlantic and central Europe. The cooling interval is 127 

inferred from the relative abundances of N. pachyderma in sediments from cores ODP 983 and 128 

MD03-2692 (Barker et al., 2015; Eynaud et al., 2007) and the δ18O of cave flowstones (Fig. 2B, 129 

C; Koltai et al., 2017). The onset of southeastern FIS melting leads to the export of cold FIS 130 

meltwaters to the Bay of Biscay and Portuguese coast, deduced from both increased 131 

concentrations of freshwater Pediastrum and pre-Quaternary dinocyst algae in MD03-2692 core 132 

sediments (Fig. 2F; Eynaud et al., 2007; Penaud et al., 2009) and increased proportions of tetra-133 

unsaturated alkenones (C37:4%) in the surface waters above the MD01-2444 core site (Fig. 2C; 134 

Margari et al., 2014).  135 

 FIS melting, and the corresponding flux of freshwater to the open ocean, precedes 136 

AMOC disruption (Fig. 2D) and an increase in IRD deposition across the central and eastern N. 137 



 

 

Atlantic ~155-154 ka (Fig. 2E). The AMOC is sensitive to freshwater discharge to the Northeast 138 

Atlantic (Roche et al., 2010), a focal point of FIS meltwater routing. Because the FIS was more 139 

voluminous ca. 155 ka than at the LGM (e.g., Fig. 1; Ehlers et al., 2011), enhanced FIS melting 140 

likely contributed to AMOC disruption (e.g., Ivanovic et al., 2018). While the strength of the 141 

AMOC was reduced during the entire HS (i.e., decreased δ13C of benthic foraminifera in core 142 

ODP 983; Barker et al., 2015), the precipitous decline in AMOC strength ~155-154 ka is coeval 143 

with the widespread deposition of IRD (Fig. 2D, E). Although the provenance of the IRD 144 

deposited ~155 ka is uncertain, the N. Atlantic stadial bracketing the FIS melting interval is 145 

analogous to HS1, HS2, and HS3 in that melting of the terrestrial-terminating ice sheet (TIS) 146 

margins in Europe preceded calving of marine-terminating ice sheet (MIS) margins in the N. 147 

Atlantic region (Fig. 2). 148 

 149 

ENHANCED SURFACE MELTING OF THE FIS DURING N. ATLANTIC STADIALS 150 

 The coalescence of grounded FIS and BIIS margins in the North Sea (Fig. 1) precludes an 151 

ocean warming trigger for terrestrial-terminating FIS margin retreat in the European interior 152 

between 158 and 154 ka. Therefore, FIS melting in the Baltic lowlands likely results from an 153 

increase in summertime temperatures. Summer insolation rise (Fig. 2G) is relatively muted 154 

during the studied interval, however, suggesting the possible influence of an internal climate 155 

feedback. Reductions in subpolar N. Atlantic temperatures during spring and autumn, as 156 

indicated by N. pachyderma abundances (Fig. 2B; Jonkers and Kučera, 2015), do not preclude 157 

heightened seasonality such as increased summer temperatures in the N. Atlantic and Europe. 158 

High-resolution climate simulations and proxy evidence, including the disintegration of the 159 

Scottish ice cap, support the occurrence of warm European summers during the Younger Dryas 160 



 

 

stadial (Schenk et al., 2018; Bromley et al., 2018). Although increased aridity could partially 161 

explain FIS margin retreat and melting via reduced snow accumulation and increased albedo 162 

(i.e., ‘dirty ice’) at the FIS surface, such evidence is presently lacking.  163 

 Warm European summers in response to ocean cooling (e.g., Schenk et al., 2018; 164 

Bromley et al., 2018) are likely a recurring feature of N. Atlantic stadials. During MIS 6, 165 

precursor discharge of meltwaters to the N. Atlantic ca. 160 ka, including from European ice 166 

sheets (Fig. 2G), is consistent with an initial disruption of the AMOC (Fig. 2D) and the onset of 167 

cooling in the N. Atlantic and mainland Europe (Fig. 2B, C) (e.g., Clark et al., 2007; Ivanovic et 168 

al., 2018). FIS melting in the continental interior increased, however, ca. 158-154 ka when 169 

central European and N. Atlantic surface temperatures were coldest (Fig. 2C, F). Atmospheric 170 

blocking (e.g., Schenk et al., 2018) during HS summers explains the apparent contradiction of 171 

ice sheet surface melting in northern Europe while the subpolar N. Atlantic and Europe cool in 172 

unison (Fig. 2B, C; Barker et al., 2015; Koltai et al., 2017). During HSs, the flux of FIS 173 

meltwaters to the N. Atlantic results in a cold, low-salinity ocean surface that aids the growth of 174 

sea ice and likely contributes to the ocean cooling-N. European warming feedback (e.g., Schenk 175 

et al., 2018). Increased density stratification in the water column causes the AMOC to slow down 176 

further (~155 ka) (e.g., Clark et al., 2007; Fig. 2D). Eventually, AMOC disruption induces the 177 

subsurface ocean warming (Shaffer et al., 2004) that melts the marine-terminating grounded ice 178 

of the LIS and other N. Atlantic-adjacent ice sheets, leading to enhanced ice discharge to the 179 

ocean as HEs (Fig. 2D, E; Alvarez-Solas et al., 2013). Lags between summertime warming in 180 

Europe and the onset of HEs are consistent with FIS melting prior to the widespread deposition 181 

of IRD across the N. Atlantic during HSs of both the last glacial period (Zaragosi et al., 2001; 182 

Toucanne et al., 2015) and the stadial from 158 to 152 ka (Fig. 2E, F). 183 



 

 

 Lastly, we consider the possibility that summertime warming during stadials extends 184 

beyond Europe. We note, for instance, that warming in Antarctica is concurrent with HSs (e.g., 185 

EPICA Community Members, 2006; Clark et al., 2007) and thus FIS melting. Nonetheless, 186 

conceptualizing N. Atlantic stadials as intervals of increased seasonality and regional summer 187 

warming during periods of mean cooling (e.g., Denton et al., 2005; Schenk et al., 2018) resolves 188 

the apparent contradiction between cold N. Atlantic climates and contemporaneous melting of 189 

land-terminating ice sheet margins in Europe. Consistent with the temporal relationships between 190 

the onset of FIS melting, AMOC destabilization, and HEs during the past two glacial periods, 191 

warm European summers are a regular feature of HSs and contribute to the enhanced FIS surface 192 

melting that precedes HEs. 193 
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 322 

FIGURE CAPTIONS 323 

Figure 1. An overview of the core sites, locales, and ice sheets discussed in this manuscript. The 324 

terminal limits of the Fennoscandian Ice Sheet (FIS) during the Drenthe Stage (‘D’, MIS 6; 325 

Ehlers et al., 2011) are outlined in bold. For comparison, FIS limits during the Warthe Stage 326 

(‘W’, MIS 6) and Last Glacial Maximum (‘LGM’; Hughes et al., 2016) are shown as long and 327 

short dashed lines, respectively. The Channel River (blue) transports freshwater and terrigenous 328 

sediment from the North European Plain (NEP) to the N. Atlantic. Glacigenic sediments (Table 329 

S2) were sampled from sites (red dots) in Denmark and Poland. Blue lines in the N. Atlantic 330 

correspond to transport pathways for ice-rafted detritus (IRD; Barker et al., 2015). 331 

 332 

Figure 2. Paleoenvironmental proxies record melting of the terrestrial-terminating ice stream 333 

(TIS) of the Fennoscandian Ice Sheet (FIS) prior to the calving of marine-terminating ice streams 334 

(MIS) during a Heinrich Stadial (HS) highlighted in the vertical gray bar. (A) Synthetic 335 

Greenland temperatures with orbital components (GLT_syn, purple curve; Barker et al., 2011) 336 

and relative sea level (RSL, gray curve; Waelbroeck et al., 2002). (B) Relative abundances of the 337 

planktic foraminifera N. pachyderma in cores MD03-2692 (purple; Eynaud et al., 2007) and 338 

ODP 983 (blue; Barker et al., 2015). (C) δ18O of Abaliget Cave, Hungary (pink and dark gray; 339 

Koltai et al., 2017) and alkenone SST from Portuguese margin core MD01-2444 (light gray; 340 

Margari et al., 2014). (D) δ13C of benthic foraminifera from ODP 983 (Barker et al., 2015). (E) 341 

Normalized counts of ice-rafted detritus (IRD) from ODP 983 (black; Barker et al., 2015) and 342 



 

 

MD03-2692 (orange; Eynaud et al., 2007). Channel River IRD supplied locally to the MD03-343 

2692 core site (e.g., Toucanne et al., 2009), but not to the central Atlantic, from ~158 to 156 ka. 344 

(F) ε-Neodymium of sediments in core MD03-2692 (red) (Table S1). εNd values less than -12.4 345 

reflect a southern FIS sediment provenance, but εNd values greater than -12.4 indicate a western 346 

European origin (Table S2; e.g., Toucanne et al., 2015). “P” (-14.4±0.7) and “D” (-12.4±0.3) 347 

εNd values (2σ) correspond to the mean signatures of Saalian glacigenic moraine sediment from 348 

Poland and Denmark (Table S2), respectively. Concentrations of freshwater Pediastrum and pre-349 

Quaternary dinocyst algae are given by the light and dark blue lines, respectively (Eynaud et al., 350 

2007; Penaud et al., 2009). (G) Mass accumulation rate (MAR) for sediments in core MD03-351 

2692 (black; Table S4). A 2 kyr moving average was applied to the linearly interpolated 352 

terrigenous flux data. Insolation for June 21 at 55°N (orange; Laskar et al., 2004). Tie points for 353 

the MD03-2692 core chronology are designated by triangles (see the GSA Data Repository for 354 

details). All proxies are on the ‘Speleo-Age’ timescale (Barker et al., 2011) except the Abaliget 355 

Cave record and RSL estimates. 356 

 357 

Figure 3. Paleogeography of western Europe, including the Channel River hydrographic network 358 

and the glacial limits of the Fennoscandian (FIS) and British-Irish Ice Sheets (BIIS) shown in 359 

snapshots covering the ca. 32-17 ka time interval (Hughes et al., 2016). These snapshots 360 

highlight the relationship between ice-marginal fluctuations of the FIS (Hughes et al., 2016) and 361 

Channel River runoff in the Bay of Biscay (Toucanne et al., 2015). Retreating FIS margins that 362 

contribute meltwater to the Channel River are outlined in red. High runoff (R) events occurred 363 

throughout or during Heinrich Stadials (HS) 3 (~32-29 ka), 2 (~26-23.5 ka) and 1 (~18-15 ka) as 364 

recorded at site MD95-2002 (Toucanne et al., 2015). These R events resulted from substantial 365 



 

 

melting and retreat of southern FIS margins (Hughes et al., 2016). Ice advance in the continental 366 

interior and the North European Plain (NEP) is coeval with decreased runoff of the Channel 367 

River during the intervals between these HSs (i.e., Greenland Interstadial 3/4 and the global Last 368 

Glacial Maximum). The retreat and advance of ice margins between time slices is shown by 369 

yellow and blue highlighting, respectively (modified from Hughes et al., 2016). Dashed lines at 370 

the Channel River mouth document the coastline at the global Last Glacial Maximum, when the 371 

sea level was ~120 m lower than at present (Waelbroeck et al., 2002). The possible routing of 372 

FIS meltwater to the Nordic Seas (i.e., ice-free conditions in the North Sea) is indicated by the 373 

‘?’ symbol. All data, including the GEBCO_2014 grid (Weatherall et al., 2015), are shown using 374 

a WGS 1984 North Pole Lambert Azimuthal Equal Area projection. 375 

 376 

1GSA Data Repository item 201Xxxx, Tables S1-S4 and Figure S1, is available online at 377 

www.geosociety.org/pubs/ft20XX.htm, or on request from editing@geosociety.org 378 



Abaliget
Cave

MD03-2692

MD01-2444

NEP

Hudson
Strait

LIS

BIIS

nialP   naeporu
N   Eorth

W DLG
M

ODP 983
FIS

30°W 20°W 10°W 10°E 20°E0°

4
0
°N

5
0
°N

6
0
°N

70°W 50°E10°E50°W



Age (kyr)

HS

TISMIS

140 160 180 200120 220

A

210130 150 170 190

-32

-42

R
S

L
 (m

)

%
N

P
S

0

-120

1
8

ic
e

1
3

G
L

_

sy
n


  
O

  
(‰

)

0

100

0

0

3

3

4

1
0
  

IR
D

/g
ra

m

-11

-14

N
d



[1
0
  a

lg
a
e
/cm

  ]

0

25

M
A

R
 (

g
.c

m
 .

ky
r 

 )

0

1.2
B

F
   C

 (‰
, V

P
D

B
)

140 160 180 200120 220210130 150 170 190

-7

-121
8

 
 O

 (
‰

, 
V

P
D

B
)

Pediastrum spp. (x5)
Pre-Quaternary cysts

Channel River IRD
(restricted to the Bay of Biscay)

pan-Atlantic IRD

modern

W. Europe
S. FIS

D

P

-30
-60
-90

-34

-36

-38

-40

20

40
60

80

-8

-9

-10

-11

0.4

0.8

-12

-13

20
15

10
5

-2
-1

3

2

1

3

3

2

1

T

16

S
S

T
 (°C

)

8

10

12

14

-15

B

C

D

E

F

G

440

560

480

520

5
5
°N

 in
so

l. (W
.m

  )
-2



?

Bay of Biscay

Ice Retreat

MD95-2002

MD03-2692

FIS

BIIS

HEINRICH STADIAL 3, from ~31 ka

DATED-1 time slice: 32-29 ka
[millennial-scale time slices not available]

Channel River Runoff (R) Event R1
[30.7 ± 0.7 to 28.9 ± 0.4 ka]  

Ice Advance

Bay of Biscay

Ice Retreat

MD95-2002

MD03-2692

HEINRICH STADIAL 2, from ~26 ka

DATED-1 time slice: 27-25 ka
[26 ka time slice not available]

Channel River Runoff (R) Event R2
[25.7 ± 0.3 to 23.4 ± 0.3 ka]  

Ice Advance

FIS

BIIS

?

Bay of Biscay

Ice Retreat

MD95-2002

MD03-2692

HEINRICH STADIAL 1, from ~18 ka

DATED-1 time slice: 18-17 ka

Channel River Runoff (R) Event R5
[18.2 ± 0.2 to 16.7 ± 0.2 ka]  

Ice Advance

FIS

BIIS

Ice Retreat

Ice Advance

FIS

BIIS

Bay of Biscay

MD95-2002

MD03-2692

Greenland Interstadial 3-4, ~29-27 ka

DATED-1 time slice: 29-27 ka
[28 ka time slice not available]

minimum Channel River Runoff
[28.9 ± 0.4 to 25.7 ± 0.4 ka]  

Ice Retreat

Ice Advance

FIS

BIIS

Bay of Biscay

MD95-2002

MD03-2692

Global Last Glacial Maximum, ~25-19 ka

DATED-1 time slice: 25-19 ka

low / moderate Channel River Runoff
[23.4 ± 0.3 to 22.5 ± 0.5 ka]
[21.3 ± 0.2 to 20.3 ± 0.2 ka] 

6
0
°N

10°E

10°E

10°E

5
0
°N

4
0
°N

6
0
°N

5
0
°N

4
0
°N

6
0
°N

5
0
°N

4
0
°N

6
0
°N

6
0
°N

5
0
°N

5
0
°N

4
0
°N

4
0
°N

6
0
°N

5
0
°N

4
0
°N

20°E

20°E

20°E

30°E 40°E 50°E0°

0°

0°

10°W

10°W

10°W

20°W

20°W

20°W

30°W40°W 10°E 20°E 30°E 40°E 50°E0°10°W20°W30°W40°W



 
Figure S1. Chronology for MD03-2692. (A) Synthetic Greenland temperatures with orbital components 
(GLT_syn; Barker et al., 2011) and XRF Ca/Fe for MD03-2692 (Toucanne et al., 2009) are displayed as gray and 
magenta curves, respectively. (B) Relative abundances of the polar planktic foraminifera N. pachyderma (s.) in 
cores MD03-2692 (magenta, Eynaud et al., 2007) and ODP 983 (blue, Barker et al., 2015). (C) 18O of benthic 
foraminifera from cores MD03-2692 (magenta, Eynaud et al., 2007) and ODP 983 (blue, Barker et al., 2015). 
Triangles show the tie-points used to construct the chronology for MD03-2692 (see Table S3 for details). 



TABLE S1. MD03-2692 SEDIMENTS 
Depth                     
(cm) 

Age                 
(ka) 

143Nd/144Nd ± 2 SE εNd ± 2σ 

2023-2024 121.3 0.512033 ± 0.000005 -11.8 ± 0.3 
2035-2036 123.8 0.512029 ± 0.000006 -11.9 ± 0.3 
2051-2052 127.1 0.512048 ± 0.000006 -11.5 ± 0.3 
2083-2084 129.7 0.512024 ± 0.000005 -12.0 ± 0.3 
2093-2094 131.3 0.512019 ± 0.000006 -12.1 ± 0.3 
2111-2112 133.6 0.512021 ± 0.000005 -12.0 ± 0.3 
2145-2146 136.0 0.512036 ± 0.000005 -11.7 ± 0.3 
2157-2158 138.3 0.512033 ± 0.000006 -11.8 ± 0.3 
2165-2166 139.8 0.512046 ± 0.000005 -11.5 ± 0.3 
2189-2190 144.3 0.512034 ± 0.000006 -11.8 ± 0.3 
2201-2202 146.5 0.512037 ± 0.000005 -11.7 ± 0.3 
2259-2260 149.1 0.512062 ± 0.000004 -11.2 ± 0.3 
2333-2334 151.2 0.512051 ± 0.000006 -11.5 ± 0.3 
2373-2374 152.3 0.512039 ± 0.000005 -11.7 ± 0.3 
2395-2396 152.9 0.512034 ± 0.000005 -11.8 ± 0.3 
2429-2430 153.8 0.512007 ± 0.000004 -12.3 ± 0.3 
2461-2462 154.7 0.511939 ± 0.000005 -13.6 ± 0.3 
2493-2494 155.6 0.511918 ± 0.000005 -14.0 ± 0.3 
2507-2508 156.0 0.511944 ± 0.000007 -13.5 ± 0.3 
2527-2528 156.6 0.511952 ± 0.000006 -13.4 ± 0.3 
2559-2560 157.4 0.511958 ± 0.000005 -13.3 ± 0.3 
2577-2578 157.9 0.511989 ± 0.000006 -12.7 ± 0.3 
2611-2612 158.9 0.512035 ± 0.000005 -11.8 ± 0.3 
2641-2642 160.1 0.512049 ± 0.000005 -11.5 ± 0.3 
2653-2654 161.2 0.512046 ± 0.000004 -11.6 ± 0.3 
2663-2664 162.1 0.512045 ± 0.000005 -11.6 ± 0.3 
2673-2674 163.0 0.512025 ± 0.000005 -12.0 ± 0.3 
2685-2686 164.0 0.512053 ± 0.000004 -11.4 ± 0.3 
2697-2698 165.4 0.512051 ± 0.000005 -11.5 ± 0.3 
2703-2704 166.1 0.512051 ± 0.000004 -11.4 ± 0.3 
2717-2718 167.7 0.512029 ± 0.000003 -11.9 ± 0.3 
2725-2726 168.7 0.512043 ± 0.000006 -11.6 ± 0.3 
2735-2736 170.0 0.512039 ± 0.000005 -11.7 ± 0.3 
2739-2740 170.7 0.512047 ± 0.000005 -11.5 ± 0.3 
2747-2748 172.1 0.512055 ± 0.000005 -11.4 ± 0.3 
2767-2768 175.5 0.511989 ± 0.000006 -12.7 ± 0.3 
2771-2772 176.2 0.511981 ± 0.000006 -12.8 ± 0.3 
2799-2800 178.1 0.512082 ± 0.000006 -10.8 ± 0.3 
2817-2818 179.9 0.512059 ± 0.000005 -11.3 ± 0.3 
2825-2826 180.9 0.512053 ± 0.000003 -11.4 ± 0.3 
2839-2840 182.6 0.512043 ± 0.000004 -11.6 ± 0.3 
2855-2856 184.6 0.512056 ± 0.000006 -11.3 ± 0.3 



2867-2868 186.1 0.512049 ± 0.000007 -11.5 ± 0.3 
2891-2892 188.4 0.512050 ± 0.000005 -11.5 ± 0.3 
2913-2914 189.7 0.512038 ± 0.000006 -11.7 ± 0.3 
2923-2924 191.7 0.512017 ± 0.000005 -12.1 ± 0.3 
2927-2928 193.0 0.512030 ± 0.000004 -11.9 ± 0.3 
2929-2930 194.2 0.512019 ± 0.000006 -12.1 ± 0.3 
2943-2944 196.4 0.512044 ± 0.000006 -11.6 ± 0.3 
2953-2954 197.7 0.512040 ± 0.000005 -11.7 ± 0.3 
2967-2968 199.6 0.512054 ± 0.000006 -11.4 ± 0.3 
2973-2974 200.9 0.512034 ± 0.000006 -11.8 ± 0.3 
2985-2986 204.3 0.512061 ± 0.000006 -11.3 ± 0.3 
3001-3002 209.3 0.512051 ± 0.000006 -11.5 ± 0.3 
3013-3014 213.1 0.512054 ± 0.000005 -11.4 ± 0.3 

 
Table S1. Nd isotope analyses for MIS 6 sediments from core MD03-2692 (Fig. 1). Replicate analyses of the 
JNdi-1 standard solution (n=31) yield an estimated measurement uncertainty of ±0.3 ε-units (2σ). 



TABLE S2. GLACIGENIC SEDIMENTS 
Site ID Country Lat.                 

(°N) 
Lon.                
(°E) 

143Nd/144Nd ± 2 SE εNd ± 2σ Sedimentary environment 

North European Plain - East (southeastern FIS)        -14.4 ± 0.7   

Szczerców Sz-461 Poland 51.238 19.165 0.511958 ± 0.000005 -13.3 ± 0.3 Till, Ławki Fm. 
Szczerców Sz-462 Poland 51.235 19.165 0.511852 ± 0.000005 -15.3 ± 0.3 Till, Ławki Fm. 
Szczerców Sz-463 Poland 51.235 19.165 0.511961 ± 0.000004 -13.2 ± 0.3 Till, Ławki Fm. 
Szczerców Sz-464 Poland 51.244 19.163 0.511864 ± 0.000004 -15.1 ± 0.3 Till, Ławki Fm. 
Rogowiec Rog-1 Poland 51.252 19.154 0.511921 ± 0.000005 -14.0 ± 0.3 Till, Rogowiec Fm. 
Rogowiec Rog-2 Poland 51.252 19.154 0.511900 ± 0.000005 -14.4 ± 0.3 Till, Rogowiec Fm. 
Rogowiec Rog-3 Poland 51.252 19.154 0.511906 ± 0.000006 -14.3 ± 0.3 Till, Rogowiec Fm. 
Rogowiec Rog-4 Poland 51.253 19.154 0.511913 ± 0.000007 -14.2 ± 0.3 Till, Rogowiec Fm. 
Rogowiec Law-1 Poland 51.253 19.154 0.511872 ± 0.000006 -14.9 ± 0.3 Till, Ławki Fm. 
Rogowiec Law-2 Poland 51.253 19.154 0.511875 ± 0.000004 -14.9 ± 0.3 Till, Ławki Fm. 
Rogowiec Law-3 Poland 51.253 19.154 0.511906 ± 0.000005 -14.3 ± 0.3 Till, Ławki Fm. 
                        
North European Plain - West (southwestern FIS)        -12.4 ± 0.3   
Røjle Røj-5 Denmark 55.552 9.809 0.511997 ± 0.000004 -12.5 ± 0.3 Till, Palsgård Fm. 
Røjle Røj-10 Denmark 55.552 9.809 0.512017 ± 0.000003 -12.1 ± 0.3 Till, Trelde Næs Fm. 
Røjle Røj-14 Denmark 55.552 9.809 0.511983 ± 0.000003 -12.8 ± 0.3 Till, Ashoved Fm. 
Trelde Næs TN-6 Denmark 55.627 9.833 0.511990 ± 0.000006 -12.6 ± 0.3 Till, Palsgård Fm. 
Trelde Næs TN-16 Denmark 55.627 9.833 0.511993 ± 0.000006 -12.6 ± 0.3 Till, Trelde Næs Fm. 
Ashoved Ash-2 Denmark 55.745 10.082 0.512025 ± 0.000005 -12.0 ± 0.3 Till, Palsgård Fm. 

 
Table S2. Geographical information and Nd isotope analyses for the glacigenic sediments (Fig. 1) used to validate the longitudinal variation of εNd in 
the North European Plain and provide a reference for fingerprinting the provenance of sediments in core MD03-2692 (e.g., Toucanne et al., 2015). 
Replicate analyses of the JNdi-1 standard solution (n=31) yield an estimated measurement uncertainty of ±0.3 ε-units (2σ). The mean εNd signatures 
for the Polish and Danish sediments are 14.4 ± 0.7 (n=11) and 12.4 ± 0.3 (n=6), respectively. Sediment stratigraphy is inferred from Houmark-Nielsen 
(1987) and Kuneš et al. (2013). 



TABLE S3. MD03-2692 AGE CONTROL 

Depth                    
(cm) 

Age                     
(ka) 

Tuned parameter(s) 

1985 113.3 % N. pachyderma (s.) 

2060 129.0 Ca/Fe (XRF) vs. GLT_syn 

2105 133.5 % N. pachyderma (s.) 
2205 147.3 % N. pachyderma (s.) 
2285 149.9 % N. pachyderma (s.) 
2635 159.6 % N. pachyderma (s.) 
2685 164.0 % N. pachyderma (s.) 
2720 168.0 % N. pachyderma (s.) 
2735 170.0 % N. pachyderma (s.) 
2775 176.9 % N. pachyderma (s.) 
2805 178.4 % N. pachyderma (s.) 
2880 187.7 % N. pachyderma (s.) 
2915 189.9 % N. pachyderma (s.) 

2926 192.4 Ca/Fe (XRF) vs. GLT_syn 

2930 194.9 % N. pachyderma (s.) 

2964 199.0 Ca/Fe (XRF) vs. GLT_syn 

2976 201.5 Ca/Fe (XRF) vs. GLT_syn 

3025 216.8 % N. pachyderma (s.) 
3065 224.8 % N. pachyderma (s.) 

 
Table S3. Age control points for the MIS 6 chronology of core MD03-2692 were inferred from tuning relative 
abundances of polar planktic foraminifera N. pachyderma (s) to those from the absolutely-dated ODP 983 core 
(Barker et al., 2011; Toucanne et al., 2009). The chronology was fine-tuned by aligning XRF Ca/Fe ratios of 
MD03-2692 sediments (Toucanne et al., 2009) with synthetic Greenland temperatures (GLT_syn; Barker et al., 
2011).  



TABLE S4. MD03-2692 TERRIGENOUS FLUX 
Age                 
(ka) 

Mass Accumulation Rate              
(g·cm−2·kyr−1) 

  Age                 
(ka) 

Mass Accumulation Rate              
(g·cm−2·kyr−1) 

114 2.43   169 6.01 
115 2.13   170 5.68 
116 2.08   171 5.26 
117 2.19   172 5.42 
118 2.19   173 5.45 
119 2.15   174 4.96 
120 2.07   175 4.28 
121 2.17   176 4.29 
122 2.26   177 8.04 
123 2.15   178 10.05 
124 2.09   179 6.87 
125 2.08   180 5.27 
126 2.11   181 5.28 
127 2.14   182 5.24 
128 2.18   183 4.98 
129 7.71   184 4.69 
130 8.22   185 4.73 
131 3.40   186 4.71 
132 3.54   187 5.07 
133 10.20   188 6.84 
134 12.11   189 7.93 
135 6.38   190 4.98 
136 3.18   191 2.26 
137 3.23   192 1.88 
138 3.19   193 1.24 
139 3.19   194 1.02 
140 3.15   195 2.25 
141 3.11   196 3.39 
142 3.31   197 3.48 
143 3.60   198 3.87 
144 3.69   199 3.42 
145 3.53   200 2.66 
146 3.44   201 2.23 
147 8.29   202 1.70 
148 15.84   203 1.35 
149 21.06   204 1.35 
150 24.27   205 1.35 
151 26.08   206 1.38 
152 26.00   207 1.46 
153 25.35   208 1.46 
154 25.33   209 1.46 



155 25.72   210 1.48 
156 24.72   211 1.54 
157 24.77   212 1.60 
158 25.83   213 1.61 
159 22.00   214 1.72 
160 13.60   215 1.89 
161 8.22   216 2.10 
162 7.81   217 2.81 
163 7.64   218 3.51 
164 7.73   219 3.59 
165 8.00   220 3.55 
166 8.05   221 3.59 
167 7.41   222 3.60 
168 6.36   223 3.42 

 
Table S4. Terrigenous sediment fluxes, quantified as mass accumulation rates (MAR), to the MD03-2692 coring 
site during MIS 6 (Fig. 2). A 2-kyr moving average was applied to the linearly interpolated (0.1 kyr) MAR data 
to smooth sharp peaks in the raw data introduced as artifacts of the age model. 
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