# Original Article | 99

Victoria Sichel<sup>1</sup>, Gautier Sarah<sup>1</sup>, Nabil Girollet<sup>2</sup>, Valérie Laucou<sup>1</sup>, Catherine Roux<sup>1</sup>, Loïc Le Cunff<sup>3</sup>, Patrice This<sup>1\*</sup>, Pierre-François Bert<sup>2</sup>, Thierry Lacombe<sup>1,4</sup>

# High quality phased assembly of grape genome offer new opportunities in chimera detection

Affiliations

<sup>1</sup> UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France

- <sup>2</sup> EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France
- <sup>3</sup> Institut Français de la Vigne et du Vin, Montpellier, France
- $^4$  UMT Geno-Vigne  $^\circ$  , IFV-INRAE-Institut Agro, Montpellier, France

#### Correspondence

Victoria Sichel: victoria.sichel@inrae.fr, Gautier Sarah: gautier.sarah@inrae.fr, Nabil Girollet: nabil.girollet@inrae.fr, Valérie Laucou: valerie.laucou@inrae.fr, Catherine Roux: catherine.roux@inrae.fr, Loïc Le Cunff: loic.lecunff@vignevin.com, Patrice This\*: patrice.this@inrae.fr, Pierre-François Bert: pierre-francois.bert@inrae.fr, Thierry Lacombe: thierry.lacombe@supagro.fr

Summary

In perennial plants and especially those propagated through cuttings, several genotypes can coexist in a single individual, thus leading to chimeras. When the variant induces a noticeable phenotype modification, it can lead to a new cultivar. Viticulture already took economic advantage of this natural phenomenon: for instance, the berry skin of 'Pinot gris' derived from 'Pinot noir' by the selection of a chimera. Chimeras could also impact other crucial traits without being visually identified. Periclinal chimera where the variant has entirely colonized a cell layer is the most stable and can be propagated through cuttings. In grapevine, two functional cell layers are present in leaves, L1 and L2. However, lateral roots are formed from the L2 cell layer only. Thus, comparing DNA sequences of roots and leaves could allow chimera detection. In this study we used new generation Hifi long reads sequencing and recent bioinformatics tools applied to 'Merlot' to detect periclinal chimeras. Sequencing of 'Magdeleine Noire des Charentes' and 'Cabernet franc', the parents of 'Merlot', allowed haplotype resolved assembly. Pseudomolecules were built with few contigs, in some occasions only one per chromosome. This high resolution allowed haplotype comparison. Annotation from PN40024 was transferred to all pseudomolecules. Through variant detection, periclinal chimeras were found on both haplotypes. These results open new perspectives on chimera detection, which is an important resource to improve cultivars through clonal selection or breed new ones. Detailed results will be presented and discussed.

### Key words

chimera, Hifi Sequencing, trio-binning, phased assembly, Whole genome

### Introduction

A chimera is found when several sets of genotypes coexist in the same individual. The phenomenon was discovered in plants many centuries ago and has been fascinating scientist since then. They were used to understand plant ontogenesis (Satina, 1945, Szymkowiak and Sussex, 1996, Thompson and Olmo, 1963) but they are also an opportunity to breed new cultivars. In fact, viticulture has already been taking advantage out of chimeras by breeding different mutants of 'Pinot noir' under different cultivar names as the phenotype was so different. For instance, 'Pinot blanc' and 'Pinot gris' arose from two independent chimeras (Vezzulli *et al.*, 2012). Or again, the dwarf grapevine commonly used in grape research programs and was obtained performing somatic embryogenesis from 'Pinot Meunier' (Torregrosa *et al.*, 2019).

Chimeras are formed when a somatic genetic variation appears in a cell and is propagated through cell divisions. It can colonise an entire cell layer and is then called periclinal (Blakeslee *et al.*, 1939). In some rare cases, the mutation affects the phenotype and become visible (Bauhin, 1598, Nati, 1644).

Chimeras can spread all along the cell layer but can't jump from one cell layer to another unless there is a genetic accident. Therefore, by comparing two cell layers we can detect chimeras. Fortunately, grapevine leaves have two functional cell layers L1 and L2 whereas lateral roots come from a dedifferentiation of pericycle cells and only have the L2 cell layer (Pratt *et al.*, 1959, Thompson and Olmo, 1963). To compare L1 and L2 we need to sequence both roots and leaves from a non-grafted individual. But cell layers aren't the only challenge.

Up to now, chimera detection or confirmation has been possible when the mutation appeared on a heterozygous positions meaning that three alleles were found on a locus. On homozygous positions, chimeras could hardly be confirmed



'his is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.en)

# 100 | Original Article

because it could be confused with haplotype difference. Then the second challenge is obtaining a very high quality reference sequence and a haplotype phased assembly. In our case, we studied 'Merlot', which is a cross between 'Cabernet franc' and 'Magdeleine Noir des Charentes '(Boursiquot *et al.*, 2009).

# **Material and Methods**

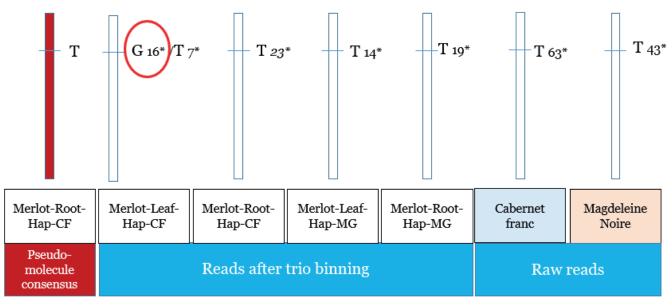
Leaf samples of 'Magdeleine Noire des Charentes' were collected from INRAE Vassal Montpellier (Marseillan, France), while 'Cabernet franc' leaves and 'Merlot' clone 343 leaves and roots came from IFV collection, Domaine de l'Espiguette (Le Grau-du-Roi, France). Long fragment DNA extraction was performed followed by PACBIO<sup>®</sup> hiFI long reads sequencing using Sequel II technology. 'Merlot' reads were sorted per haplotype by trio-binning. We then obtained two files for each 'Merlot' sample: "Merlot-hap-CF" and "Merlot-hap-MG". The reads were then assembled in contigs with hifiasm (Cheng et al., 2021) and finally chromosomes were built on following PNv4 (Rustenholz et al., 2021) model, which was completed by crossing contigs from the other haplotype. In order to have a functional approach, we transferred annotations from PN.vcost V3 with Liftoff software (Shumate, 2021). We also chose to work on the most stable part of the genome and took out all repeated sequences using Repeat masker (Smit et al., 2013-2015). All reads were mapped on both 'Merlot' assemblies and variants were called using DeepVariant (Ryan Poplin, 2018). Chimera detection was performed by filtering the Variant Calling File (VCF) with vcftools program (Danecek et al., 2011).

Periclinal L1 cell layer chimeras were selected when the variant was carried by only one haplotype on the leaf sample but all the other packets of reads had the reference nucleotide (Fig. 1). Mutation in the L2 cell layer had the variant on all reads from roots and a few reads from leaves, parental reads and opposite haplotype will have the same nucleotide as leaves but different from roots (Fig. 2).

#### Results

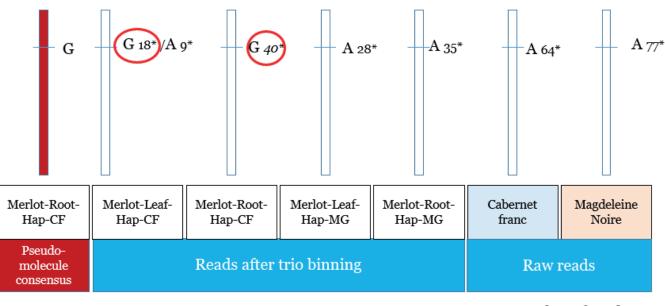
#### High quality reference genome

This results in a very high quality reference sequence per haplotype, where in some cases there is only one contig per chromosome and Liftoff correctly transferred 96% genes from PN.vcost V3 (Table 1).


#### **Detected chimeras**

When applying very selective criteria on SNV's outside repeated sequence, 104 positions were identified as chimeric throughout the entire genome, 33% were located in a gene body region and 15% in a coding region (Table 2).

According to the transferred annotation it was possible to see if the chimeras located in coding regions induced a modification in the corresponding amino acid. Out of the 16 positions, 11 changed the amino acid which could have a very important impact on the final protein conformation.


#### Discussion

Finally, this chimera detection method can be used both ways: from DNA sequencing to phenotype in order to identify non-visible chimeras or from phenotype to DNA sequencing to identify genetic regions controlling specific traits. Overall, chimeras are opportunities to understand metabolic pathways. They can lead to new cultivars if interesting agronomical characteristics are modified, and they also contribute



\* Number of reads

# Original Article | 101



\* Number of reads

Fig. 2: An example of read distribution when a L2 chimera was detected.

Table 1: Chromosome length, contig numbers and gene numbers for each pseudomolecule

|                   | Merlot_leaf_CF |         |       | Merlot_leaf_MG |         |       | Merlot_root_CF |         |       | Merlot_root_MG |         |       |
|-------------------|----------------|---------|-------|----------------|---------|-------|----------------|---------|-------|----------------|---------|-------|
|                   | Length         | Contigs | Genes |
| chr01             | 23598264       | 2       | 2091  | 25285196       | 3       | 2308  | 23589260       | 2       | 2090  | 25812159       | 3       | 2229  |
| chr02             | 21618960       | 2       | 1711  | 20834059       | 2       | 1771  | 21612554       | 2       | 1710  | 20815648       | 2       | 1773  |
| chr03             | 22910969       | 2       | 1896  | 23738413       | 3       | 1853  | 22695420       | 4       | 1900  | 22863606       | 2       | 1856  |
| chr04             | 28028847       | 1       | 2171  | 28067391       | 1       | 2199  | 27848422       | 1       | 2172  | 28047555       | 1       | 2195  |
| chr05             | 28252839       | 3       | 2354  | 27194848       | 4       | 2190  | 28133326       | 2       | 2359  | 27245740       | 5       | 2197  |
| chr06             | 21902219       | 1       | 1997  | 25066429       | 2       | 1901  | 21887941       | 2       | 1999  | 25064422       | 2       | 1900  |
| chr07             | 31335031       | 1       | 2892  | 30285517       | 2       | 2877  | 31316563       | 1       | 2889  | 30272463       | 2       | 2875  |
| chr08             | 25084147       | 2       | 2260  | 25133383       | 2       | 2159  | 25068184       | 1       | 2264  | 25106757       | 2       | 2163  |
| chr09             | 23385614       | 3       | 1774  | 25283510       | 3       | 1789  | 23388363       | 3       | 1772  | 25079599       | 3       | 1785  |
| chr10             | 26473290       | 1       | 2156  | 25356578       | 3       | 2159  | 26466742       | 1       | 2159  | 25373432       | 3       | 2160  |
| chr11             | 20347376       | 2       | 1571  | 20416243       | 1       | 1563  | 19944127       | 2       | 1572  | 20402067       | 1       | 1569  |
| chr12             | 27064986       | 2       | 2447  | 24119349       | 4       | 2347  | 24025996       | 1       | 2400  | 24096300       | 3       | 2343  |
| chr13             | 29400470       | 2       | 2277  | 29181387       | 2       | 2244  | 29412682       | 3       | 2277  | 29182803       | 3       | 2245  |
| chr14             | 30137549       | 1       | 2577  | 31130771       | 2       | 2564  | 30138415       | 1       | 2570  | 31044170       | 1       | 2545  |
| chr15             | 23518695       | 2       | 1552  | 23434760       | 2       | 1832  | 23494571       | 2       | 1545  | 23422104       | 2       | 1828  |
| chr16             | 22496135       | 1       | 1813  | 22861382       | 3       | 1840  | 22480932       | 3       | 1815  | 22716031       | 2       | 1844  |
| chr17             | 20156470       | 2       | 1552  | 20678794       | 5       | 1628  | 20368439       | 3       | 1554  | 20784459       | 4       | 1628  |
| chr18             | 36729617       | 2       | 3197  | 37876454       | 1       | 3161  | 36718487       | 2       | 3192  | 37875940       | 1       | 3164  |
| chr19             | 27613142       | 1       | 1978  | 25782670       | 2       | 1992  | 27618512       | 2       | 1979  | 25770078       | 2       | 1994  |
| Total<br>length   | 490054620      | 33      | 40266 | 491727134      | 47      | 40377 | 486208936      | 38      | 40218 | 490975333      | 44      | 40293 |
| Total<br>+ UKN    | 499510259      |         |       | 499510259      |         |       | 500119474      |         |       | 503747540      |         |       |
| chrUn             | 9455639        |         |       | 7783125        |         |       | 13910538       |         |       | 12772207       |         |       |
| % Total<br>length | 1.90%          |         |       | 1.60%          |         |       | 2.80%          |         |       | 2.50%          |         |       |

# 102 | Original Article

Table 2: Number of chimeras found on each Merlot haplotypes and their distribution according to coding regions on the genome

|                                                                 | Me | erlot Haploty | pe CF   | Merlot Haplotype MG |    |         |  |
|-----------------------------------------------------------------|----|---------------|---------|---------------------|----|---------|--|
|                                                                 | L1 | L2            | L1 + L2 | L1                  | L2 | L1 + L2 |  |
| SNP, Non-repeated sequences Merlot specific periclinal chimeras | 37 | 14            | 51      | 36                  | 17 | 53      |  |
| Number of chimeras in non coding gene body                      | 15 | 4             | 19      | 11                  | 5  | 16      |  |
| Number of chimeras in coding region                             | 6  | 3             | 9       | 6                   | 1  | 7       |  |

to intra-varietal genetic diversity. Finally, if they are stable enough, they could be used as a clonal lineage signature and allow clonal identification.

Additional data can be obtained from the following preprint in BMC Genomics: Sichel, V., Sarah, G., Girollet, V., Laucou, V., Roux, C., Bert, P., Le Cunff, L., This, P., Lacombe, T., 2022: Chimeras in Merlot grapevine revealed by phased assembly. https://doi.org/10.21203/rs.3.rs-2026816/v1

# **Conflicts of interest**

The authors declare that they do not have any conflicts of interest.

## References

**Bauhin, C., 1598:** Illustrated Exposition of Plants (the Pinax theatri botanici). sumptibus [et] typis Ludovici Regis.

Blakeslee, A.F., Avery, A.G., Bergner, A.D., Satina, S.A., Sinnott, E.W., 1939: Induction of periclinal chimeras in Datura stramonium by colchicine treatment. Science 89 (2314), 402.

Boursiquot, J.M., Lacombe, T., Laucou, V., Julliard, S., Perrin, F.X., Lanier, N., Legrand, D., Meredith, C., This, P., 2009: Parentage of Merlot and related winegrape cultivars of southwestern France: discovery of the missing link. Australian Journal of Grape and Wine Research 15 (2), 144-155, DOI: 10.1111/j.1755-0238.2008.00041.x.

Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., Li, H., 2021: Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18 (2), 170-175, DOI: 10.1038/s41592-020-01056-5.

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., Depristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R., 2011: The variant call format and VCFtools. Bioinformatics 27 (15), 2156-2158, DOI: 10.1093/bioinformatics/btr330.

**Nati, P., 1644:** Petri Nati... Florentina phytologica obseruatio de malo limonaia citrata-aurantia Florentiae vulgo la bizzarria. Typis Hippolyti de Naue. **Pratt, C., Einset, J., Zahur, M., 1959:** Radiation Damage in Apple Shoot Apices. American Journal of Botany 46 (7), 537-544, DOI: 10.2307/2439626.

**Rustenholz, C., Velt, A., Frommer, B., 2021:** PN40024.v4 New Assembly. URL: https://integrape.eu/resources/genes-genomes/genome-accessions/.

Ryan Poplin, P.C.C., David Alexander, Scott Schwartz, Thomas Colthurst, Alexander Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T. Afshar, Sam S. Gross, Lizzie Dorfman, Cory Y. McLean, and Mark A. DePristo, 2018: DeepVariant: A universal SNP and small-indel variant caller using deep neural networks. Nature biotechnology 36, 983-987, DOI: 10.1038/ nbt.4235.

**Satina, S., 1945:** Periclinal chimeras in Datura in relation to the development and structure of the ovule. American Journal of Botany, 72-81.

Shumate, A., and Steven L. Salzberg, 2021: Liftoff: accurate mapping of gene annotations. Bioinformatics 37 (12), 1639-1643, DOI: 10.1093/bioinformatics/btaa1016.

Smit, A.F.A., Hubley, R., Green, P., 2013-2015: RepeatMasker. URL: http://repeatmasker.org.

Szymkowiak, E.J., Sussex, I.M., 1996: What chimeras can tell us about plant development. Annual Review of Plant Biology 47 (1), 351-376.

**Thompson, M.M., Olmo, H., 1963:** Cytohistological studies of cytochimeric and tetraploid grapes. American Journal of Botany 50 (9), 901-906.

Torregrosa, L.J.M., Rienth, M., Romieu, C., Pellegrino, A., 2019: The microvine, a model for studies in grapevine physiology and genetics. OENO One 53 (3), DOI: 10.20870/oeno-one.2019.53.3.2409.

Vezzulli, S., Leonardelli, L., Malossini, U., Stefanini, M., Velasco, R., Moser, C., 2012: Pinot blanc and Pinot gris arose as independent somatic mutations of Pinot noir. Journal of Experimental Botany 63 (18), 6359-6369, DOI: 10.1093/jxb/ ers290.