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Abstract

Climate and water availability greatly affect each season’s grape yield and quality. Using models to accurately predict environment
impacts on fruit productivity and quality is a huge challenge.We calibrated and validated the functional-structuralmodel, GrapevineXL,
with a data set including grapevine seasonal midday stemwater potential (�xylem), berry dry weight (DW), fresh weight (FW), and sugar
concentration per volume ([Sugar]) for awine grape cultivar (Vitis vinifera cv.Cabernet Franc) in field conditions over 13 years in Bordeaux,
France. Our results showed that the model could make a fair prediction of seasonal �xylem and good-to-excellent predictions of berry
DW, FW, [Sugar] and leaf gas exchange responses to predawn andmidday leaf water potentials under diverse environmental conditions
with 14 key parameters. By running virtual experiments to mimic climate change, an advanced veraison (i.e. the onset of ripening) of
14 and 28 days led to significant decreases of berry FW by 2.70% and 3.22%, clear increases of berry [Sugar] by 2.90% and 4.29%, and
shortened ripening duration in 8 out of 13 simulated years, respectively. Moreover, the impact of the advanced veraison varied with
seasonal patterns of climate and soil water availability. Overall, the results showed that the GrapevineXL model can predict plant water
use and berry growth in field conditions and could serve as a valuable tool for designing sustainable vineyard management strategies
to cope with climate change.

Introduction

The sustainability of crop productivity and quality is threatened
by climate change and increasingly frequent extreme events [1].
Temperature is increasing globally, and drought events are occur-
ring more frequently and lasting longer in most regions of the
world [1]. When available soil water decreases, plants reduce
water use by closing their stomata, limiting plant photosynthesis
and plant growth.Whenwater deficits become very severe, plants
are subjected to losses of hydraulic conductivity, which increase
mortality risks [2,3]. Because productivity losses and mortality
risks are related to plant water status [3], it is crucial to precisely
predict plant water status in the field [4] in order to accurately
predict the associated losses and risks under climate change.

Plant water potential (�) is themost accurate measure of plant
water status and is strongly coupled to stomatal regulation and
photosynthesis. Stomatal conductance (gs) and leaf photosynthe-
sis (Pn) response curves to plant water potential are often used
to quantify thresholds for a species’ behavior under drought [2,
5–8]. These response curves are used so ubiquitously because

they represent the plant’s integration of many complex traits
and environmental influences. For example, vascular anatomy
and organ topology [7, 9], canopy microclimate (i.e. temperature,

vapor pressure deficit, radiation, etc. at the canopy level) [10,
11], and maintenance of hydraulic integrity [12, 13], all interact
in the resulting � × gs and � × Pn relationships. Therefore,

modeling approaches must integrate these complex relationships

between the soil, plant, and environment to make accurate
predictions.

Various attempts have been made to establish models

to predict �, such as non-linear fitting [14], remote sensing
[15], and machine learning [16]. Although environment or

cultivar characteristics were considered in such models, they
are empirical and site-specific. Process-based hydraulic model
frameworks described the interplay among leaf- or xylem- and
soil water potentials, gs, and transpiration [17]. These models
often presented solely theoretical analysis, or simulations were

validated in controlled environments and only over a short period.
This is mainly because measurements of the leaf (� leaf) and
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xylem (�xylem) water potentials are destructive and laborious [18]

and there is a clear lack of long-term databases of plant water
potentials in field conditions. In addition, plant hydraulic models
often do not consider plant productivity and product quality.

The development of functional-structural plant models (FSPM)
offered new opportunities for coupling canopy architecture and
multi-scale physiological processes [19]. In grapevine, FSPM mod-
els have been used to couple three-dimensional grapevine archi-
tecture [20] to leaf-scale photosynthesis and stomatal models,
with consideration of variability in canopy, microclimate, and
crucial leaf biochemical (e.g. leaf nitrogen content per area, Na)
and physiological (leaf gas exchange) traits [10, 11]. Later, an
updated model was used to predict canopy gas exchange more
precisely through coupling hydraulic and leaf energy balance
models [21]. However, the fruit component, or accounting for
carbon allocation among organs, was absent from previous FSPM
models. More recently, a FSPM named GrapevineXL [22–24] cou-
pled the broad and multi-scale bio-physiological modules men-
tioned above and a berry growth module [25]. This model was
validated in predicting berry development (e.g. growth and sugar
accumulation) under different crop loads in the greenhouse and
potted field-grown vines [22–24]. The ability of this model to
predict plant water status and berry development under field
conditions remained untested.

Grapes are one of the world’s most widely grown and
economically important fruit crops. Grape berry freshweight (FW)
and sugar concentration per volume (called [Sugar] hereafter) are
important fruit quality traits. Berry FW is the vital component
for grape yield and juice volume. [Sugar] determines the alcohol
level in the final wine after fermentation and is used as a
proxy for other quality-related compounds [26]. Winegrape
production is particular in that mild-to-moderate water deficit in
vineyards is often considered beneficial because it can suppress
overly vigorous vegetative growth and increases berry quality
[27, 28]. For example, berry [Sugar] can be increased through
repartitioning assimilated carbohydrate to berries, reduced
water from soil and water loss from berry skin through berry
transpiration; berry anthocyanin concentration and content
can be improved by up-regulated expression of genes in the
anthocyanin biosynthetic pathway [26–28], etc. Nevertheless,
with climate change, increasing temperatures are advancing phe-
nology, increasing [Sugar], but decreasing acidity, anthocyanins,
and aroma precursors at harvest, which have the potential to
decrease wine quality, producing wines that are unbalanced
for alcohols, and lacking acidity, freshness, color, and aroma
expression [29–31]. In addition, severe and/or prolonged water
deficits can negatively affect grapevine canopy development,
berry microclimate, berry size, yield, berry composition, and
can increase mortality risk [2, 3, 32]. Thus, predicting seasonal
plant water potential is essential to predict berry growth and
quality, to evaluate the effect of water availability under various
climate scenarios, and to aid growers in developing appropriate
mitigation and adaptation strategies to ensure grape yield and
quality.

In the current study, we calibrated and validated the
GrapevineXL model for a wine grape cultivar (Vitis vinifera cv.
Cabernet Franc) in field conditions over 13 years in Bordeaux,
France to reach the following objectives: (i) to use this model to
predict seasonal dynamics of �, gs, and Pn under field conditions;
(ii) to predict seasonal dynamics of berry dry weight (DW), FW
and [Sugar] under field conditions; and (iii) to use the model to
predict the impacts of shifting phenology due to climate change
on berry growth and sugar accumulation.

Results
Predicting plant water status in the field
The �xylem is a sensitive and reliable indicator of plant water
status [33], and its fluctuations result from climate factors, soil
water availability, and plant hydraulic properties and responses
[14]. The seasonal trends of midday �xylem (Fig. 1A) were fairly
reproduced by the model after re-parameterization for the Rsp

and �50%-leaf from 2004 to 2016. For the calibration data set, the
RMSE andRRMSEwere 0.25MPa and 25.6%,and the corresponding
value was 0.29 MPa and 28.4% for the validation data set. The
ANCOVA test showed that there were no significant differences
in both the regression slope and intercept from 1:1 line for the
validation data set and in regression slope from 1:1 line for the
calibration data set. The model performed particularly well in
2007, 2010, 2015, and 2016, while overestimated in 2008, 2014, and
2012 or underestimated in 2004 and 2006 (Fig. 1B and C).

Model performance of leaf-scale gas exchange in
field with a wide spectrum of soil water
availability
In order to calibrate and validate the model performance of leaf-
scale gas exchange simulation in field conditions for a wide spec-
trum of soil water availability, a meta-analysis of 18 field studies
published between 1996 and 2019 was used (Fig. 2; Table S1, see
online supplementary material). In the published studies, the
leaf gas exchange and corresponding midday � leaf were usually
measured on sun-exposed and fully expanded leaves around
midday or time was not specified but with saturated light. To
make reliable comparisons, simulated leaf gas exchanges from
GrapevineXL were extracted from the top 3 leaves on the shoot
around midday between 12 p.m. and 4 p.m., because these leaves
have similar light conditions as those in the published studies.
Model parameters of leafN_content, slope_Vcmax, and �50%-leaf that
regulate leaf Pn and gs were first refined by model calibration.
For the calibration data set, GrapevineXL precisely reproduced the
responses of gs and Pn to predawn � leaf, with simulated points
nicely overlapping with experimental observations across a wide
range of predawn � leaf (−0.03 to −0.72 MPa) (Fig. 2A and E). For
the validation data set, GrapevineXL also accurately predicted
the responses of gs and Pn to predawn � leaf, within an even
wider predawn � leaf range (−0.01 to −1.03 MPa) (Fig. 2B and F).
Similarly, themodel generated a comparable range ofmidday� leaf

to those observed in the meta-analysis and accurately predicted
the responses of gs and Pn tomidday� leaf which distributedwithin
the area of the observed meta-analysis for both calibration and
validate data sets (Fig. 2C, D, G, and H). Moreover, the model cor-
rectly reproduced the decreases of Pn and gs gradients whenwater
limitation intensified (Fig. 2). The general adequacy of responses
of gs or Pn to predawn � leaf or midday � leaf between predicted and
observed meta-analysis values across both diverse climate and
soil water conditions indicated a robust predictive capability of
GrapevineXL.

Predicting changes in berry fresh weight and
sugar concentration
Following predictions of leaf-scale gas exchange and plant water
status (Figs 1 and 2), the model accurately reproduced the sea-
sonal dynamic patterns of berry DW, FW, and [Sugar] compared
to observed values for both calibration and validation data sets
(Figs 3 and 4; Fig. S1, see online supplementary material). For the
calibration data set, there was a slight underestimation of DW
in 2005 and 2009 and an overestimation of [Sugar] in 2013. The

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
r/a

rtic
le

/1
0
/6

/u
h
a
d
0
7
1
/7

1
1
7
5
3
6
 b

y
 U

n
iv

e
rs

ite
 d

e
 B

o
rd

e
a
u
x
 u

s
e
r o

n
 1

5
 D

e
c
e
m

b
e
r 2

0
2
3



Yang et al. | 3

Figure 1. Observed mean midday xylem water potential (�xylem) and simulated midday �xylem of grapevine in field from 2004 to 2016. Cali and Vali
represent the data belonging to calibration (2005, 2009, 2011, and 2013) and validation (the remaining 9 years) data sets, respectively. The upper panel
showed comparisons between observed and simulated midday �xylem over time, with black points for observed midday �xylem (the mean of eight
measurements at about 3 p.m.), black dashed lines for observed predawn leaf water potential (�leaf), and red solid lines for simulated midday �xylem
extracted from the hourly simulated �xylem at 3:00 p.m. (noon) of each day in each vintage. The bottom panels are direct comparisons between
observed and simulated midday �xylem for calibration (b) and validation (c) data sets, respectively. Solid lines in the bottom panels are the 1:1 lines
between observed and simulated values and dashed lines are the linear regression lines. ∗ and ns represent significant or no significant difference in
slope and intercept detected between regression line of observed and simulated values and 1:1 line at P<0.05, using ANCOVA.

ANCOVA test showed that there were no significant differences
in both the regression slope and intercept of FW and in the
regression line slope of [Sugar] from 1:1 line, but the intercept
was significantly different for the regression line of [Sugar] from
1:1 line, for the calibration data set. The RMSEs were 0.02 g,
0.05 g, and 16.82 g/L and RRMSE were 7.31%, 5.63%, and 9.41%
for DW, FW, and [Sugar], respectively. For the validation data set,
the [Sugar]s were overestimated in 3 years (2004, 2007, and 2014),
and the corresponding DW and FW were both underestimated,
at the later stage of growth. Significant differences in both the
regression slopes and intercepts of FW and [Sugar] from 1:1 line
were detected according to ANCOVA test for the validation data
set. The RMSEs were 0.02 g, 0.01 g, and 24.91 g/L and RRMSEs
were 8.89%, 9.19%, and 13.71% for DW, FW, and [Sugar]. Based on
the value of RRMSEs of validation data sets, the model showed
excellent performance in predicting berry growth and good per-
formance in prediction berry sugar accumulation.Moreover, inter-
annual variations in berry FW, [Sugar], and DW at maturity were
also precisely predicted, without significant differences between
observed and simulated values at maturity (Fig. S2, see online
supplementary material).

Simulating the impacts of phenology shifts on
berry size and sugar concentration
Virtual experiments were conducted to explore the effects of
earlier veraison due to climate warming [34] on berry growth,
sugar accumulation, and ripening phase between veraison and

harvest. Two early veraison scenarios were created by moving
forward the veraison dates by 14 and 28 days in comparison
with the observed veraison dates from 2004 to 2016. When the
veraison was advanced by 14 or 28 days, one would expect to
observe a 14-day or 28-day advancement in maturity date as
well, if the ripening duration was not modified. However, tem-
perature may modify the duration from veraison to maturity [35];
therefore, the advancements of maturity under an early veraison
scenario might be larger or smaller than 14 or 28 days. Because
the actual advancements of maturity could not be known a priori,
we considered the same duration from veraison to harvest for
running simulations in the two virtual scenarios. When the date
of veraison moved forward, ripening took place under warmer
conditions, as the number of days that had higher temperature
and radiation was higher than the default scenario (Fig. S3, see
online supplementary material), leading to higher GDDs (Fig. S4,
see online supplementarymaterial), in all years except 2011.Com-
pared to default scenarios, except in 2011, the GDD increased by
2.4 to 111.4◦C days for the eVer_14 scenario, and by 32.2 to 139.6◦C
days for the eVer_28 scenario (Fig. S4, see online supplementary
material). For 2011, the GDD was decreased by 30.8◦C days for
the eVer_14 scenario and 42.3◦C days for the eVer_28 scenario,
respectively. On average, increases of 43.4 and 75.4◦C days were
detected for eVer_14 and eVer_28 scenarios, respectively.

The berry DW, FW, and [Sugar] under earlier veraison scenarios
were compared to the default scenario (Fig. 5). Their relative
changes varied among years and the two scenarios. FW decreased
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Figure 2. Observed and simulated responses of stomatal conductance (gs), and net photosynthesis rate (Pn) to predawn leaf water potential (�leaf) and
midday �leaf using GrapevineXL model, respectively, in field from 2004 to 2016. Calibration and Validation represent the data belonging to calibration
(2005, 2009, 2011, and 2013) and validation (the remaining 9 years) data sets, respectively. Grey points are data from published literatures (Table S1, see
online supplementary material), representing observed values. Colorful points are simulated values for calibration and validation data sets,
respectively.

in 11 out of 13 years under eVer_14 scenario and in 12 out of
13 years under eVer_28 scenario, while it was increased in 2007
and 2015 under eVer_14 scenario and in 2007 under eVer_28
scenario. Inversely, [Sugar] increased in 10 out of 13 years under
eVer_14 scenario and in 11 out of 13 years under eVer_28 scenario,
while it was decreased in 2007, 2015, and 2016 under eVer_14
and in 2007 and 2008 under eVer_28 scenario. Over the 13 years,
FW was significantly reduced by 2.7% for eVer_14 and by 3.22%
for eVer_28 scenario compared to the default. [Sugar] increased
by 2.90% for eVer_14 and significantly increased by 4.29% for
eVer_28 scenario compared to the default. Over the 13 years, the
highest increase of [Sugar] was 10.11% in 2006 under eVer_14
and 14.24% in 2016 under eVer_28 scenarios. The FWs in the
two years also showed the highest decreases over the 13 years,
which were− 7.93% in 2006 under eVer_14 and−8.82% in 2016
under eVer_28 scenarios. There were no significant differences for
DW between the earlier and default scenario (Fig. S5, see online
supplementary material).

Grape maturity is often determined by growers based on
various criteria with the consideration of target wine styles [26].
Among those criteria, [Sugar] is one of themost important indexes
and the date that berries reach a target [Sugar] has been used as a
reliable proxy for evaluating historical changes in grape maturity
dates [36]. Similarly, we calculated berry maturity date (DOY)
under advanced veraison scenarios as the time when the sim-
ulated berry reaches the highest sugar concentration of default
scenario in each year (Fig. 6). Then the relative changes of matu-
rity date (ΔGDD) under earlier veraison scenarios were compared
to the default scenario (Fig. 6). Three possible response patterns
of ripening duration and maturity date can theoretically occur:
(i) Since we advanced veraison date by 14 or 28 days, one would
expect equal advances in maturity date if the ripening duration
was not affected. However, the advancement in veraison will
most likely modify growing temperatures during ripening, hence

influencing ripening rate and consequently altering ripening
duration. Therefore, (ii) if the ripening period is shortened, then
the maturity date will be advanced more than the days advanced
in veraison (namely 14 or 28 days); in contrast if the ripening
period is prolonged, (iii) the maturity will be advanced less than
14 or 28 days. Our simulation results showed that the ripening
period in 8 years (2005, 2009 to 2012, and 2014 to 2016) out of 13
was shorter than default under the eVer_14,while in 3 years (2004,
2006, and 2008) out of 13 was longer than default. Similar results
were obtained for the eVer_28, with 8 years (2005, 2008 to 2012,
2015 and 2016) having shorter ripening period and, and 3 years
(2004, 2013, and 2014) having a longer ripening period. It is also
noteworthy that the [Sugar] in 2006 under eVer_28, 2013 under
eVer_14, and 2007 under both virtual scenarios never reached the
target [Sugar] in the default scenario, and therefore no maturity
dates were determined for those instances.

Discussion

In this study, the functional-structural plant model, GrapevineXL,
was calibrated and validated against observed data of Cabernet
Franc grapevines in Saint-Émilion (Bordeaux, France) over 13
consecutive years under varied soil water and climate conditions.
The results demonstrated that themodel could accurately predict
the dynamics of grapevine water status and berry DW, FW, and
[Sugar]. The simulated leaf gs and plant �xylem declined mainly
following the decline of predawn � leaf but was also influenced by
climate conditions. Exploring advanced phenology due to climate
change suggests that in general this advancement will decrease
berry size and increase sugar concentration, consistent with the
observed trends to date. Overall, the results showed that the
multiscale GrapevineXL model can predict plant water use and
berry growth, and provides a useful tool predicting grapevine
growth and productivity under future climate scenarios.
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Figure 3. Observed and simulated berry fresh weight (FW) using GrapevineXL model in field from 2004 to 2016. Cali and Vali represent the data
belonging to calibration (2005, 2009, 2011, and 2013) and validation (the remaining 9 years) data sets, respectively. The upper panel showed
comparisons between observed and simulated berry FW over time, and the bottom panels were direct comparisons for calibration and validation
years, respectively. Each point represented the average value of all berries from the simulated vine. Black points in the upper panels are observed berry
FW and red solid lines are simulated values. Solid lines in the bottom panels are the 1:1 lines between observed and simulated values and dashed lines
are the linear regression lines. ∗ and ns represent significant or no significant difference in slope and intercept detected between regression line of
observed and simulated values and 1:1 line at P< 0.05, using ANCOVA.

Predicting plant water status with soil water
availability and climate
Plant water status is a major driver of key physiology processes
that influence plant production and product quality [3], and
could be reliably evaluated with � leaf and �xylem. Because � leaf

is more dependent on leaf microclimates within canopies than
�xylem [18], there is an increasing trend to use �xylem as a plant
water status index for irrigation management and evaluating
plant performance [14]. Traditionally, �xylem is measured with
destructive sampling and is laborious. However, precise and reli-
able in situ measurements of �xylem are still very challenging,
while measuring meteorological factors (including light, temper-
ature, and relative humidity) and soil water content are relatively
easy. Therefore, it is extremely valuable to develop predictive
approaches with just climate and soil water as inputs to provide
accurate prediction of plant water status, particularly the �xylem.

After re-parameterization and 3D canopy reconfiguration, the
GrapevineXL has fair performance in predicting the seasonal
dynamics of plant water status (�xylem) in the field over 13
vintages. Although �xylem was overestimated (2008, 2012, and
2014) or underestimated (2004 and 2006) across simulated
periods in several vintages, it was predicted quite accurately in
many vintages (2005, 2007, 2009, 2010, 2015, and 2016). This is
mainly attributed to the model’s comprehensive consideration
of the whole-plant water fluxes across the soil–plant–air contin-
uum, with special attention to cornerstone pathway hydraulic

conductivities, including the soil-to-root hydraulic conductivity
(Rsp) and gs. The Rsp is regarded as the primary driver of
alternations in plant water status via its influence on gs responses

under water limitation [37, 38]. In the current study, Rsp is
simulated with two components, including root architecture
and soil hydraulic conductivity (Eq. 1). First, the original three-
parameter description of root architecture was simplified into
one composite parameter, RSC (Eq. 1). The use of RSC simplifies
the calibration burden without loss of prediction precision and
compensates for the fact that making accurate non-destructive
measurements of root system architecture underground in
the field is simply not possible [17]. Second, the variation of

soil hydraulic conductivity [k(�soil)] as a function of soil water
availability was calibrated for the specific soil where current
experiment was conducted. By doing so, the model captures
the variable hydraulic conductance of the whole vine, which
is essential for reliable water status simulation as previously
shown [39]. Soil type is the main factor influencing soil hydraulic

conductivity [40] and the re-parameterization of k(�soil) is
indispensable for the precise prediction of �xylem in vineyard.
In the future, this parameter can be tailored to other specific
vineyards and soils.

A robust simulation of gs under constantly changing environ-
ments (e.g. in the field) is also required for a precision prediction
of plant water status. Because gs is the hub regulator simul-
taneously controlling Pn and water fluxes, we re-parameterized
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Figure 4. Observed and simulated berry sugar concentration ([Sugar]) using GrapevineXL model in field from 2004 to 2016. Cali and Vali represent the
data belonging to calibration (2005, 2009, 2011, and 2013) and validation (the remaining 9 years) data sets, respectively. The upper panel shows
comparisons between observed and simulated berry [Sugar] over time, and the bottom panels are direct comparisons for calibration and validation
years, respectively. Each point represents the average value of all berries from the simulated vine. Black points in the upper panels are observed berry
[Sugar] and solid lines are simulated values. Solid lines in the bottom panels are the 1:1 lines between observed and simulated values and dashed lines
are the linear regression lines. ∗ and ns represent significant or no significant difference in slope and intercept detected between regression line of
observed and simulated values and 1:1 line at P<0.05, using ANCOVA.

Figure 5. Relative changes in simulated berry fresh weight (FW) and sugar concentration ([Sugar]) over 13 years from 2004 to 2016, using GrapevineXL
model in field conditions, under earlier veraison scenarios. The simulated berry FW and [Sugar] under default veraison were used as the baseline in
each year to estimate the relative changes of values simulated under 14- and 28-days earlier veraison scenarios, respectively. The boxes and whiskers
represent the variation in relative changes among years. The thick and thin dashes in boxes are median and mean of all values, and colorful dots are
simulated results. ∗ and ns represent significant difference or no significant differences detected between simulated values under default and earlier
veraison scenarios at P<0.05, using one-way ANOVA.

three parameters (leafN_content, slope_Vcmax, and �50%-leaf) related
to those two processes with a meta-analysis of field studies. The
leaf nitrogen content (leafN_content) is known to be largely influ-
enced by light conditions [10], and was adjusted in the present
study to represent light differences between the greenhouse and
field conditions. The most critical and sensitive parameter for gs

is the �50%-leaf, which represents the leaf water potential when
50% of the leaf hydraulic conductivity is lost [21, 41]. The �50%-leaf

was calibrated in the current study to −1.80 MPa (Table S1 and
Fig. S6, see online supplementary material) in order to reproduce
the relationship between � leaf vs gs,� leaf vs Pn, as well as predawn
� leaf vs gs, predawn � leaf vs Pn in field conditions. This value was
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Figure 6. Relative changes of simulated DOY for berry ripe under earlier
veraison scenarios compared to default veraison scenario over 13 years
from 2004 to 2016, using GrapevineXL model in field. The simulated
berry maturity DOY under earlier veraison scenarios were determined
as the day when berry [Sugar] reached the largest [Sugar] under default
veraison scenario. Red and blue bars present the changes of DOY for
berry ripe under 14- and 28-days earlier veraison scenarios, respectively.
Red and blue lines present 14- or 28-day advancements in maturity,
respectively.

more negative than the original value (−1.52 MPa) for greenhouse
grapevines [22] and other reports in literature [42, 43]. In the lit-
erature, �50%-leaf ranged from −0.86 to −1.61 MPa as a function of
cultivar, rootstock, soil type, and planting region or even between
gs measurement equipment (porometer vs infra-red gas analyzer)
[42]. The more negative �50%-leaf value (−1.80 MPa) in the current
study avoids a too-steep decrease in gs with decreases in � leaf,
and maintains a relatively low but stable gs under severe water
stress (e.g. � leaf <−1.52 MPa, Fig. S6, see online supplementary
material) similar to those observed in our field meta-analysis.
This is in line with recent works that showed that grapevine gs
becomes increasingly tolerant to more negative water potentials
throughout the growing season [44, 45].

Because �xylem could be fairly predicted by GrapevineXL in the
field, we further explored the relative contributions of environ-
mental drivers that could influence the fluctuations in �xylem.
The current study supports previous observations that the decline
of �xylem mainly followed the decline of predawn � leaf, and 29%
of the variability in �xylem could be explained by predawn � leaf

(Fig. S7, see online supplementary material). However, the per-
centage is lower than previous reports that showed about 61% of
the variability in �xylem was explained by predawn � leaf for peach
[46], 66%–85% for grape [14, 47], and 75% to 81% for pecan [48]
where predawn � leaf and midday �xylem were measured in pairs
in each day. Thus, the lower percentage in the current study may
be as a result of the predawn � leaf not being measured every day
and thus a portion of those values were estimated using linear
interpolation.Additionally, part of the residual variability in�xylem

resulted from climate factors, such as vapor pressure deficit, tem-
perature, solar radiation, etc. [18]. Moreover, the canopy size and
structure, and crop load may also affect �xylem via their effects on
gs [26]. For example, failure to account for the variability in micro-
climate within canopies led to a 25% overestimation of canopy
transpiration in red maple, which would consequently lead to
biased results of �xylem [49]. Therefore, the reconfiguration of the
3D grapevine canopy structure likely contributed to the improved
prediction precision of �xylem. This 3D architecture enables the
leaf gas and energy exchange to be accurately simulated at the
leaf scale, taking into consideration the variability inmicroclimate
and acclimation of leaf biochemical and physiological key param-
eters within complex canopies [10].

Variation in berry weight and sugar
Both berry weight and [Sugar] are complex traits with high plas-
ticity in responses to climate factors and soil water [26, 28, 35, 50].
As a result, they often show high inter-vintage variation [50, 51],
which negatively impacts growers in terms of unstable yield and
quality. In our data set, berry fresh weight varied from 1.0 to 1.3 g
and [Sugar] from 200 to 250 g/L at maturity over the 13 vintages.
A framework that is able to predict these inter-annual variations
will be valuable for developing and implementing anticipative
management strategies for vineyards, such as irrigation, in the
short term (i.e. within a season) and for evaluating viticulture
sustainability of a given region under climate change in the long
term [50, 52].

Following the robust predictions of plant water status and
carbon assimilation (Pn), GrapevineXL accurately simulated berry
FWand [Sugar] under a range of climatic and soil water conditions
with the same set of parameter values across 13 vintages. This
was achieved by a minimal re-parameterization of six param-
eters related to water and carbon fluxes between vines and
berries. Those water and carbon influxes and effluxes are mod-
elled using bio-physical and biochemical laws with parameters
that are expected to be genotype-dependent but environment-
independent [23, 53]. The current results confirmed the stability
of model parameters and enable GrapevineXL to serve as a pre-
diction tool for accurately evaluating grape production and sugar
accumulation responses under future climate scenarios.

Advanced veraison changes climatic and soil
water pattern conditions, impacting on berry
growth and sugar accumulation
Advancement of phenology, such as veraison or harvest, are well-
documented effects of climate change in grapevine [34, 54, 55],
and result in part from increased temperature and decreased
soil water availability [54]. In parallel, grape quality (e.g. [Sugar],
[pH], [organic acids]) is also profoundly modified [30, 31]. The
advancement in phenology may shift the ripening window and
consequently exacerbate the changes in temperature and soil
water experienced by the vines [56].However, accurately quantify-
ing the effects of advanced phenology on berry growth and quality
has proven challenging because it results from simultaneously
changing both the timing and climate surrounding the ripening
process. To disentangle these effects, we designed a series of
virtual scenarios of advanced phenology and evaluated the effects
of advanced phenology on grape growth and quality, and ripening
duration. The scenarios allowed us to mimic the advanced phe-
nology and compare its effects over multiple seasons exhibiting
diverse climate and soil water conditions. The simulations in
the current study generally agreed with the long-term observed
changes to date [30, 31, 34, 56], (i) the climates under earlier
veraison were warmer in almost all years (12 out of 13 years,
Fig. S5, see online supplementary material); (ii) berry [Sugar]s
were increased (11 out of 13 years under eVer_14 and 12 out
of 13 years under eVer_28 scenarios, respectively, Fig. 5) and the
ripening period from veraison to maturity was shortened (both 10
out of 13 years under both eVer_14 and eVer_28 scenarios, Fig. 6);
and (iii) the magnitude of relative changes of berry [Sugar]s and
ripening phase varied with climate and soil water patterns.

Moreover, our simulation showed decreases in berry size in
most vintages in response to advanced veraison. This is most
likely a result of reduced berry water balance rather than
decreased source carbon supply. First, the water influxes into
berry were reduced because the ripening period took place under
more water stressed conditions with advanced veraison [26, 31].
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Second, berry water loss via transpiration was increased because
the evapotranspiration demand was higher due to higher
temperature with advanced veraison [57]. These two processes
both reduce water accumulation in berry and thus decrease
berry size. On the other hand, the leaf photosynthesis rate,
a measure of source carbon supply [7], was not reduced but
increased (Fig. S8, see online supplementary material), despite
the lower plant water status under advanced veraison. This is
because the negative effect of lower plant water status on Pn
might be fully compensated by the higher leaf temperature and
leaf absorbed radiation under advanced veraison (Fig. S9, see
online supplementary material). Interestingly, the improved Pn
under advanced veraison did not result in increases in berry
dry weight, which in fact decreased in most simulations (nine
out of 11 years under eVer_14 and seven out of 11 years under
eVer_28 scenarios, respectively, Fig. S3, see online supplementary
material). This uncoupling between Pn and berry DW suggests
that the carbon partitioning among organs is altered and
more carbon was allocated to shoot and roots than to berry
and fine roots under water stress in grapevine (Fig. S10, see
online supplementary material). This is in agreement with
observations in grapevine under drought conditions [58]. These
counterintuitive results demonstrate the ability of GrapevineXL
to elucidate the complex carbon assimilation and partitioning
patterns resulting from interactions among environmental
factors and biological processes.

The current modeling approach demonstrated that the effects
of shifting phenology on berry growth and quality [28, 35] could
differ season to season depending on the specific seasonal
weather and soil water patterns [30, 35]. A temperature-only
based model cannot fully explain this variability [26, 35] and may
not be adequate in differentiating the effects of regional climates
and evaluating impacts of climate change.

Limitations, drawbacks, and transferability of
GrapevineXL
This study revealed complex interactions among climate, soil,
canopy architecture, and root functions [28, 35, 42]. Missing any
one of these interactions because of model simplification may
impact model accuracy. Two simplifications had been applied as
model assumptions in the current version of GrapevineXL, includ-
ing constant leaf size and leaf number post-veraison indepen-
dent of seasonal conditions, and a simplified topology of canopy
structure consisting of isolated single shoots with their own roots.
Although the canopy size was largely maintained as a result of
frequent summer pruning, potential increases of leaf area and
number from leaves on the secondary shoots under favorable
climate and soil water conditions can occur [59, 60]. Therefore,
the assumption of constant canopy size post-veraisonmay lead to
underestimation of canopy transpiration under favorable climate
and soil water conditions [61] and then overestimate plant water
status, such as the overestimation of �xylem in years (e.g. 2007,
2008, 2011, 2013, and 2014) with less stressed conditions.Although
there is vessel segmentation among shoots and water flows in
discrete xylem sectors along the trunk axis [62], the assumption
of separated shoots ignores the possible exchange of resources
between nearby vessels [24] and may increase the uncertainty of
predicting plant water status. Detailed leaf growth and canopy
structure need to be more precisely incorporated in the future
version of the GrapevineXL.

Following the sensitivity analysis in the previous studies
[23, 38], the results from the current model demonstrated that
re-calibration of key parameters (14 of the total 114 parameters)

is adequate and can avoid the need for destructivemeasurements
of roots (for RSC). Moreover, through integration of phenology
[36], leaf area development [59], and soil water balance [63]
models as new modules of GrapevineXL, the required inputs that
were obtained by field observations in the current model can be
reduced and estimated frommeteorological factors. However, the
newly introduced parameters from these new modules increase
the number of parameters in the current model. In addition, the
missing interaction between leaf area and climate and soil can be
compensated at the same time.

The current model was calibrated and validated for only
one cultivar under rain-fed conditions in a specific region. The
results from the model suggested that water and carbon fluxes
related parameter were cultivar- and soil- rather than climate-
dependent. Using different grape cultivars to adapt to climate
change has been proposed as one effective solution [64] and
the high genetic diversity within Vitis vinifera makes this option
promising. However, whether the GrapvineXL can account for
this cultivar-dependent diversity needs to be recalibrated with
consideration of soil type. By taking advantage of the model,
virtual experiments can be efficiently conducted to screen desired
traits and provide insights on selection and breeding of potential
cultivars to meet the requirements of a region’s changing climate
[65].

Conclusion
This study calibrated and validated the functional-structural
grapevine model, GrapevineXL, in field conditions to predict
seasonal plant water transport through the soil-root-xylem-
leaf continuum (leaf gs, � leaf, and �xylem) and berry growth and
quality (FW,DW, and [Sugar]) against observed data across diverse
climate and soil water conditions. Moreover, the simulations
advancing the veraison date indicate the current model provide
comparable yet more nuanced results when compared to long-
term observations or temperature-based models regarding the
impacts of climate change on berry growth and quality. The
current study showed this process- and structure-basedmodeling
approach can be effectively applied to current and future climate
predictions to aid farmers in developing sustainable adaptation
strategies.

Materials and methods
Overview of the GrapevineXL model
GrapevineXL is a whole-plant functional-structural grapevine
model designed for simulating post-veraison berry growth that
starts from veraison (the onset of ripening) and ends at maturity
in response to canopy architecture, leaf-to-fruit ratio, climate,
and soil conditions [22,23]. GrapevineXL was developed on the
GroIMP platform [66]. There are six main modules in the model
(Fig. 7): (i) radiation module which calculates the light captured
by each organ using a ray-tracing method [66]; (ii) canopy
architecture module which realistically represents the plant 3D
architecture; (iii) leaf gas exchange module which calculates the
photosynthesis, transpiration, leaf temperature, and stomatal
conductance at a given environmental condition using an
extended Farquhar, von Caemmerer and Berry (extended-FvCB)
method [67]; (iv) water transport module which calculates
water transport from soil to root surface to xylem and to
leaf with an electrical resistance analogy and with variable
hydraulic conductance using the Tardieu–Davies method [68]; (v)
carbon allocation module which calculates the phloem sucrose
concentration and carbon allocation to each organ on an hourly
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Figure 7. Schematic diagram of the GrapevineXL model. Soil water potential was represented by predawn leaf water potential in current study. Model
refinements were highlighted in blue, including adjusting the equation for the soil-to-root conductivity (RSC) and parameters recalibration for those
related to leaf photosynthesis, soil-root water hydraulics, and berry growth and sugar accumulation, in order to better capture the performance of
vines in field. Details of calibrated parameters can be found in the ‘Model parameterization’ section.

basis [69, 70]; and (vi) berry growth module which simulates the
hourly water and carbon balances of a mean berry based on
biophysical laws [23, 71].

In GrapevineXL, the vine architecture is composed of multi-
ple organs that include: 1-year-old stems including internodes,
petioles, and leaves, a cordon (more than 2-year-old), a trunk (its
weight including structural thick roots), fine roots (less than 2mm
in diameter), and berries (mean individual berry times the number
of berries per shoot). All organs are initialized with corresponding
biomass and 3-dimensional information (geometry and topology)
except the root compartment, which is described as a carbon sink
with its corresponding biomass.

The 3D canopy architecture allows a fine simulation of
radiation absorbed by organs within a heterogeneous canopy,
using a ray-tracing method [66]. By mechanistically coupling the
extended-FvCB and Tardieu–Davies models, the model is capable
of predicting leaf-scale Pn, gs, and � leaf, �xylem and the dynamic
water transport from soil to xylem and to leaves. Then, a sink-
driven carbon allocation model is employed to calculate phloem
[Sugar] based on the hypothesis that carbon-loading equals car-
bon unloading among organs at each time step at the whole-plant
scale. Finally, phloem [Sugar] and xylem water potential are used
by the berry growth module to simulate berry growth and [Sugar].

Experimental data
A commercial rainfed vineyard located at Saint-Émilion region,
France (44.93◦ N, 0.18◦ W), was selected as an experimental plot.
The studied Vitis vinifera L. Cabernet Franc was established in 1998
and grafted on 101-14MGt rootstock at a density of 5950 vines/ha
(row spacing at 1.4 m and vine spacing on the row at 1.2 m).
Vines were trained to a system with an average of five shoots
per vine, ranging from four to eight shoots per vine. The soil in
the vineyard was categorized as heavy clay and the rooting depth
could reach 1.3 m with a moderate soil water-holding capacity of
168mm.Vines were simple guyot pruned. All vines weremanaged
according to the standard local practices in the winery, including
standard fertilization (only organic), pest and disease protection,
and no irrigation was applied. The sampling area was restricted
to an area of 100 vines, close to the location where the soil was
characterized by means of a soil pit. The rationale to restrict
the sampling area was to avoid heterogeneity induced by soil
variations (texture, depth,water-holding capacity). Further details
of the experimental setting are described in Tramontini et al. [72].

Over 13 consecutive vintages (from 2004 to 2016), both predawn
� leaf and midday �xylem were measured with a pressure chamber
(SAM Précis 2000, F-33170 Gradignan, France) every two weeks
from full bloom until maturity. The predawn � leaf was measured
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10 | Horticulture Research, 2023, 10: uhad071

from eight leaves on eight individual vines at least 30 minutes
before sunrise between 3:45 a.m. and 6:25 a.m. on each date. The
predawn � leaf was assumed to be a proxy for soil water poten-
tial (�soil) [73]. Midday �xylem was determined from eight fully
expanded leaves on eight individual vines on midday between 2
p.m. and 4 p.m. and all leaves were covered with an opaque reflec-
tive plastic envelope for at least one hour beforemeasurements to
prevent transpiration and allow the � leaf to come into equilibrium
with the �xylem.

Berry FW and [Sugar] were collected weekly from veraison (i.e.
the onset of ripening) to harvest each year from 2004 to 2016 (8–
10 times for each parcel in each year), on a sample of 800 berries
(eight berries per vine). Berry sugar content was determined with
a handheld refractometer as described in van Leeuwen et al. [74].
Berry DWwas estimated from a robust relationship between berry
water content and [Sugar] that has been well established with
various cultivars across multiple vintages [75]. Berry number per
shoot was counted from 15 randomly selected primary shoots.

Canopy leaf area and shoot characteristics were measured in
2011. Firstly, the relationship between shoot leaf area and shoot
length was established for primary and lateral shoots, respec-
tively, based on measurements of 15 randomly selected shoots
for each shoot type. Leaf area was measured using Li-Cor 3000
portable leaf area meter (LI-COR, Lincoln, NE, USA) and shoot
length by tape. Then, 10 vines were randomly selected to measure
the length and number of all primary and lateral shoots. Lastly,
the mean number of primary shoots per vine, mean total leaf
area per vine and mean length per primary shoot were calculated
[72]. Additionally, 20 leaves of Cabernet Franc were sampled to
determine the specific leaf area (SLA) bymeasuring the individual
leaf area and dry weight, the leaf length/leaf width ratio and the
relationship between leaf area and leaf length. The declination
angle between the petiole and internode, and the declination
angle between leaf blade and petiole weremeasured by protractor
on 20 randomly selected single-shoot fruiting cuttings (10–13
leaves per shoot) of ‘Cabernet Sauvignon’ in 2015.

To avoid time trend effect during time-series analysis for the
traits of xylem water potential, berry fresh weight, berry dry
weight and berry sugar concentration, we used three methods to
detrend the time series data. The ‘detrend’ function in R package
‘pracma’ was used to detrend data by fitting with a constant
value and linear regression model, respectively. In addition, the
data was detrended by differencing method using ‘diff’ function
in R. The original data was then compared to the detrend data
with linear fitting. Significant linear relationships (r2 closed to 1,
P< 1e−16) were detected between original data and detrend data
(results not shown), indicating that those original observed data
are stationary and do not need to be detrended.

Meta-analysis of leaf Pn and gs responses to � leaf

and midday �xylem

Leaf Pn and gs were not measured whenmeasuring midday �xylem

and predawn � leaf in the present study. To compare between
simulated leaf gas exchanges and � leaf, with observations and
to derive stable model parameters under field conditions, simul-
taneously observed data of Pn, gs, midday � leaf, and/or predawn
� leaf or �soil were collected from field grapevine studies published
in peer-reviewed scientific journals and conference proceedings.
Publications were reviewed and selected based on the following
criteria: (i) only field studies were conservedwhen considering the
potential utilization of the current model for field vineyard man-
agement and significant differences of gs measured between field
and greenhouse conditions [43]; and (ii) presence of both leaf Pn or

gs and predawn andmidday� leaf or predawn�soil valuesmatched
in time either measured seasonally or diurnally. For data under
graphical representation, a free tool ‘web plot digitizer’ (https://
automeris.io/WebPlotDigitizer/) was used to retrieve values. In
total, 18 studies were selected and used (Table S1 and Dataset S1,
see online supplementary material).

Model inputs and initial conditions
Climate data (total solar radiation, temperature, relative humidity,
and wind speed) collected by a weather station located in the
experimental vineyard were used as model input. Predawn � leaf

was inputted as proxy for �soil and was bi-weekly collected in
the current study (see section: Experimental data). Predawn � leaf

between two field measurement dates was estimated using linear
interpolation.

The initial state of the grapevine at veraison included canopy
architecture, berry properties, and dry mass of all organ compart-
ments. Following the evidence that there is vessel segmentation
among shoots and water flows in discrete xylem sectors along
the trunk axis [9, 62], the canopy architecture was represented
by several isolated plants with a single shoot and without con-
sideration of possible water fluxes between annual shoots. To
mimic the actual canopy architecture, the shoot density and its
geometric organization was set to the same as vines grown in the
field with a pruning system of one-cane cordon. These geometric
configurations included shoot number per meter, mean shoot
length, mean leaf number per shoot, and leaf area per shoot, and
theywere all estimated based onmeasurements from experimen-
tal data. The distance between the two consecutive single-shoot
plant was set to 15 cm. Leaf area along the shoot was multiplied
by a factor to give the observed leaf area per shoot in field based
on the node-by-node leaf area measurements in Cabernet Franc
[76]. Leaf length was estimated based on the relationship between
leaf area and leaf length and leaf width was estimated based
on leaf length/width ratio (see section: Experimental data). The
declination angle between the petiole and internode, and the
declination angle between leaf blade and petiole were determined
based on measurements from Cabernet Sauvignon (see section:
Experimental data). The leaf azimuth angle between consecutive
leaves in current simulations was set to 135◦. Leaf dry mass was
estimated by leaf area and SLA. Leaf area per shoot was set to
0.25m2. Shoot and fine root drymass were estimated according to
the measurements of Hunter [77]. Wood dry mass was estimated
by allometric relationships between vine age and trunk diameter
[78], and between trunk diameter and biomass [79]. Structural
root biomass was estimated based on Hunter [77] and added
to the trunk biomass because structural roots perform similar
carbohydrate cycles as the trunk [80]. The dry mass of trunk and
fine root per vine were evenly distributed to each single-shoot
plant based on the mean shoot number per vine. To initialize
the berry growth, the day of the year (DOY) of veraison and
harvest, berry [Sugar], FW, DW, and mean berry number per shoot
at veraison were determined based on experimental data (see
section: Experimental data). The external canopy architecture is
fixed without new modifications from veraison to maturity. The
initial state of canopy architecture and dry masses of organs
(except berry) were assumed to be the same among the year,while
berry traits at veraisonwere extracted from the experimental data
at the beginning of the season for each year.

Model parameterization
A comprehensive description of parameterization and validation
for several grape cultivars of potted vines growing in controlled
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greenhouse conditions has been reported in Zhu et al. [22, 23]. In
the present study, the model needs to be recalibrated for field-
growing vines with distinct above-ground sizes and root systems
compared to the potted vines. These differences can influence
the values of 14 model key parameters, which have been shown
to exert high impact on model outputs according to previous
sensitivity analysis [23, 38]. These 14 parameters were newly
recalibrated, mostly related to the resistance between the rhizo-
sphere and soil–root interface (Rsp), leaf photosynthesis activities,
and berry growth, while the remaining 104 parameters were kept
as those previously reported [23, 38]. The simulation started at
veraison and ended at harvest determined by filed berry sampling
(see section: Experimental data). The 14 recalibrated parameters
were described in more detail as below.

Soil-to-root water transport
Five parameters involved in the Rsp (mg MPa−1 s−1 plant−1). Rsp

plays a key role in determining water transport from soil to root
and is determined by soil hydraulic conductivity (k(�soil)) and root
system architecture and was calculated as in Gardner [81]:

Rsp =
ln

(

d2/r2
)

4πk (ψsoil) La
=

RSC

k (ψsoil)
(1)

where the d, r and La are the mean distance between neighboring
roots, root radius and root length per unit of area, respectively.
Considering the d, r and La were not measured and are extremely
hard to measure under field conditions, this part was simplified
and represented by a novel parameter root specific conductance
(RSC) in the current model (Eq. 1). The RSC was parameterized at
the whole plant-level by maximizing the sum of log-likelihood of
the simulated �xylem and the observed �xylem using the random
walkMarkov chainMonte Carlo (MCMC)method [82].Thismethod
assumes the prior parameter values and the observations follow
a Gaussian distribution and was carried on automatically with a
self-written Java program in GroIMP.

The k(�soil) represents soil hydraulic conductivity and is related
to �soil. The equation from van Genuchten [83] (1980) with four
parameters was used as follows:

k (ψsoil) = ks

(

1
1 + (αv × ψsoil)

n

)(p−p/n)

×

(

1 −

(

1 −
1

1 + (αv × ψsoil)
n

)(1−1/n)
)2

(2)

where ks (saturated soil hydraulic conductivity), n, αv, and p are
coefficients that characterize a given soil type. The parameters in
Eq. 2 were estimated with data from Duursma et al. [40] for silt
clay loam soil.

Leaf gas exchange
Three parameters, including leafN_content, slope_Vcmax, and
�50%-leaf involved in leaf gas exchange. The leafN_content exerts
impact on the leaf maximum carboxylation rate and it was
determined according to measurements in the field [10]. The
slope_Vcmax represents the slope of the linear regression between
the maximum carboxylation rate and leafN_content, and its value
was parameterized using the same method as that used to
parameterize the RSC. The �50%-leaf is the leaf water potential
when 50% of the leaf conductivity is lost and can influence leaf gs
prediction in the Tardieu–Davies module. As the value of �50%-leaf

that measured in previous study resulted in a steep decline of

gs under increasing soil water stress, it was finely calibrated to
match the observed data based on expert knowledge for field
growing vines.

Berry water and carbon balance
Six parameters related to berry water and carbon balances in the
water transport and carbon allocation modules were parameter-
ized through whole-plant model optimization with a calibration
data set. Firstly, the maximal rate of active sugar uptake per unit
of dry mass (Vmax, berry) and Michaelis constant for active transport
of sugar per unit water (Km, berry), both controlling berry sugar
active importation rate, were parameterized at the whole-plant
level by maximizing the sum of log-likelihood of the simulated
model outputs versus the observed berry DW using the random
walk MCMC method. Then maximal phloem hydraulic conduc-
tance (Lp, max), minimal phloem hydraulic conductance (Lp, min),
fresh mass at the inflection point (FM∗

Lp,) and proportional to the
slope at inflection point of phloem hydraulic conductance (kLp),
which represent berry phloem water conductivity and control
berry water uptake, were parameterized by optimizing the log-
likelihood of the simulated model outputs versus the observed
berry FW and [Sugar].

Parameterization was conducted with a calibration data set,
which included experimental observations from vintages of 2005,
2009, 2011, and 2013, while the remaining data of nine vintages
were used for the model validation (Table S2, see online sup-
plementary material). The four calibration vintages were chosen
based on their climate and soil water status to represent all
13 vintages. As a result, the ranges of climate and �soil were
similar between calibration and validation data sets (Table S2,
see online supplementary material). The parameter optimization
for the whole plant water flux and berry growth were done at
the computing facilities MCIA (Mésocentre de Calcul Intensif
Aquitain, on the cluster Curta) of the University of Bordeaux
due to the large computation power needed. All parameters that
were reparametrized in this work were listed (Table S3, see online
supplementary material).

The model performance for the calibration data set in simulat-
ing�xylem, berry DW,FW,and [Sugar] was evaluated in terms of the
following statistical indices: root mean square error (RMSE, Eq. 3),
and the relative root mean square error (RRMSE, Eq. 4), indicators
of the overall relative accuracy of a model.

RMSE =

√

√

√

√

√

n
∑

i=1
(Oi − Si)

2

n
(3)

%
RRMSE =

RMSE

O
× 100 (4)

whereOi is the observed values and Si is the simulated values. The
smaller the RMSE and RRMSE, the more accurate the simulation
[84]. In this study, model accuracy is considered excellent when
RRMSE <10%; good if 10%≤RRMSE <20%; fair if 20%≤RRMSE
<30%; and poor if RRMSE ≥30% [85].

Model validation
After parameterization, the model was validated using the data
set of nine vintages independent of calibration. Simulations were
run with berry FW, DW, and [Sugar] at beginning of the veraison,
phenology date of veraison and ripening, andmeteorological data
and predawn � leaf along the season after veraison for each year
as inputs. The performance of the model in simulating leaf gs and
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Pn was assessed by comparing simulated responses of gs and Pn to
predawn or midday � leaf to the same response curves drawn from
the meta-analysis. The performance of the model in simulating
�xylem, berry DW, FW, and [Sugar] was evaluated by comparing
model outputs with experimental observations with RMSE and
RRMSE.

Scenario simulations
The advanced phenology due to climate changewill result in berry
ripening during warmer periods [30, 31, 34, 54, 55]. A virtual sce-
nario analysis was conducted and analysed to test the effects of
advanced phenology on fruit development. The simulations start-
ing from observed date of veraison to observed date of harvest of
each vintage were regarded as the default scenario. Considering
the observed advancement of veraison in the past decades [30,
31, 34, 54, 55], two virtual simulation scenarios were investigated,
including a 14-day (scenario eVer_14) or 28-day (scenario eVer_28)
advancement of veraison and maturity earlier compared to the
default scenario examined in this work. The climate and predawn
� leaf inputs were extracted from the same file as those for the
default veraison scenario, but the inputted time window was
shifted to synchronize with the virtual veraison scenarios, by
maintaining the duration of simulation. Except for the date of
veraison and end of simulation, the other initial settingswere kept
the same as in the default veraison scenario. All scenarios were
simulated for 13 vintages.

Statistical analyses
The effect of early veraison on berry FW, DW, and [Sugar] was
analysed with one-way ANOVA. To test if the slopes and inter-
cepts of linear regression relationships between observed and
simulated values were different from 1:1 line, the ANCOVA test
was performed. The contribution of predawn � leaf and climate
factors (radiation, daily maximum temperature, VPD) to �xylem

was calculated using the ‘calc.relimp’ function of the ‘relaimpo’ R
package. Statistical analyses were performed using R software
[86].
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