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NOTES ON PROOF BY DICHOTOMY

LAURENT FALLOT

Abstract. In this document we define a method of proof that we call proof

by dichotomy. Its field of application is any proposition on the set of natural
numbers N. It consists in the repetition of a step. A step proves the proposition

for half of the members of an infinite subset U of N members for which we

neither know if the proposition is verified nor not. We particularly study the
case where the elements of U are separated by the parity of the quotient of

euclidean division by 2k. In such a case, we prove that if a natural n does not

verify the proposition, then it is unique.

1. Acknowledgement

While working on Collatz problem, we introduced this method of proof. We
decide to write some personal notes on it. Having dropped this field of interest for
a long time we have not an up to date bibliography on this field of mathematics.
In the doubt about its knowledge, we choose to share these informal notes with the
research community. We apologize if this work is well known. We do not intend to
steal other one works.

2. Introduction

It is common to use a proof by induction in many sciences. It is a very well
known method of proof so we only recall its principle.

This method of proof is used to validate a given proposition P on the set of
positive integers N. It starts with the proof of a base case. Often it’s 0 but not
only. This done, we have to build the induction step which consists in being able
to prove P (N) independently of the value of N from the hypothesis that for all
n < N, P (n) is valid.

Until today, every attempt to use this method of proof to validate Collatz prob-
lem for instance failed. Many reason of these failures may be given. Mainly, to
simplify, it seems that for any N we may find a new length record greater than N .

Today, many publications about that problem tend to better the density of solved
cases in N. Suppose that we get by this way a density of 1. Can we conclude that
Collatz problem is solved ? It is the question we are trying to answer.

In this document, we introduce a new method of proof that we call proof by
dichotomy. We start with a subset of N denoted by U0(P ). This set is composed of
all the natural numbers for which we want to prove proposition P . As in a proof
by induction, a proof by dichotomy is an infinite sequence of a step. But it differs
from a proof by induction in that during the kth step we split Uk−1(P ) into two
equally distributed parts and we prove that P is verified on exactly one of these
parts. For the other one, P stays unsolved.
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2 NOTES ON PROOF BY DICHOTOMY

So, we maintain along the proof two sets : Uk(P ) that contains all the numbers
for which we don’t know yet if they verify P or not and Sk(P ) the set of numbers
n for which we proved P (n).

Note that during the step k, we can use the property that separate Uk−1(P ) into
two parts and the fact that P (n) is true for any n ∈ Sk−1(P ) to validate P on one
of the two parts.

A quick statistical study tends to say that if we have a proof of a proposition P
on the set N by this way, then P is verified for every natural numbers. But a closer
look at this shows it is false in the general case.

We particularly study an approach driven by the normalisation of any number
as 2kq+ r where r < 2k. We prove that there can exist a natural number that does
not verify the property P we are trying to prove but this number is unique in this
case.

Further, we give indications on when this counter-example of P exists and what
it can be.

3. Position of the problem

The term proposition denotes any application defined from N into the boolean
algebra {True, False}.

Let n be a natural number and P a proposition. We say that

• n verifies or satisfies P when P (n) = True,
• n denies or refutes P when P (n) = False and
• n is an unsolved case for P when we don’t know the value of P (n) at a
given step of a proof.

A counter-example of a proposition P is a natural number that refutes P .
We define now what we call a ”proof by dichotomy” on the natural numbers set

N.

Definition 1 (Proof by dichotomy). Let P be a proposition we want to prove on
the natural numbers set N or on one of its infinite subsets. The proof by dichotomy
method is an infinite application of a step. This step consists into splitting the set
of unsolved cases into two equally distributed parts and to be able to prove from the
solved cases that the proposition is verified on exactly one of this part. Then, the
second part is the set of unsolved staying cases given as the entry of next step.

In fact, it is easy to see that this method of proof maintains two sequences of
sets :

a sequence (Uk(p))k∈N: each of these Uk(P ) contains all the unsolved cases
of P after step k. It starts with U0(P ) the infinite subset of N on which we
want to prove P .

a sequence (Sk(p) )k∈N: each of these Sk(P ) is composed of solved cases
during the k first steps. We start with the empty set for S0(P ).

At the kth step, we divide Uk−1(P ) in two equally distributed subsets : Uk,1(P )
and Uk,2(P ). This partition of Uk−1(P ) is chosen so that we can prove P is valid
on only one of these subsets. The members of the second one stay unsolved cases.
This because, if we were able to either prove P on both parts or prove P on one of
them and its counter-proposition on the other part, the proof is closed and out of
interest here.

Let us say that we can prove that P is valid on Uk,1(P ) without loss of generality.
Then we know the result of P (n) for every n ∈ Uk,1(P ) but we still don’t when
n ∈ Uk,2(P ). By this way, we can define Uk(P ) = Uk,2(P ) and build Sk(P ) =
Sk−1(P ) ∪ Uk,1(P ). More precisely, it is easy too see that any member of Sk(P )
verifies P because we add to this set only the numbers for which we proved that
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they verify P . So, we can use this particularity on Sk−1(P ) to justify that P is
valid on Uk,1(P ).

This method of proof is not so far from a proof by induction. But, the induction
step differs. Instead of proving that any n < n0 verifies P infers that n0 verifies P
whatever n0 is, we have to prove that from a set of unsolved natural numbers we
can extract half of them by the use of the solved cases.

By this way, let us suppose that we start with N as the first set of unsolved
numbers against a given proposition P to be proved. After a first step, we know
that one out of two of them verifies P . But, we don’t know the answer for the
other half. A second step will lead to only a quarter of the numbers stay unsolved
against P and so on. So that, after the application of k steps, we get that only

1/2k
th

of the natural numbers stay unsolved against P . Let us call this number
the density of unsolved cases at step k. An infinite application of this step tends to
prove that P is verified for all the natural numbers. Indeed, the density of unsolved
cases tends to lim

k→∞
1/2k = 0. But what is it in fact ?

Consider that we have an initial infinite set of unsolved cases. Dividing it in
two parts still gives an infinity of unsolved cases. This means that whatever the
number of steps we apply, we always get an infinity of numbers that potentially
deny P . Further, if we try to count the final number of cases that may refute
P we get lim

k→∞
∞/2k = ∞/∞ which is undefined. So, the number of potential

counter-examples may be anything : 0, any finite number or infinity.
Let us study a particular case of this method of proof driven by the binary code

of a natural number.
Remark. Before going further, note that we focus this method of proof on infinite
subsets because this is the most complex case. For finite sets, if we consider N the
initial number of unsolved cases, this finite number is divided by 2 at each step.
The sequence obtained is a strictly decreasing sequence of positive numbers starting
with a finite positive integer. So, in the worst case, we get at most one counter-
example after something around log2(N) steps where log2 identifies the logarithm
in base 2 function.

4. Proof by dichotomy driven by the euclidean division of natural
numbers by 2k

4.1. Notations and conventions. Following, we use the notation a / b where
a, b ∈ N, b ̸= 0 to denote the quotient of the euclidean division of a by b. On the
same way, a% b identifies the remainder of this division also called remainder of a
modulo b.

By the definition of the euclidean division and for any k ∈ N, we can write any
natural number n as n = 2k · qk,n + rk,n where qk,n = n / 2k and rk,n = n%2k.
This normalization is unique. We use this property to build the dichotomy method
we discuss further.

4.2. Construction. Let P be a proposition we want to prove on N. Let U0(P ) = N
be the initial set of unsolved natural numbers. Note that we can also start with any
infinite subset of N if we need to prove P only on this subset. At step k > 0, we
divide Uk−1(P ) into two parts by the use of the parity of n / 2k, n ∈ Uk−1(P ). On
one side, the n having odd quotients. On the other side, the n having even ones.
We suppose that we can prove P on exactly one of these two subsets of Uk−1(P ).

This constructs a proof by dichotomy driven by the euclidean division of natural
numbers by 2k.

Following, we prove that there cannot exist more than one counter-example of
P .
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4.3. Validity of a proof by dichotomy driven by the euclidean division of
natural numbers by 2k. We claim the following theorem

Theorem 1. Let P be a proposition on N. If it exists a proof of P by dichotomy
driven by the euclidean division of natural numbers by 2k, then P is satisfied by
any natural number but at most one.

Before we introduce the proof of theorem 1, remind that we maintain two se-
quences of sets along such a proof : (Uk(P ))k∈N, the set of unsolved cases and
(Sk(P ))k∈N, the set of solved cases. Furthermore, for any k, the pair (Uk(P ), Sk(P ))
is a partition of the starting set U0(P ).

Note now, that any member n of Uk(P ) migrates to Sk+1(P ) if and only if we
can prove that n satisfies P . So, any member of Sk(n) verifies P whatever k is.

Let us prove theorem 1 now.

Proof. Under the conditions of theorem 1, let us suppose that there exist a finite
natural number n that refutes P and prove that n is the only one.

As n denies P , n cannot be a member of any Sk(P ) because the members of
these sets verify P by the construction of this set. This infers that n ∈ Uk(P ) for
any k ∈ N.

It is clear that for any natural number m ̸= n, there exist at most one k ∈ N
such that m = 2kqk,m + rk,m and n = 2kqk,n + rk,n with different parities of qk,m
and qk,n. Consider the smallest of these k. Thus we have rk,n = rk,m.

The natural number n is supposed finite. Then we can define k0 such that
2k0 > n ≥ 2k0−1. That is n = 2k0−1 + r where r = n%2k0−1. Let us consider two
cases : when k ≤ k0 and when k > k0.
Case k ≤ k0. We know that n ∈ Uk−1(P ) otherwise we should have proved that n
verifies P . On the same way, it is easy to see that m ∈ Uk−1(P ) as it shares the
same remainder modulo 2k with n. But n ∈ Uk(P ) inferring that we can prove P
for any member of Uk−1(P ) having a parity different from qk,n one by hypothesis.
As qk,m and qk,n have different parities and we are not able to conclude that n
verifies or not P at this step, we get that m verifies P by the definition of a proof
by dichotomy.
Case k > k0. As in the previous case , n ∈ Uk−1(P ) and m ∈ Uk−1(P ) for the same
reasons. The defined k0 verifies that n = 2k0−1+ rk0−1,n. That infers that qk,n = 0
thus that qk,n is necessarily even. Furthermore, as n refutes P , we are not able to
prove that P is satisfied for any even qk, k > k0. By deduction from the hypothesis,
P is satisfied by any natural number with an odd quotient by the euclidean division
by 2k. As qk,n and qk,m have opposite parities, qk,m is odd and m satisfies P .

In conclusion, whatever the case is, if a natural number m differs from n, it
satisfies P and n is the only unsolved natural number against P . So, if a number n
refutes P under the conditions of theorem 1 it’s the only one. Finally, P is verified
for any natural number but at most one. □

Theorem 1 claims that we cannot have more than one natural number that re-
futes P once a proof of P by dichotomy driven by the euclidean division of natural
numbers by 2k is established. In fact, the proof does not insure the existence of a
counter-example. It just claims that there exist at most one unsolved natural num-
ber. Let us introduce a first corollary describing the consequences of the existence
of a counter-example.

Corollary 1.1. Under the hypothesis of theorem 1, the existence of a counter-
example infers that there exist K ∈ N such that for any k > K we are only able to
prove P when the quotient by euclidean division by 2k is odd.

This corollary may be easily deduced from the proof of theorem 1.
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Proof. From the second case of the proof of theorem 1 we get that if there exists an
n refuting P and it is of the form n = 2k0+(n%2k0) then for any k > k0, n / 2k = 0
so it is even. As n cannot be in any Sk(P ), this infers that we are able to prove P
for any natural number m verifying m/ 2k is odd and this whatever k > k0 is. □

From the proof of theorem 1, especially from the second case, it is easy to
understand which number n is unsolved. Effectively we can construct the binary
code of n by writing down from right to left 0 when we can prove P for odd
quotients and 1 otherwise while running the steps from the first one to the end.
The number n is supposed finite so, let k0 defined such that n = 2k0 + (n% k0).
Corollary 1.1 claims that for every k > k0, P can be proved only for odd quotients.
This corresponds to leading zeroes we can put on the binary code of n. So, we just
have to follow the steps of the proof from the first one to the kth0 one.

Thus, we can conclude the proof of P mainly in two ways.
On the one hand, we may be satisfied with a unique possible counter-example

because it is out of interest for instance. In this case, we only need to know the
value of n. The method to do this is described above.

On the other hand, if we need to finish the proof of P on U0(P ) we just have
to deny the existence of a counter-example. For instance, we can proceed either by
identifying this unsolved natural number and prove that it verifies P in fact or by
denying the existence of a unique case by any other way.

Following, we present some more corollaries of theorem 1. The first one may be
perceived as a counter-proposition of corollary 1.1

Corollary 1.2. Under the hypothesis of theorem 1, if for any K ∈ N there exist
at least a k > K such that we can prove P on even quotients by the division by
2k, then any finite natural number verifies P . That is, we can conclude that P is
verified over U0(P ).

Proof. The proof of this corollary is easy to get. Indeed, note that the hypothesis
of corollary 1.2 denies the conclusion of corollary 1.1, refuting by the same way the
hypothesis of this corollary which is the existence of a finite counter-example of P .
So, we cannot have a counter-example under the hypothesis of corollary 1.2 □

The following corollary may be seen as the reverse proposition of corollary 1.1
in the sense that it gives a sufficient condition to insure the existence of a finite
unsolved case.

Corollary 1.3. Under the hypothesis of theorem 1, if we can find a K ∈ N such
that for any k > K we are only able to prove P when the quotient by euclidean
division by 2k is odd, then there exist a unique unsolved case n.

Proof. By following the steps from the first to the Kth we previously saw that we
can build a finite unsolved n for P . In fact, UK(P ) = {2K+1a + n, a ∈ N}. The
further steps retrieve from UK(P ) progressively all of its elements having a ̸= 0. In
conclusion, after the infinite application of the step, only n stays. This validates
corollary 1.3. □

Recall that the existence of an unsolved case doesn’t imply the existence of a
counter-example. So, under only the conditions of corollary 1.3 we cannot affirm
the existence of a counter-example.

A particular case of corollary 1.3 is the following.

Corollary 1.4. Under the hypothesis of theorem 1, suppose that at any step k we
can only prove P when n / 2k is odd. In such a case, the only possible counter-
example for P is 0. If 0 is not a member of the initial set then, P is verified on
U0(P ).
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Proof. The proof of corollary 1.4 is immediate from corollary 1.3. In fact it is
corollary 1.3 with K = 0. So, the natural number n build in its proof is 0 inferring
corollary 1.4 by the same way. □

4.4. Conclusion of the validation. We claimed that a proof by dichotomy driven
by the euclidean division by 2k can give at most one counter-example of P . On
the one hand, if among the infinite application of the step, we can regularly prove
that P is satisfied for an even quotient, then this counter-example does not exist.
On the other hand, if from a given K we are only able to prove P for numbers
having an odd quotient, we may not have more than one unsolved case. The path
followed during theK first applications of the step gives an indication on a potential
counter-example. If there exists an unsolved case n, we are free to ignore n, to prove
separately either P (n) or not or to use another way to prove the non existence of
a single counter example.

Let us take Collatz problem as an example of usage of this method of proof.

5. Example : application to Collatz problem

We warn the reader that we do not intend to give neither a proof nor a refutation
of Collatz problem. We just point out that if someone can build a proof of this
problem by dichotomy driven by the euclidean division by 2k, then it will be solved
for any natural number different from 0.

5.1. Definition of the problem. The Collatz problem is known under many
different names. Some call it ”the 3x+1 problem” , ”Syraccuse problem” or Ulam
problem and so on.

This problem is easy to define and looks like an easy one but many scientists
proposed some other formulations of it expecting that a proof will come from this
model but none leads to a positive result. Neither a negative one. So it is still an
open problem. Firstly, let us recall it.

Collatz defined a function on natural numbers that we shall denote by C(n). We
can define it by C(n) = n/2 if n is even and C(n) = 3n + 1 if n is odd. There
exist some different formulations of this function but this is not important for our
purpose.

Then Collatz looked at successive applications of C on any natural number n.
Such a way, one can build a sequence (n,C(n), C2(n), · · · ) issued from any not null
natural number. It seems that all these sequences contains at least one time the
natural number 1. Numerous numerical tests failed to find a counter-example until
today.

5.2. Such a proof by dichotomy of Collatz problem would validate it. On
the one hand, let us suppose that someone establish a proof of Collatz problem by
dichotomy driven by parity of euclidean division by 2k. Theorem 1 states that at
most one natural number n does not satisfy P .

As a first approach of this case, it is easy to verify that 0 denies Collatz prob-
lem. Effectively, C(0) = 0/2 = 0 as 0 is even. Then Collatz problem would be
positively solved for every non null natural numbers under the condition that one
could establish such a proof by dichotomy.

Another way to prove Collatz problem from the supposition of the existence of
a proof by dichotomy driven by the euclidean division by 2k, consists to suppose
that there exist a counter example n ̸= 0 that doesn’t satisfy Collatz problem.
Theorem 1 states that it would be the only one. But the sub-sequence starting
from C(n) won’t neither contain 1. As C(n) cannot be equal to n when n ̸= 0 by
definition of C, there should exist at least two natural numbers denying Collatz
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problem. This denies theorem 1, refuting by the same way the existence of such an
n.

A more precise look at what we talked about would be such a proof shows that
as 0 would be the only counter-example. As a consequence we have to prove that
Collatz problem is verified for any odd number at the first step. This affirmation is
well-known for a long time and didn’t bring any solution until today. So, we do not
expect the existence of such a proof to solve Collatz problem. Just let us say that
these two deductions from the existence of such a proof on this problem are more
samples of how to use this method of proof than trying to solve Collatz problem
this way.

6. Conclusion and perspectives

We defined what we mean by a proof of a proposition P by dichotomy driven
by the euclidean division by 2k. We stated that at most one natural number may
deny P under the condition that such a proof exists for P . So, this method of proof
may be used to prove the validity of some propositions on N.

In the case of the existence of such a proof for Collatz problem, this problem
will be valid for every non null natural numbers. Our last remark on this example
doesn’t seem to offer a solution to Collatz problem.

A remark we can do at this point is that this method of proof can be quite easily
extended to any infinite countable set. Indeed, the definition of a countable set S
claims that there exist at least one one-to-one mapping between N and S. Let us
take one. Say that this mapping is f and that f is defined on N with values in
S for instance. To prove P (s) for any s ∈ S, it is sufficient to prove P (f(n)) for
any n ∈ N. As it is possible to say that P (f(n)) is in fact a proposition on N, a
proof by dichotomy driven by euclidean division by 2k may solve the problem in
the hypothesis that such a proof exists.

At the beginning of this paper, we defined a proof by dichotomy, then we studied
one particular case. Very probably, there exist some other ways to partition Uk(P )
giving the same unique possibility of counter-example. We did not explore deeply
this possibility. Thus, we wonder if it is possible to find some other possibilities
and to make some generalizations of this type of proofs.

Further, a deeper look at the proof of the theorem shows that we never used the
fact that the set of unsolved cases is divided in two equally distributed partitions.
Then there may exist some others ways to obtain a proof that does not give more
than one counter-example.


