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Figure 1: Starting from a human intent, the iterative human-in-the-loop process is composed of (1) 6-DOF controllers to allow direct
interaction in large 3D point clouds via a minimal brushing technique, (2) a fast trainable machine learning model, and (3) the direct
visual feedback of classification results. In the shown iteration, the classification result does not correspond to the user’s intent, so

they refine the input to eventually converge to an acceptable classification of the data, iteratively.

ABSTRACT

‘We propose an initial exploration of an interactive machine-learning
(IML) dialogue in immersive, interactive Virtual Reality (VR) for
the classification of points in 3D point clouds. We contribute
ImmersiveIML, an Immersive Analytics tool which builds on human-
machine learning trial-and-error dialogue to support an iterative clas-
sification process of points in the 3D point cloud. The interactions
in ImmersiveIML are designed to be both expressive and minimal;
we designed the iterative process to be supported by (1) 6-DOF
controllers to allow direct interaction in large 3D point clouds via a
minimal brushing technique, (2) a fast trainable machine learning
model, and (3) the direct visual feedback of classification results.
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This constitutes an iterative human-in-the-loop process that eventu-
ally converges to a classification according to human intent. We ar-
gue that this approach is a novel contribution that supports a constant
improvement of the classification model and fast tracks classification
tasks with this type of data, in an immersive scenario. We report on
the design and implementation of ImmersivelML and demonstrate
its capabilities with two emblematic application scenarios: edge
detection in 3D and classification of trees in a city LIDAR dataset.

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques; Human-centered computing—Interaction
techniques—Gestural input; Human-centered computing—
Interaction paradigms— Virtual reality; Computing methodologies—
Neural networks

1 INTRODUCTION

3D point clouds are essential in many domains, such as self-driving
cars, the mining industry, digital twins, engineering inspection and
in biodiversity. In all these domains, automatically analysing 3D
point clouds with machine learning is an active and challenging
topic [12]. One of the challenges is the classification of subsets of
3D points as a first step to determine objects at a semantic level; for



example, automated methods are needed to classify a given set of
points that defines a tree or a car. So far, bespoke machine learning
techniques demonstrate spectacular results to tackle these challenges.
However, during a learning process, humans are often left out of the
loop, and the lack of control to obtain a classification that matches
the exact user needs (e.g., users need high accuracy, fast processing
and domain-agnostic models) need to be addressed. Hence, there is a
need for human input to help and verify classification output all at the
same time. Human-in-the-loop machine learning approaches consist
of tightly coupled interactions between a classification model and
user input to refine the results [15]; with fast updates as an immediate
response to incremental user input, the approach is called interactive
machine learning [1]. In these approaches, it is important that users’
input represents human intent, and that the human is efficiently
and transparently integrated to take control of the learning process.
Usually, user input for classification of 3D point clouds consists of
fully manual interactive selections of the subsets of points of interest.
Traditionally, these interactions are performed on flat screens with
mouse and keyboard interfaces, and consist of drawing 3D bounding
boxes or polygons around a set of 3D points. These interactions
face usability issues due to the mismatch of the 3D nature of the
data and the 2D user input and visualisation. First, users have to
visually locate the boundaries of an object emerging from a point
cloud, which can be occluded by other points in a cluttered scene.
Second, because these interactive visualisation tasks are performed
on 2D setups, they require significant user interaction to zoom, pan
and rotate the 3D views to select the points, and very often with
multiple views.

This work contributes an Immersive Analytics [5] solution to the
intersection of two identified problems: (1) the user interface and
interaction with the 3D data and (2) the interaction with a learning
algorithm, with a human-in-the-loop interactive machine learning
approach. Our ultimate goal is to provide a neural-network-at-the-
finger-tips type of interface to the user, in an immersive way. In
particular, we contribute the first exploration of a new pathway to
fast track 3D point cloud classification by enabling an immersive
dialogue between an embodied, immersive 3D point cloud and a fast,
light weight neural network. Our work features the design of small
but expressive, immersive visualisation and interactions techniques
that allow users to communicate their intent to the neural network
following a quick-and-dirty approach, in order to label, and ulti-
mately classify, multiple points with minimum input, in an iterative
manner. We demonstrate this initial exploration through the imple-
mentation of ImmersiveIML; we explain its design rationale and
showecase its use in two scenarios: edge detection in a mechanical
engineering part, and classification of trees in a LiDAR point cloud
of a city.

2 RATIONALE AND DESIGN

Selection techniques for 3D point clouds mainly use two metaphors:
3D bounding box selections and 2D polygon selections. Those meth-
ods are costly in terms of interaction input and cognitive load as
they require multiple views, but are also limited to 3D data were
depth occlusion is minimal. On the other hand, techniques such
as structure-aware lassos [21] or neural network based lassos like
Lassonet [6] for 3D point clouds require small strokes input to select
data. However, in the case of Lassonet, this selection requires to
be trained on thousands of lasso records. This is obviously limited
as those networks are too specialised on domains (e.g., buildings,
mechanical engineering) and cannot be reused for different appli-
cations, without having to record tremendous amounts of strokes
again. The use of VR and embodied interaction [7] with tracked
controllers for point cloud annotation has been studied before [20].
Very recent work shows that higher levels of immersion better sup-
port the annotation tasks, eventually in combination with pre-trained
machine learning models [9]. In contrast, ImmersiveIML includes

the training stage of the machine learning model itself, embedded in
the interaction dialogue. This allows for an Al-supported annotation
of point clouds that can be specifically tailored to the user’s intent.
The trained network may also be transferred for annotating other
point clouds.

Following the guidelines from Dudley and Kristensson [10], we
designed ImmersiveIML with minimal, expressive human input in
mind, and we focus on the human-in-the-loop classification dialogue
with a light-weight neural network that can be used for generic point
cloud classification.

2.1 Expressivity and minimal input for selection

Expressivity in terms of interaction has many definitions in HCI [4].
In our context, expressivity follows Benyon et al.’s definition [2]:
we mean to seize the opportunities of gesture-based interactions
afforded by 3D immersive VR setups, to facilitate human-input in
the 3D space. The expressivity of movements provided by immersive
VR controllers and human movements enables direct manipulation
with the visualisation, and has shown to be advantageous in spatial
tasks [18]. For a more expressive point selection and define points
intended to be classified, that goes beyond specifying a 3D bounding
box with VR Controllers, or drawing and extruding a polygon, we
designed a free brush interaction, attached to the VR 3D controller.
The user presses the trigger of the controller to paint and tag a set of
points to define a class of objects. Our brush has an additive and a
subtractive mode, which allows refining selected points in complex
shapes (e.g., curved edges, convex shapes or objects that are less
accessible due to clutter). In our interaction model, we envision
a minimal brushing approach to determine points of interest and
discriminate them against the rest of the data points. This brushing
approach allows us to substantiate human intent into input, and it
is somehow the 3D equivalent to minimal brushing interaction in
regions of interest on 2D images used in Al image manipulation [3].

2.2 Interactive Machine Learning Dialogue

We define an interaction paradigm based on a simple dialogue be-
tween human point selection and the classification of the data points.
This paradigm is based on interactive machine learning [19] where
users are engaged to build a classifier by iteratively providing input
until reaching a consensus. Note that compared to active learn-
ing [16], where the model would ask a user to label additional points,
in interactive machine learning, the user is in control of the process
and provides labeled input iteratively [15]. To achieve a high-quality
dialogue we require to use a very fast model, both for training and
inference. We chose PCEDNet [13], which provides both training on
thousands of points and classification of million of points in seconds.
This model is thus a lightweight neural network fast enough for
supporting an interactive human/system dialogue.

From a formal point of view, we model the dialogue as follows:
given a point cloud P = (p1, ..., pn), the user has a classification
intent for the points in mind, that we denote Cintent = (1, ..., Cn),
with ¢; € {1, ..., d} for a classification into d classes and ¢; is the
class of the point p;. In this paper, we present our approach with
two classes (d = 2). According to their intent, the user iteratively
labels two subsets 1 and P- as class 1 and 2, respectively. Having
provided these subsets, the user wants the network to learn the
classification (P, Cleqrn ) for all points, so that Cieqarn = Cintent-

At a higher level, we define the human dialogue between the user
and PCEDNet with the following user input:

e [Input 1]: the user defines which points belong to class 1 of
objects, according to their intent (P1).

o [Input 2]: the user defines which points belong to class 2, i.e.,
the 3D points that should not be classified as belonging to
class 1, again according to their intent (P2).



(a) Initial selection (316 white points and
732 yellow points brushed)

(b) First inference

(c) Refinement of the selection (390
white points and 449 yellow points
brushed)

(d) Second inference

Figure 2: Brush selection of points and learning on a sampled version of the fandisk model (106,468 points)

Points that are neither in 7?1 nor P> are ignored during training,
and their classes will then be inferred by the network. In a generic
manner, in ImmersiveIML’s interface, these inputs are translated by
brush colours; we use white for Input 1, yellow for Input 2. The
user then enters in an iterative human-in-the-loop dialogue with
PCEDNet responses:

* [Output 1]: PCEDNet performs the classification in interactive
time and ImmersiveIML presents the results visually to the
user — the entire point cloud is coloured according to the
inferred classes.

[Output 2]: It may happen that the neural network classifies
some points in a different class than the one labeled by the
user. For example, it may infer a point in P; to belong to class
2 in Cleqrn- We present these points in cyan color; reasons
for this misclassification include a user’s accidental wrong or
contradictory input or the neural network provided a wrong
classification.

After visualising Ouput 1 and 2, if not satisfied with the classifi-
cation (i.e., Ciearn 7 Cintent), the user can redefine Input 1 and 2
(by adding or deleting points from 71 and P2 with boolean brush
operations). The user repeats these actions until Cjeqrn = Cintent.-
Note that, in each iteration, the user can also decide whether the
neural network model should be trained from scratch with random
model parameters, or whether it should continue the training with
the model parameters from the last training iteration. The latter is
particularly interesting when the user was globally satisfied with the
former training result and made only slight changes in the labeling.

At this stage, ImmersiveIML can display the result of classifica-
tion with two modalities: for each class, the colours of the original
point cloud are either replaced with their respective class colours;
or the user retains only one class to visualise and the other classes
are filtered out. The dialogue between the user and PCEDNet via
ImmersiveIML is a converging sequence of Input 1, Input 2 and
Output 1, Output 2 to a satisfying classification.

2.3 Implementation

ImmersiveIML integrates two main components: a 3D immersive
and interactive point cloud visualisation and selection tool, and the
lightweight point classification neural network PCEDNet.

The 3D interactive visualisation is built with the Immersive Ana-
lytics Toolkit (IATK) [8]. IATK uses the Unity' game engine, and
enables real time, high FPS visualisation of large 3D point clouds.
The toolkit also provides a fast 3D brush based on compute shaders.

"https://unity.com/

We adapted IATK to be able to brush multiple classes of points with
different colours. The brush interactions are supported via the 3D
controller prefabs position in the space. Enabling a brush is per-
formed by pulling the trigger of the VR controller. Switch buttons
allow to change the class of the brush, so that it corresponds to the
classification intent. All the examples in this paper require only two
classes, and we used the colours white and yellow, respectively.

For learning the classification of points in a point cloud, we rely
on PCEDNet that is based on the concept of a scale-space analysis
put into a lightweight neural network, and that is very fast to train
and able to classify millions of points in seconds. Although initially
designed for point cloud edge detection, PCEDNet performs also
well on more general classification tasks; it operates on the pre-
computed differential information of the surrounding shape of each
point in the point cloud at different scales. Scale is defined by the
size of the neighborhood that is taken into account, and for each point
pi € Pandscalet € 1,...,T, a geometric feature vector X! € R®
is associated that consists of 6 scalar values, as for example the
signed curvature information defined by the local reconstructed
shape [11,14]. In PCEDNet, 1" = 16 scales are used, and so the
input layer of the neural network consists of 96 input values. Hence,
for the classification into d classes, the involved neural network
learns a function f : R% — {1,...,d}, by training only a few
thousands of parameters. For more details on PCEDNet and more
information about the timings for pre-computation, training, and
classification, we refer the reader to [13].

In order to plug PCEDNet in ImmersiveIML, starting from the
points p; in the labeled subsets P; and P> and their associated
pre-calculated geometric feature vectors X/, we simply train the
network on the labeled function values f(X;, ..., X7 ) = 1 for all
points in P; and f(X}, ..., X}) = 2 for all points in P2. Then, the
network can infer the classification on all points in P. By learning
on the point’s associated geometric feature vectors instead of the
point positions, PCEDNet guarantees translation, rotation, and scale
invariance.

For the integration into the IATK in Unity, we developed a client-
server approach, based on a communication module with PCEDNet
via the http POST and http GET commands in Unity. After selecting
the points of interests for each class, the GPU returns instantly the
ids of the selected points, which are then posted to the PCEDNet
server. The PCEDNet server then returns a classification of the point
cloud back to Unity. The classes are then read and the visualisation
encodings updated — the 3D points belonging to the intended clas-
sified objects are fully opaque, the other points are fully transparent.
The user can switch back to the initial visualisation encodings by
pushing a button on the VR controller.
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Figure 3: The user intent is to classify all the trees in a small tile of a Melbourne city LIDAR model (205,745 points). (a) the user brushes trees
(intended class, white, 1) and what is NOT a tree (P2, bright yellow, here, a building). (b) the machine learning model learns, creates an inference
and ImmersivelML displays the first inference of classified points (gray points are the inferred trees, orange points are considered not to be trees).
(c) the user adds points to P2 by brushing parts of two other buildings, to improve the results. (d,e,f) The user triggers successive learning epochs
to refine the result, which are assessed visually with the updated visualisations. Note that the numbers of points in cyan color (i.e., points that the

network considers to belong to trees) are decreasing. (g) the results are considered satisfactory.

3 SCENARIOS

Data workers need to clean, organise and label their data. We envi-
sion ImmersiveIML to be used at multiple stages of the data wran-
gling process for analytics and learning. We focus on two scenarios
that involve 3D point clouds and in which the user has different
goals: (1) a low-level aim to determine geometric properties and (2)
a higher-level task to define a class of objects from 3D point sets.
(1) Determining edges on a mechanical part — 3D scanners are
used in engineering to retrieve the 3D structure of mechanical com-
ponents, for repair and maintenance re-engineering. It is essential to
detect faces, holes and edges on those point clouds in order to trans-
form them into higher level data structures (e.g., triangular meshes)
for further processing, e.g., 3D printing. In this scenario, the user
needs to specify the edges of a mechanical part (here the fandisk
model); using ImmersiveIML the user brushes some points that are
perceived to belong to an edge, and brushes a small patch of points
of a perceived uniform surface to explicit what is not an edge. After
a first classification of the model is returned, the user wants to refine
the classification of edges, as the strip near the conceptual edge
is too wide; the user excludes some points of the thick edge with
the brush (Figure 2). After the second iteration, the model returns
satisfying thinner edges on the fandisk. Observation: at a low-level
and straight utilization of PCEDNet, this example demonstrates
the usefulness of an immersive tool to explicitly define geometric
properties with small, iterative and expressive spatial interaction.
(2) Classifying trees in a slice of Melbourne’s city centre —
In this scenario, the user wants to quickly label the 3D points that
belong to the trees, for example to determine the proportion of tree
vegetation in a city. With ImmersiveIML, the users explicit their
intent to classify the trees by performing 4 small brush strokes on
different trees with the 3D controller. They then switch the brush to
explicit other objects that should not be classified as a tree. When
they release the trigger, PCEDNet performs the classification and re-
turns a first visual result. The user perceives the result as being good

but requires more precision, they explicitly tell the neural network
that there are some remaining points that should not belong to the
intended classified points. To do this, they brush parts of two other
buildings. After running a few more epochs, the final iteration dis-
plays a satisfying classification result (Figure 3). Observation: with
minimal brush input and iterative dialogue, the scenario demon-
strates how to fast track an initial point cloud classification and
label many points as belonging to a conceptual tree class. Further
refinements are needed which go beyond the scope of this initial
exploration.

4 CONCLUSION

We contributed ImmersiveIML, the first immersive and interactive
machine learning interface for 3D point cloud classification. Initial
exploration with exemplar datasets demonstrate the potential of the
interactive machine learning based dialogue and the use of PCEDNet
to interactively learn and classify sets of points.

Future work includes more design and research efforts to im-
prove expressivity for point set classification; in particular we want
to integrate more 3D point cloud properties in the dialogue, such
as visualisations of histograms of point colours, density and other
colour space and geometric properties for the user, to help the classi-
fication process, in combination with the intelligent brush approach.
ImmersiveIML is at an initial exploration stage; in future work we
would like to formally explore the benefits of such an interactive
machine learning dialogue with controlled user studies. We also plan
to assess whether a visualisation of the underlying neural network
improves the user efficiency, and whether this leverages explain-
ability of the machine learning model, following [17]. Moreover,
we want to explore how other 3D point cloud specialised machine
learning models could be suited for interactive machine learning
to support an even wider range of selection scenarios. Ultimately,
we envision ImmersiveIML to be a comprehensive 3D point cloud
analysis tool that will support up to segmentation tasks.
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