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Abstract

We compare different methods to reconstruct the surface elevation of irregular

waves propagating outside the surf zone from pressure measurements at the

bottom. The traditional transfer function method (TFM), based on the linear

wave theory, predicts reasonably well the significant wave height but cannot

describe the highest frequencies of the wave spectrum. This is why the TFM

cannot reproduce the skewed shape of nonlinear waves and strongly underesti-

mates their crest elevation. The surface elevation reconstructed from the TFM

is very sensitive to the value of the cutoff frequency. At the individual wave

scale, high-frequency tail correction strategies associated with this method do

not significantly improve the prediction of the highest waves. Unlike the TFM,

the recently developed weakly-dispersive nonlinear reconstruction method cor-

rectly reproduces the wave energy over a large number of harmonics leading to

an accurate estimation of the peaked and skewed shape of the highest waves.

This method is able to recover the most nonlinear waves within wave groups

which some can be characterized as extreme waves. It is anticipated that using

relevant reconstruction method will improve the description of individual wave

transformation close to breaking.
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waves

1. Introduction

Pressure sensors have long been used to measure waves in the coastal zone

mainly because of their robustness, low-cost aspect and convenience to deploy.

However, they do not provide direct measurement of the wave surface elevation.

The widely-used method to reconstruct the wave surface elevation from pressure5

measurements at the bottom is the so-called transfer function method (TFM;

e.g. Bishop and Donelan, 1987 [1]), based on the linear wave theory. The

TFM allows to recover linear wave fields and gives a reliable estimate of the

significant wave height (i.e wave energy). Guza and Thornton (1980) [2] found

that the total harmonic variance could be retrieved with error of 7.6 % near the10

breakpoint. However, for the highest frequencies, the energy density spectra

reconstructed from the TFM blows up. To prevent the latter, a cutoff frequency

is commonly used (e.g. Lee and Wang, 1984 [3]; Bishop and Donelan, 1987 [1]).

Contrary to what is generally accepted in the literature for swell reconstruction,

the need for such a cutoff is mainly due to wave nonlinearities rather than to15

pressure measurement noise (Bonneton and Lannes, 2017 [4]). In this paper,

we will show that the cutoff frequency is artificial and that the TFM solution is

very sensitive to its value.

In shallow water, nonlinear interactions induce the development of high-frequency

harmonics which cannot be correctly reproduced by the TFM. Martins et al.,20

2017 [5] found that the TFM fails to recover the peaked and skewed shape of

nonlinear waves with individual wave height error up to 30 %. However, well

predicting nonlinear waves, especially in the shoaling zone, is of paramount im-

portance for many coastal applications. Indeed, the most nonlinear waves are

very often found to be the largest waves. An accurate prediction of these waves25

is then essential for applications involving extreme wave events, wave submer-

sion studies, or coastal construction projects that need to cope with the height

of the most extreme waves. Moreover, an accurate characterization of wave

2



skewness and asymmetry is essential for studying sediment transport (Dubar-

bier et al., 2015 [6]). Lastly, the surface wave reconstruction is also crucial for30

the calibration of phase-averaged wave model parameters (e.g. Booij et al., 1999

[7]) and for the validation of phase-resolving wave models (e.g. Zijlema et al.

2011 [8], Bonneton et al., 2011 [9]).

In the present paper, we review and apply the main methods designed to recon-

struct in situ irregular waves. First, we present the commonly-used linear meth-35

ods as well as recently developed nonlinear methods. Different high-frequency

tail correction procedures associated with the TFM are also reviewed. Then,

we apply and compare each method with field data, in terms of spectral and

temporal parameters, in near-breaking conditions. In such conditions, wave

groups contain highly nonlinear waves for which the use of the TFM, based on40

the linear wave theory, is questionable. More importantly, these waves need

to be properly described as they control the break point position and can be

characterized as extreme waves. Finally, we conduct a wave-by-wave analysis

of the whole dataset in order to compare each method over a large range of

nonlinearities.45

2. Reconstruction methods

In this section, the main methods to reconstruct irregular wave surface elevation

from in situ pressure measurements at the bottom are reviewed. We focus on un-

broken waves propagating outside the surf zone in intermediate to shallow water

depth, for which the flow can be assumed irrotational. In this work, the bot-50

tom variation contribution is assumed negligible, which is true for many coastal

applications. The background current contribution is also assumed negligible,

which is true for most wave-dominated coastal areas far from river mouths or

tidal inlets. Bonneton and Lannes (2017) [4] derived a reconstruction formula

which takes into account a background current. However, their method requires55

additional velocity measurement, which, in most nearshore field campaigns, is

rarely collected at the same location as the pressure sensor, and is therefore out
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of scope of the present paper.

Three main length scales are critical to the problem addressed here : the wave

amplitude a, the characteristic horizontal length scale L (k = 1/L the typical60

wave number) and the mean water depth h0. The wave propagation is then

controlled by two dimensionless parameters :

ε =
a

h0
, µ =

(
h0
L

)2

= (kh0)
2
, (1)

where ε is a nonlinearity parameter and µ is a shallowness (or dispersion) pa-

rameter; or alternatively the steepness parameter σ :

σ =
a

L
= ε
√
µ. (2)

From a practical point of view, deep water cases (µ >> 1) are disregarded as65

pressure measurements are not relevant in such water depths. Reconstruction

methods are usually based on an asymptotic expansion of the irrotationnal wave

equations in terms of the steepness parameter σ, which is a small parameter for

most coastal waves. The small steepness regime encompasses the two following

scenarios: large amplitude waves (ε ∼ 1) in shallow water (µ << 1) and small70

amplitude waves (ε << 1) in intermediate depth (µ ∼ 1).

For the sake of clarity, a two-dimensional wave field associated with the Carte-

sian coordinates (x,z) is considered, where x corresponds to the horizontal axis

along which waves propagate and z is the positive-upward vertical axis (see

Fig. 1). The mean water level and the free surface elevation are defined by75

z = 0 and z = ζ(x, t), respectively. The pressure sensor is located at a dis-

tance δm from the bottom level z = −h0 and provides the measured pressure

Pm(t) = P (z = −h0 + δm, t).
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Figure 1: Definition sketch of the physical variables. x and z are the horizontal (wave propaga-

tion axis) and vertical axis, respectively. z = 0 is the mean water level and −h0 is the constant

bottom elevation. ζ(x, t) is the surface wave elevation, a is the characteristic wave amplitude

and δm represents the distance from the bottom where the pressure sensor is located.

For very long waves (very small µ), the surface elevation can be estimated from

the hydrostatic equilibrium. The hydrostatic reconstructed elevation, ζδmH , is80

then given by :

ζδmH (t) =
Pm(t)− Pa

ρg
+ δm − h0, (3)

where Pa is the constant atmospheric pressure, ρ is the water density and g is

the gravity. This hydrostatic reconstruction (Eq. 3) gives good results for tides

and tsunamis, but cannot be applied to wind waves which have non-hydrostatic

characteristics. Some of the most commonly-used non-hydrostatic linear recon-85

struction methods are introduced below, and the recently developed nonlinear

approaches are further presented.

2.1. Linear methods

2.1.1. Linear wave theory

The derivation of the following reconstruction method can be applied to three-90

dimensional wave fields but a two-dimensional wave field is considered here for
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the sake of derivation simplicity (see Fig. 1). The fluid motion is governed by the

free-surface incompressible Euler equations. From the irrotational assumption,

the horizontal velocity u and the vertical velocity w are given by the velocity

potential φ as : u = ∂xφ and w = ∂zφ. Neglecting the O(σ) terms in the Euler95

equations, the following linearized system is obtained :

∂xxφ+ ∂zzφ = 0 for z ∈ [−h0, 0] (4)

∂tφ+
P (z, t)− Pa

ρ
+ gz = 0 for z ∈ [−h0, 0], (5)

where Eq. 4 is the mass conservation equation and Eq. 5 is the linearized

Bernoulli equation. This set of equations is completed by linearized boundary

conditions at the bottom and at the surface :

∂zφ = 0 at z = −h0 (6)

∂zφ = ∂tζ at z = 0 (7)

P = Pa at z = 0. (8)

Evaluating Eq. 5 at z = −h0 + δm and z = 0 results in the following expression100

of ζδmH and ζ :

ζδmH (t) = −1

g
∂tφ at z = −h0 + δm (9)

ζ(t) = −1

g
∂tφ at z = 0. (10)

The variables ζ, ζδmH and φ are then decomposed using the following Fourier

transform in space :

FX{f}(k) =

∫
R
f(x)e−ikx dx, (11)

where FX{f} is the Fourier transform in space of the function f : x 7→ f(x).
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Combining Eq. 4 and 6, we get the expression of the Fourier transform in space105

of φ :

FX{φ}(k, z, t) = B cosh(k(z + h0)), (12)

where B is an independent function of z.

Plugging Eq. 12 into Eq. 9 and 10, ζ can be expressed as a function of ζδmH :

FX{ζ}(k, t) = KP (k)FX{ζδmH }(k, t) (13)

KP (k) =
cosh(kh0)

cosh(kδm)
, (14)

where KP is the non-hydrostatic correction factor.

Eq. 13 and 16 are hereafter referred to as the linear formula in space, and the110

resulting reconstructed surface elevation is hereafter referred to as ζL,space (see

linear formula in space in Tab. 1). In Fig. 2, ζL,space is compared to the surface

elevation computed from the Full Euler equations (Fenton, 2014 [10]) in case

of a periodic weakly nonlinear wave field (ε = 0.15 and µ = 0.25). The linear

formula in space significantly improves the hydrostatic reconstruction in terms of115

crest elevation and wave shape, even if
::
the

:
crest elevation is still underestimated

compared to the Full Euler solution.
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Figure 2: Surface elevation of a periodic weakly nonlinear wave, ε = 0.15, µ = 0.25, δm = 0.

Full Euler solution (black line); hydrostatic reconstruction: ζδmH (blue line); linear formula in

space: ζL,space (magenta dashed line); see the associated equations in Tab. 1.

2.1.2. Transfer function method

The linear formula (Eq. 13 and 14) involves a Fourier transform in space, which

requires the knowledge of ζδmH (or equivalently Pm) over the whole horizontal120

space. However, for most coastal applications, Pm is only known at one single

measurement point. The common practice with the TFM is to replace the

Fourier transform in space by a Fourier transform in time, using the linear

dispersion relation to express k as a function of the pulsation ω. The TFM

writes:125

FT {ζ}(x, ω) = KP(ω)FT {ζδmH }(x, ω) (15)

KP(ω) =
cosh(kh0)

cosh(kδm)
(16)

ω2 = gk tanh(kh0), (17)
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where the Fourier transform in time is defined by :

FT {f}(ω) =

∫
R
f(t)e−iωt dt. (18)

Bonneton and Lannes (2017) [4] showed that this method is mathematically

justified for linear wave fields but is questionable when applied to nonlinear

waves. This is illustrated with the periodic weakly nonlinear wave field presented

in Fig. 2. The surface elevation computed from the TFM is hereafter referred130

to as ζL,NC (Eq. 15, 16 and 17; see TFM - no cutoff in Tab. 1). Fig. 3 shows

that the energy density of the two first harmonics is well predicted by ζL,space

while the energy density of the following harmonics are underestimated.
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z
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Figure 3: Surface elevation energy density spectra E(n) of a periodic weakly nonlinear wave,

ε = 0.15, µ = 0.25, δm = 0. Full Euler solution (black circle); hydrostatic reconstruction: ζδmH

(blue crosses); linear formula in space: ζL,space (magenta crosses); TFM - no cutoff: ζL,NC

(green circles); TFM - sharp cutoff: ζL,Sh (green crosses); see the associated equations in Tab.

1. The cutoff harmonic index is indicated by the vertical black dotted line.

Unlike the linear formula in space, the TFM (see ζL,NC in Fig. 3) leads to an
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energy density overestimation, even for weakly nonlinear waves, which increases135

rapidly with the harmonics and leads to a blow up of the TFM solution (over-

estimation of the fifth harmonic by two orders of magnitude). As described by

Bonneton et al. (2017) [4], it is due to secondary harmonics which are phase

locked, or bound, to the fundamental harmonics and travel at a celerity which

is much larger than their intrinsic (linear) phase speed. Thus, the linear disper-140

sive relation (Eq. 17) strongly overestimates the wave number of the harmonics

leading to the overestimation of KP (Eq. 16).

To overcome this TFM problem, the commonly-used approach is to introduce

a cutoff frequency fc. At f = fc, the TFM spectrum is truncated and replaced

by the hydrostatic spectrum for f > fc (equivalent to a low-pass filter). The145

expression of KP then becomes:

KP (ω) =
cosh(kh0)

cosh(kδm)
for

ω

2π
≤ fc (19)

KP (ω) = 1 for
ω

2π
> fc (20)

Eq. 20 is hereafter referred to as the sharp cutoff and the associated surface

elevation is referred to as ζL,Sh (see TFM - sharp cutoff in Tab. 1).

It is worth noting that contrary to what is generally accepted in the litera-

ture for swell reconstruction, the need for such a cutoff is mainly due to wave150

nonlinearities rather than to pressure measurement noise. Therefore, fc can be

considered as a nonlinear cutoff frequency. Nonetheless, in most coastal ap-

plications, two different empirical approaches are generally used to determine

the value of fc (Smith, 2002 [11]). The first one consists in setting fc at the

frequency where the pressure signal is one order of magnitude higher than the155

noise floor, which is questionable. In the second approach, fc is set to the fre-

quency where KP is less than 10 to 1000, which value depends on the pressure

sensor resolution (Wolf, 1997 [12]). The reconstructed wave characteristics are

very sensitive to the subjective value of fc (see Section 4.1.1; Smith, 2002 [11];

Jones and Monismith, 2007 [13]). In Fig. 3, the value of fc is optimized i.e.160

we set fc by comparing the wave energy reconstructed by the TFM with no

10



nonlinear cutoff frequency, ζL,NC (see TFM - no cutoff in Tab. 1), and the true

wave energy. fc is taken at the frequency where ζL,NC starts to overestimate the

true wave energy (i.e. where KP is too high), here after the second harmonic

(see the vertical dashed line in Fig. 3).165

In most studies, the direct measurement of the surface wave elevation is not

available but is retrieved from pressure measurements and fc cannot be opti-

mized objectively. Most of the time, it is not clear how the cutoff frequency

has been set and, for field applications, its value typically ranges between 0.25

and 0.6 Hz (e.g. Guza and Thornton, 1980 [2]; Ruessink et al, 1998 [14]; Smith,170

2002 [11]; Sénéchal et al, 2004 [15]). However, the way fc is set is crucial and

can strongly affect the wave shape. Indeed, the cutoff induces spectral infor-

mation loss beyond fc that will generate oscillations within the reconstructed

time series (see Section 4.1.1). The frequency of these oscillations being of the

same order as fc, those are then strongly dependent on the cutoff and are not175

physical. This kind of oscillations is hereafter referred to as parasite oscillations.

High-frequency tail empirical correction

As introduced above, the widely-used TFM requires a cutoff frequency. Using

the sharp cutoff method (Eq. 20; see TFM - sharp cutoff in Tab. 1) will induce

spectral information loss for f > fc (see Fig. 3). To limit this loss of information,180

several empirical formula were derived to artificially fill the high-frequency tail.

Three empirical methods are presented here.

A first method is to replace the high-frequency tail by a Jonswap diagnostic

tail. The energy density spectra E(f) is expressed as a function of f−n where

n represents the tail’s slope (Eq. 21; see TFM - Jonswap in Tab. 1) :185

E(f > fc) = E(fc)

(
f

fc

)−n

. (21)

The value of n depends on the water depth. n = 5 is usually set in deep

water while n = 4 and n = 3 are set for intermediate water and shallow water,

respectively.
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Eq. 21 allows to better predict spectral wave parameters (e.g. Wolf, 1997 [12];

Smith, 2002 [11]; Jones and Monismith, 2007 [13]). However, this method is not190

able to recover surface elevation time series as the phase signal is not given by

this approach.

The two other methods consist in tuning the value of KP beyond fc. Neumeier

[16] uses an empirical correction factor KP,L which linearly decreases over an

artificial frequency range (Eq. 22 and 23; see TFM - linear cutoff in Tab. 1).195

KP(ω) = KP,L for fc <
ω

2π
< flin (22)

KP(ω) = 1 for
ω

2π
> flin, (23)

where the expression of KP,L and flin can be found in Neumeier [16].

A steady correction factor can also be applied (Eq. 24; see TFM - steady cutoff

in Tab. 1). The correction factor beyond fc is taken as KP(ω = 2πfc) and stays

the same over the whole high-frequency tail.

KP(ω) = KP(ω = 2πfc) for
ω

2π
> fc (24)

In Section 4.1.1, the influence of the above high-frequency tail correction meth-200

ods on wave reconstruction and parasite oscillations will be addressed. A sensi-

tivity study over the typical in situ fc range will be also conducted.

2.2. Semi-empirical transfer function method

To avoid introducing a cutoff frequency, several authors have proposed local

methods, as opposed to global (spectral) methods, in order to improve the shape205

and height of individual waves. Nielsen (1986) [17] was the first to develop such

methods called local sinusoidal approximation (LSA) methods.

A local frequency based on the local curvature is defined as:

ω2
i = −

(∂ttζ
δm
H )i

(ζδmH )i
= −

(ζδmH )i+1 − 2(ζδmH )i + (ζδmH )i−1

(ζδmH )i∆t2
(25)
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where (ζδmH )i is the ith value of time series ζδmH (Eq. 3) and ∆t =
1

fa
, fa being

the sampling rate.210

Along with a stretched linear theory, Nielsen (1986) [17] established the following

semi-empirical transfer function method (see semi-empirical TFM in Tab. 1):

ζN = ζδmH F

[
ω2

g
(h0 + ζδmH − δm)

]
(26)

where the transfer function F is fitted as F (x) = exp

(
A

(
δm
h0

)
x

)
and the

empirical factor A is given by A

(
δm
h0

)
= 0.64 +

0.34δm
h0

.

Fenton (1987) [18] introduced local polynomial approximation (LPA) methods215

in which the complex velocity potential and the surface elevation are given

by polynomials and incorporated into the fully nonlinear equations of motion.

Townsend and Fenton (1997) [19] compared both LSA and LPA and concluded

that LSA (Eq. 26) performs better than LPA especially for low δm/h0 ratio.

Moreover, LSA requires less computational effort than LPA (Nielsen, 1989 [20];220

Townsend and Fenton, 1997 [19]). Therefore, only the LSA method from Nielsen

(1989) [20] is considered in this study.
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Surface elevation Reconstruction method Associated Nonlinear cutoff High-frequency

name equations frequency fc tail correction

ζδmH Hydrostatic (equivalent to Eq. 3 No -

pressure measurements)

ζL,space Linear formula in space Eq. 13, 14 No -

ζL,NC TFM Eq. 15, 16 and 17 No -

ζL,Sh TFM - sharp cutoff Eq. 15, 17 Yes Eq. 19, 20

ζL,J TFM - Jonswap Eq. 15, 17 Yes Eq. 19, 21

ζL,L TFM - linear cutoff Eq. 15, 17 Yes Eq. 19, 22, 23

ζL,St TFM - steady cutoff Eq. 15, 17 Yes Eq. 19, 24

ζN semi-empirical TFM Eq. 26 No -

Table 1: Overview of the hydrostatic, TFM and semi-empirical TFM reconstruction methods

studied in this article. - means that no high-frequency tail correction is applied.

2.3. Nonlinear methods

Over the past few years, several authors have gone to great lengths studying

nonlinear surface wave reconstruction from pressure measurements (e.g. Decon-225

ick et al., 2012 [21]; Oliveras et al., 2012 [22]; Constantin, 2012 [23]; Clamond

and Constantin, 2013 [24]). Nevertheless, all these methods were derived as-

suming steady water waves propagating at a constant celerity and are therefore

not suitable for real coastal applications.

However, Oliveras et al. (2012) [22] derived a heuristic reconstruction method230

ζHE as a function of ζL (here, ζL is the surface elevation reconstructed from the

linear formula in space or from the TFM) that can be applied for irregular waves

travelling at different wave celerities. For δm = 0 (see Vasan and Oliveras, 2017

[25] if δm > 0), ζHE is written as follows :

ζHE =
ζL

1−F−1
T {k sinh(kh0)FT {ζδmH }}

, (27)

where k is computed with the dispersion relation (Eq. 17).235
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As remarked in Bonneton and Lannes (2017) [4], at order O(σ), this formula is

equivalent to :

ζHE = ζL −
1

g
ζL∂ttζL. (28)

Using data from laboratory experiments, the heuristic method was found to

significantly improve the wave crest elevation as well as the wave shape compared

to the TFM (Oliveras et al., 2012 [22]).240

Recently, Bonneton and Lannes (2017) [4] and Bonneton et al. (2018) [26]

have derived nonlinear reconstruction methods also suitable for irregular waves.

Bonneton and Lannes (2017) [4] performed an asymptotic expansion of the

nonlinear wave equations in terms of the steepness parameter σ. For δm = 0

(see Bonneton and Lannes, 2017 [4] if δm > 0) and neglecting the O(σ2) terms,245

they obtained a fully-dispersive nonlinear reconstruction method :

ζNL = ζL −
1

g
∂t(ζL∂tζL). (29)

The nonlinear term on the right-hand side of Eq. 29 can be splitted into two

nonlinear terms: (1) − 1
g (ζL∂ttζL) and (2) − 1

g (∂tζL)2. Term (1) improves the

wave extrema compared to the linear reconstruction ζL by increasing the crest

elevation and flattening the wave trough. Term (2), which is neglected in the250

heuristic method (see Eq. 28), amplifies the wave skewness and asymmetry.

Both nonlinear methods described above rely on ζL. The latter can theoretically

be computed using the linear formula in space ζL,space. Fig. 4 shows the surface

elevation reconstructed from the two nonlinear methods using the linear formula

in space (ζHE,space and ζNL,space, respectively; see Tab. 2).255
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Figure 4: Surface elevation of a periodic weakly nonlinear wave, ε = 0.15, µ = 0.25, δm = 0.

Full Euler solution (black line); hydrostatic reconstruction: ζδmH (blue line); linear formula

in space: ζL,space (magenta dashed line); fully-dispersive nonlinear reconstruction in space:

ζNL,space (red line); heuristic reconstruction in space: ζHE,space (yellow line); see the associ-

ated equations in Tab. 1 and 2.

Both nonlinear methods accurately reproduce the crest elevation and the wave

shape. Nonetheless, ζNL,space provides a better description of the peaked wave

shape as well as the crest elevation compared to ζHE,space. As explained in

the previous section, the measured pressure Pm is often available at one single

measurement point which implies to use the classical TFM instead of the linear260

formula in space. Hence, in practice, a cutoff frequency needs to be introduced

for computing ζHE and ζNL. Bonneton and Lannes (2017) [4] have applied these

nonlinear reconstructions in case of fully-dispersive nonlinear bichromatic waves

(µ = 0.53). Even though the heuristic method is able to properly reproduce the

crest elevation, it still underestimates the skewed shape of the largest waves.265

The fully-dispersive nonlinear method was found to provide a much better de-
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scription of the peaked and skewed waves than both the TFM and the heuristic

reconstructions.

To overcome the need for a cutoff, in weakly-dispersive regime (µ << 1), Bon-

neton et al. (2018) [26] made a Taylor expansion of the nonlinear wave equa-270

tions with respect to µ. Neglecting the O(µ2) terms, they obtained the following

weakly-dispersive linear and nonlinear reconstruction methods (see Bonneton et

al., 2018 [26] if δm > 0):

ζSL = ζδmH −
h0
2g
∂ttζ

δm
H (30)

ζSNL = ζSL −
1

g
∂t (ζSL∂tζSL) . (31)

Along with the semi-empirical TFM (see Tab. 1), Eq. 30 and 31 can be applied

locally in time and a cutoff frequency is not necessarily needed, unlike for the275

computation of fully-dispersive methods (TFM, ζHE and ζNL).
:::::::::
Bonneton

::
et

:::
al.

::::::
(2018)

::::::::::
[26] applied

::::
Eq.

:::
31

::::::
locally

::
in

:::::
time

::
by

:::::::::::
discretizing

:::::
first-

:::
and

::::::::::::
second-order

::::
time

::::::::::
derivatives

::::::::
involved

::
in

::::
Eq.

:::
30

::::
and

::::
31.

:::::
Such

:::::
time

::::::::::::
discretization

::::::::
requires

::
to

:::::
filter

:::::::::::::
measurement

:::::
noise,

:::
as

:::::
with

::::
the

:::::::
Fourier

::::::::::
approach.

::::::::::
However,

:::::
time

:::::::::
derivatives

::::::::::::
computation

::
is

:::::
more

::::::::
accurate

:::::
using

:::::::
Fourier

::::::::
analysis.

:
280

For practical applications
::
In

::::
this

::::
way, recovering ζSL and ζSNL (and ζN) can

still require
:::
still

::::::::
requires

:
a cutoff frequency fc,noise in order to remove pres-

sure measurement noise. However, this cutoff frequency is much higher than

the nonlinear cutoff frequency fc introduced earlier. Accordingly, ζSL and ζSNL

(and ζN) are computed accounting for much higher frequency spectral informa-285

tion which is crucial to correctly reconstruct the surface elevation of nonlinear

waves. Bonneton et al. (2018) [26] found a good agreement for weakly-dispersive

nonlinear waves (µ < 0.3) between ζSNL and direct ζ measurements in case of

monochromatic waves (ε = 0.65), bichromatic waves (ε = 0.37) and in situ

waves (εmax = 0.31 where εmax is the nonlinear parameter of the highest wave).290
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Surface elevation Reconstruction method Associated Nonlinear cutoff

name equations frequency fc

ζHE,space Heuristic in space Eq. 27 No

(using ζL,space)

ζNL,space Fully-dispersive nonlinear Eq. 29 No

in space (using ζL,space)

ζHE Heuristic in time Eq. 27 Yes

ζNL Fully-dispersive nonlinear in time Eq. 29 Yes

ζSNL Weakly-dispersive nonlinear Eq. 30, 31 No

Table 2: Overview of the nonlinear reconstruction methods studied in this article.

3. In situ dataset

3.1. Field site

In order to assess and compare the ability of the reconstruction methods to

recover irregular wave field from pressure measurements, in situ hydrodynamic

data was collected at La Salie beach, SW France (see Fig. 5). La Salie beach295

is a relatively alongshore-uniform gently-sloping sandy beach associated with a

meso-macro semi diurnal tidal regime. The relatively wide intertidal region (∼

200 m in the cross-shore) allows easy and convenient instrument deployment at

low tide.
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Figure 5: (a) Location map with the field site of La Salie indicated by the black circle. (b)

Unmanned aerial vehicle photo of the field site at mid-tide during the experiment. A video

system was installed on the pier shown in the left-hand side of the image. The yellow star and

the red star show the location of the video system and the instrument, respectively, during

the experiment.

3.2. Field experiment300

The field experiment was carried out over two periods on April 13-14 2017

(LS1) and May 17-18 2018 (LS2) and aimed at characterizing nonlinear waves

in intermediate and shallow depth. A Nortek Signature 1000 kHz current pro-

filer was deployed at low tide. The Signature 1000 kHz vertical beam allows a

high-frequency direct measurement of the surface wave elevation using Acoustic305

Surface Tracking (AST). Besides AST, it also provides pressure measurements.

Signature 1000 manufacturer (Nortek) reports pressure-derived elevation and

AST measurements with accuracy of ± 1 mm and ± 2 cm, respectively. The

instrument recorded at 8 Hz sampling rate and pressure was measured at 0.7 m

above the bottom (δm = 0.7 m).
::::
The

::::::::::::
characteristic

:::::::
bottom

:::::
slope

:::
was

::::::::::
σb = 0.015310

::
at

:::
the

::::::
sensor

::::::::
location.

:

AST is a relatively new ADCP feature that has mainly been validated for waves

propagating in deep water (> 20 m) and for sampling rate not exceeding 4 Hz
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(Pedersen and Nylund, 2004 [27]; Pedersen and Lohrmann, 2004 [28]). Martins

et al. (2017) [29] collected high-frequency surface elevation measurements and315

found a very good agreement between the surface elevation measured from the

Signature 1000 kHz and from a LIDAR scanner (root mean square error RMSE

of 0.05 m) for an undular tidal bore propagating in the Garonne river (ε = 0.08;

µ = 5.85; the mean water depth at low tide was 2.8 m).

Nonetheless, AST is very sensitive to air bubbles as the acoustic signal can be320

significantly altered within the water column (see Nortek Manual [30]). Hence,

the AST ability to provide reliable measurements under wave breaking can be

questioned (Pedersen et al., 2002 [31]; Birch et al., 2004 [32]), but the present

study focuses on waves propagating outside the surf zone (see Fig. 6). A video

system was set up on the first day of each deployment period to follow the325

position of the surf zone during the experiment. The system allowed to identify

the time evolution of the outer edge of the surf zone, defined as the location of

the onset of breaking of the largest waves (see darker points in Fig. 6, within

which none of the waves are breaking). The other outer surf zone limits were

set by visually checking the AST signal.330

Both pressure and AST measurements were divided into 10-minute time series.

Pressure time series was low-pass filtered (1 Hz) to remove instrumental noise.

AST time series was also low-pass filtered to be consistent with pressure time se-

ries. The mean water depth h0 was computed from pressure measurements both

outside and inside the surf zone. Each water depth time series was detrended335

to remove tidal variation. The water level was slowly fluctuating with the in-

fragravity motion. We then define the free surface elevation (in the short-wave

frequency band) as :

ζ(t) = h(t)− hinfra(t), (32)

where h is the water depth and hinfra is the water depth computed over the

infragravity frequency range (0.005 Hz - 0.05 Hz). Eq. 32 was applied to both340

pressure and AST measurements yielding the hydrostatic surface elevation ζδmH
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(Eq. 3) and the direct measurement of the surface elevation ζm, respectively.

Outside the surf zone, h0 ranged from 2.25 m to 3.72 m (see Fig. 6a). For such

water depths, we choose to take n = 4 (as in Jones and Monismith, 2007 [13]) for

the TFM - Jonswap method (Eq. 21). Except for h0, parameters in Fig. 6 were345

calculated using ζδmH inside the surf zone and using ζm outside the surf zone.

Both experiments were characterized by long and grouped wave conditions with

a sea-swell significant wave height Hs,short-wave ranging from 0.54 m to 1.08 m

(see Fig. 6b) associated with a peak period TP ranging from 8.6 s to 11.5 s (see

Fig. 6c). The maximum observed wave height was 1.54 m for LS1 and 1.95 m for350

LS2. The wave number k was estimated using the linear dispersion relation (Eq.

17) yielding the shallowness parameter µ = (kh0)2. The whole dataset features

relatively small µ (µ ≤ 0.2; see Fig. 6d) characterizing a weakly-dispersive wave

regime.
:
It

::
is

::::::
worth

::::::
noting

:::::
that,

::::
the

:::::::::
parameter

::::::

√
µσb:::::

being
:::::

very
:::::
small

:::
for

::::
the

:::::
whole

:::::::::::
experiment,

:::
the

::::::::
bottom

:::::::::::
contribution

::::
can

:::
be

::::::::
neglected

::::::::::
(Bonneton

:::
et

:::
al.,355

::::
2018

:::::
[26]).

:

21



Figure 6: Wave and tide conditions for both experiments (LS1 in blue and LS2 in red).

(a) Mean water depth h0; (b) Short-wave significant wave height Hs,short-wave (circles) and

infragravity significant wave height Hs,infra computed over 20 min (diamonds); (c) Spectral

peak period TP; (d) Shallowness parameter µ. Dark-colored points and light-colored points

show data outside and inside the surf zone, respectively. Transitions between both areas

represent the outer surf zone limits. In the present study, we only focus on the dark-colored

points.

3.3. Data processing

3.3.1. AST processing

Even outside the surf zone, the AST signal was sometimes altered by reflection

within the water column. This was caused by the presence of air bubbles that360

were generated by wave breaking occurring shoreward but close to the instru-

ment, which were occasionally moved by currents above the instrument. This

led to the presence of spikes in the surface wave elevation time series that were

removed using a gradient thresholds between two consecutive points.
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3.3.2. Wave-by-wave analysis365

Zero crossing analysis is the most traditional method to determine individual

wave characteristics. It first consists in identifying individual waves between

each zero-downcrossing or each zero-upcrossing of surface wave elevation. Wave

crests and troughs are then respectively defined as the maximum and minimum

of surface elevation between two consecutive crossings. In intermediate depth to370

shallow water, low-frequency motions can be strong and might potentially lead

to crests under the mean sea level and troughs above the mean sea level, mak-

ing the zero-crossing method irrelevant. In addition, filtering-out low-frequency

motions is not a reliable option as it can critically transform the wave extrema

and the wave shape (Power et al., 2010 [33]). A different method based on a375

local maxima analysis was implemented (Power et al. 2010 [33]; Power et al.

2015 [34]; Martins et al., 2017 [5]). A wave is identified between two consecu-

tive crests. The wave trough is taken as the minimum of the surface elevation

between the two consecutive crests. Wave height and period criteria are set to

avoid detecting small oscillations (with amplitude < 0.1 m and period < TP/4).380

4. Results and discussion

In this section, the different reconstruction methods presented above are applied

to LS1 and LS2 dataset and further compared (see Tab. 1 and 2). We first assess

each method in near-breaking conditions. These conditions are characterized by

the presence of nonlinear waves for which the validity of linear reconstruction385

methods to recover individual wave characteristics is questionable. Then, the

ability of each method to recover waves within wave groups which contain highly

nonlinear and extreme waves is addressed. Finally, we present a wave-by-wave

analysis over the whole dataset.

4.1. Near-breaking conditions390

In this subsection, we focus on a 10-minute time series from LS1 characterized

by highly nonlinear waves, i.e. waves just before the onset of breaking (see the
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blue point at the first outer surf zone limit of LS1 in Fig. 6; h0 = 2.25 m; µ

= 0.075). This time series is characterized by a peak wave period of 11.5 s, a

significant wave height of 0.71 m and a maximum individual wave height of 1.4395

m. The latter yields a maximum nonlinearity parameter ε of 0.31 corresponding

to strong in-situ nonlinearities.

4.1.1. Linear methods and semi-empirical transfer function

Surface elevation energy density spectra computed from the TFM with differ-

ent high-frequency tail corrections and the semi-empirical TFM (see Tab. 1)400

are presented in Fig. 7. Here, the nonlinear cutoff frequency fc is set at 0.32

Hz which corresponds to frequency up to the third harmonic (around 0.28 Hz).

As explained in Section 2, the cutoff frequency associated with spectral recon-

struction methods is optimized. Indeed, it is set by comparing the wave energy

reconstructed from the TFM - no cutoff (ζL,NC) and the true wave energy (ζm).405

fc is taken at the frequency for which the TFM correction starts exceeding the

measured wave energy. Again, results are very sensitive to fc. Depending on its

value, the computed wave surface elevation can be significantly altered, which

will be addressed at the end of this section.

As expected, ζδmH correctly reproduces the low-frequency spectrum as well as410

the first harmonic (around 0.09 Hz) but strongly underestimates the energy

of all subsequent harmonics. The semi-empirical TFM, ζN, provides a good

estimate of wave energy up to the second harmonic (around 0.18 Hz) but then

slowly starts underpredicting all the subsequent harmonics as well. For f < fc,

the TFM - sharp cutoff, ζL,SH, (equivalent to ζL,L, ζL,ST and ζL,J) properly415

reproduces the energy spectrum compared to ζδmH .

For f > fc, ζL,SH (equivalent to ζδmH ) strongly underestimates the energy by two

to three orders of magnitude at the highest frequencies. The TFM - Jonswap,

ζL,J, is able to reproduce the high-frequency tail’s slope but does not reconstruct

any harmonics. In the other hand, both the TFM - linear cutoff and the TFM -420

steady cutoff, ζL,L and ζL,ST respectively, improve ζL,SH by correctly recovering

one extra harmonic (fourth harmonic around 0.36 Hz), even though the energy
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is slightly underestimated. Unlike ζL,ST that keeps correcting ζL,SH over all

frequencies, ζL,L fades into ζL,SH around 0.7 Hz.
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Figure 7: Surface elevation energy density spectra E(f). AST measurements: ζm (black line);

hydrostatic reconstruction: ζδmH (blue line); TFM - sharp cutoff: ζL,SH (green line); TFM

-linear cutoff: ζL,L (magenta line); TFM - steady cutoff: ζL,ST (red line); TFM - Jonswap:

ζL,J (red dashed line); TFM - no cutoff ζL,NC (black dashed line); semi-empirical TFM: ζN

(yellow line); see the associated equations in Tab. 1 fc = 0.32 Hz (vertical black dotted line).

The spectra have been averaged over 1/66 Hz.

The relative error of the spectral significant wave height Hm0 = 4
√
m0 (where425

m0 is the zero-th spectral moment calculated between 0 and 1 Hz), the maximal

crest elevation (ζc)max and the skewness parameter Sk =< ζ3 > /(< ζ2 >)3/2

(where < . > is the time-averaging operator) are computed for each reconstruc-

tion formula (see Tab. 3). In terms ofHm0, all TFM as well as the semi-empirical

TFM are significantly better than ζδmH (equivalent to pressure measurements)430

and lead to reasonable Hm0 error (≤ 7.4 %) which is in line with the literature

(e.g. Guza and Thornton, 1980 [2]; Bishop and Donelan, 1987 [1]). ζN provides
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the same Hm0 as ζL,SH. Both ζL,L and ζL,ST are better than ζL,SH by roughly

2 %. As ζL,J strongly underestimates the fourth and fifth harmonics (around

0.36 and 0.45 Hz in Fig. 7), the computed Hm0 error is slightly higher than all435

other linear reconstructions. Among all reconstructions, ζL,ST has the lowest

Hm0 error.

ζδmH ζL,SH ζL,L ζL,ST ζL,J ζN

Hm0 14.6 7.1 5.7 5.1 7.4 7.1

(ζc)max 41.8 33.7 28.6 26.5 - 30.6

Sk 59.9 49.5 41.0 37.2 - 42.0

Table 3: Spectral significant wave height Hm0, highest crest elevation (ζc)max and sea surface

skewness Sk relative error (%). hydrostatic reconstruction: ζδmH ; TFM - sharp cutoff: ζL,SH;

TFM - linear cutoff: ζL,L; TFM - steady cutoff: ζL,ST; TFM - Jonswap: ζL,J; semi-empirical

TFM: ζN; see the associated equations in Tab. 1. fc = 0.32 Hz.

The same trend is observed for temporal parameters (ζc)max and Sk. In terms of

these parameters, ζN performs roughly the same as ζL,SH. The TFM is slightly

improved using the linear cutoff and the steady cutoff approaches (ζL,L and440

ζL,ST, respectively). Nonetheless, ζL,ST, which gives the best agreement with

ζm, still considerably underestimates both (ζc)max and Sk by 26.5 % and 37.2

%, respectively (see Tab. 3).

For the sake of clarity, we only display in Fig. 8 the water depth time series re-

constructed from the TFM - sharp cutoff and the TFM - steady cutoff (the latter445

giving the best results among all linear reconstructions). In line with the errors

shown in Tab. 3, both reconstructions are able to recover the smallest waves

but they strongly underestimate the peaked and skewed shape of the highest

waves within the group, even though ζL,ST slightly improves the reconstructed

crest elevation compared to ζL,SH.450
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Figure 8: Water depth time series of a wave group. AST measurements: h0 + ζm (black

points); hydrostatic reconstruction: h0 + ζδmH (blue line); TFM - sharp cutoff: h0 + ζL,SH

(green line); TFM - steady cutoff: h0 + ζL,ST (red line); see the associated equations in Tab.

1. fc = 0.32 Hz and h0 = 2.25 m.

In most studies involving surface elevation recovery from pressure sensors, the

rationale for choosing a particular fc value is often unclear. To assess the cutoff

frequency sensitivity, we set fc at 0.6 Hz, which corresponds to the highest value

found in the literature. Fig. 9 shows the effect on the wave energy spectrum.

With such cutoff frequency, the section of the wave energy between 0.32 Hz455

and 0.6 Hz computed from ζL,SH is overestimated. As the wave energy of
::::
This

::::::::
drawback

::
is
::::::::::::
strengthened

:::
for

:
ζL,L and ζL,ST is artificially strengthened beyond

fc, the overestimated section is much larger with such
:::::::
because

:::::
these

::::::::
methods

::::
(Eq.

:::
22,

:::
23

::::
and

::::
24)

:::::::
already

:::
fill

:::
the

:
high-frequency tailcorrection methods. In

Fig. 9, this is particularly noticeable for ζL,ST which overestimates the harmonic460

around 0.61 Hz. As the reconstructed energy is higher, the Hm0 error is much

lower (1.4 % for ζL,SH and 0.4 % for ζL,ST). Similarly, as shown

::
As

::::::
shown

:::
in

:
Fig. 10,

:::
due

::
to

::::
the

:::::::
energy

::::::::::::::
overestimation, the crest elevation of
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each wave is greatly enhanced but
:::::::::
artificially

:::::::::
enhanced

::::
and

:
the reconstructed

time series is affected by stronger parasite oscillations compared to fc = 0.32465

Hz. It severely transforms
:::::
These

::::::::::
oscillations

::::::::
severely

:::::::::
transform

:
the shape of

the surface wave elevation, particularly within the back face and the trough of

the highest waves (see for instance at t = 236 and 252 s in Fig. 10).
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Figure 9: Surface elevation energy density spectra E(f). AST measurements: ζm (black line);

hydrostatic reconstruction: ζδmH (blue line); TFM - sharp cutoff: ζL,SH (green line); TFM -

linear cutoff: ζL,L (magenta line); TFM - steady cutoff: ζL,ST (red line); TFM - Jonswap:

ζL,J (red dashed line); TFM - no cutoff ζL,NC (black dashed line); semi-empirical TFM: ζN

(yellow line); see the associated equations in Tab. 1 fc = 0.6 Hz (vertical black dotted line).

The spectra have been averaged over 1/66 Hz.
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Figure 10: Water depth time series of a wave group. AST measurements: h0 + ζm (black

points); hydrostatic reconstruction: h0 + ζδmH (blue line); TFM - sharp cutoff: h0 + ζL,SH

(green line); TFM - steady cutoff: h0 + ζL,ST (red line); see the associated equations in Tab.

1. fc = 0.6 Hz and h0 = 2.25 m.

These results show that the classical TFM predicts the significant wave height

with reasonable accuracy even when waves are nonlinear (see Hm0 in Tab. 3).470

The different high-frequency tail correction methods associated with the TFM

(see Tab. 1) lead to lower Hm0 error by artificially amplifying the high-frequency

wave spectrum. However, in terms of individual wave characteristics, all linear

reconstruction methods reviewed here show similar skill. They significantly un-

derestimate the crest elevation of the highest waves as well as its skewed shape.475

In the following, only the TFM with a sharp high-frequency tail correction (see

TFM - sharp cutoff in Tab. 1), hereafter referred to as ζL, is used for systematic

comparison with nonlinear methods.
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4.1.2. Nonlinear methods

Reconstructed surface elevation energy and time series from each nonlinear480

method (except for ζNL for the sake of clarity) are presented in Fig. 11, 12

and 13. As explained in Section 3.2, pressure time series (equivalent to ζδmH Eq.

3) were low-pass filtered to remove instrumental noise. The cutoff frequency

associated with this filter is the cutoff frequency fc,noise set to 1 Hz here. This

cutoff frequency is applied to compute the weakly-dispersive methods ζSL and485

ζSNL. fc,noise is much higher than the nonlinear cutoff frequency, used for the

fully-dispersive methods (fc = 0.32 Hz). This makes the fully-dispersive meth-

ods much more restrictive than the weakly-dispersive methods and the high-

frequency tail is better predicted by ζSL and ζSNL than by ζL and ζHE (see Fig.

11). As both the heuristic method and the fully-dispersive nonlinear method490

rely on the TFM which requires a nonlinear cutoff frequency, ζHE and ζNL do

not improve enough ζL and lead to larger errors compared to ζSNL (see Tab. 4).

Even if ζSL and ζSNL slightly underestimate the second and third harmonics,

the energy distribution in the highest frequencies is well evaluated leading to

an accurate calculation of Hm0 for both methods (error of 6.3 % and 4.2 %, re-495

spectively; see Tab. 4). Taking nonlinear effects into account, the SNL method

accurately reproduces the energy over a large number of harmonics compared

to the SL method. Beyond 0.6 Hz, ζSNL is considerably better than the classical

TFM ζL (equivalent to ζδmH in this frequency range) by two orders of mag-

nitude. The third harmonic computed from the heuristic method is slightly500

overestimated leading to a smaller Hm0 error than the TFM (see Tab. 4) but

the energy distribution beyond fc is poorly computed in the highest frequen-

cies as it relies on the TFM. In terms of Hm0, ζSNL has the lowest error of all

reconstruction methods reviewed in this article (see Tab. 4).
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Figure 11: Surface elevation energy density spectra E(f). AST measurements: ζm (black

line); hydrostatic reconstruction: ζδmH (blue line); weakly-dispersive linear reconstruction:

ζSL (magenta line); weakly-dispersive nonlinear reconstruction: ζSNL (red line); heuristic

reconstruction: ζHE (yellow line); see the associated equations in Tab. 2. fc = 0.32 Hz

(vertical black dotted line) and fc,noise = 1 Hz. The spectra have been averaged over 1/66

Hz.

The ability of the weakly-dispersive methods to calculate the energy distribution505

is reflected in the surface elevation time series (see Fig. 12 and 13). Compared to

ζL and ζHE, the weakly-dispersive reconstructions do not result in any parasite

oscillation (see Fig. 12). ζSNL reproduces very well the wave crests even for

the highest wave with an error of 7.1 % (see Tab. 4). The wave shape is also

properly recovered especially the steep slope of the front and back face of the510

highest wave (see the zoom of the highest wave in Fig. 13), which translates

into the lowest skewness error compared to ζHE and ζSL.

31



210 220 230 240 250 260 270 280
1.7

2

2.3

2.6

2.9

3.2

h
 (

m
)

t (s)

Figure 12: Water depth time series of a group of waves. AST measurements: ζm (black

points); hydrostatic reconstruction: ζδmH (blue line); weakly-dispersive linear reconstruction:

ζSL (magenta line); weakly-dispersive nonlinear reconstruction: ζSNL (red line); heuristic

reconstruction: ζHE (yellow line); see the associated equations in Tab. 2. fc = 0.32 Hz,

fc,noise = 1 Hz and h0 = 2.25 m.
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Figure 13: Water depth time series of the highest wave. AST measurements: ζm (black

points); hydrostatic reconstruction: ζδmH (blue line); weakly-dispersive linear reconstruction:

ζSL (magenta line); weakly-dispersive nonlinear reconstruction: ζSNL (red line); heuristic

reconstruction: ζHE (yellow line); see the associated equations in Tab. 2. fc = 0.32 Hz,

fc,noise = 1 Hz and h0 = 2.25 m.

ζL ζHE ζNL ζSL ζSNL

Hm0 7.1 5.7 5.9 6.3 4.2

(ζc)max 33.7 28.6 26.5 25.5 7.1

Sk 49.5 34.8 29.9 37.8 7.5

Table 4: Spectral significant wave height Hm0, highest crest elevation (ζc)max and sea surface

skewness Sk relative error (%). TFM - sharp cutoff ζL; heuristic reconstruction ζHE; fully-

dispersive nonlinear reconstruction ζNL; weakly-dispersive linear reconstruction ζSL; weakly-

dispersive nonlinear reconstruction ζSNL; see the associated equations in Tab. 1 and 2.

Among all reconstruction methods presented in this work, ζSNL is found to

provide the best agreement with the measured surface elevation ζm regarding

spectral wave parameters (Hm0) and more importantly regarding individual515
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wave characteristics ((ζc)max and Sk). In the wave groupiness section below,

only the commonly-used transfer function method ζL (TFM - sharp cutoff) and

the weakly-dispersive nonlinear method ζSNL are used.

4.1.3. Wave groupiness

Earlier studies have proven that the presence of wave groups and the infragrav-520

ity wave generation are both related (Longuet-Higgins and Stewart, 1962 [35];

Symonds et al., 1982 [36]). It is also well known that infragravity waves can

result in coastal erosion and inondation events during extreme wave conditions

(Roelvink et al., 2009 [37]; Baumann et al., 2017 [38]; Bertin et al., 2018 [39]).

Well predicting wave groupiness is then of paramount importance for coastal525

applications. Along with the measured infragravity waves, Fig. 14a shows the

measured wave envelope computed as the low-pass-filtered Hilbert transform of

the short-wave signal (Battjes et al., 2009 [40]), with the corresponding time

series of reconstructed dimensionless crest and trough elevation shown in Fig.

14b. The dimensionless crest elevation,530

εi =
ζc
h0

(33)

can be considered as a local nonlinearity parameter (where ζc is the crest eleva-

tion of each individual wave). Fig. 14b shows the time series of both measured

and reconstructed εi ((εi)m, (εi)L and (εi)SNL, respectively). (εi)m has an average

value of 0.16 but peaks at much higher values (between 0.35 and 0.51) within

the three wave groups (see at t = 250 s, 400 s and 760 s in Fig. 14b). Waves535

within these groups are highly nonlinear and also meet the following criteria:

ζc
Hs

> 1.25 (34)

where HS is the significant wave height, here defined as four times the standard

deviation of the surface elevation. Criteria 34 is commonly used for identifying

extreme waves (Dysthe et al., 2008 [41]). These highly nonlinear extreme waves

also correspond to waves where the SNL correction is the most skillful compared540
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to the linear (TFM) correction in terms of dimensionless crest elevations. The

average of the highest one-tenth dimensionless crest elevations (εi)1/10 is under-

estimated by 30.0 % and by 2.5 % for the linear and SNL method, respectively.

By visually checking images recorded from the video system, the most nonlinear

wave over this 10-min time series (((εi)m)max = 0.51) is just before the onset of545

breaking. Over the whole dataset, the highest value of (εi)m is 0.53 outside of

the surf zone, corresponding to a wave that is even closer to breaking. Hence,

well predicting these waves is crucial for estimating the break point position

which is a key parameter to many coastal applications and wave propagation

models. At the individual wave scale, its prediction can significantly differ using550

the linear or the SNL reconstruction method (see wave groups in Fig. 14b).
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Figure 14: (a) Measured wave envelope (black line) and measured infragravity surface elevation

(black dashed line). (b) Dimensionless wave crests (filled circles) and troughs (empty circles)

elevation. AST measurements: ζm (black circles); TFM - sharp cutoff ζL (blue circles);

weakly-dispersive nonlinear reconstruction ζSNL (red circles); see the associated equations in

Tab. 1 and 2. fc = 0.32 Hz, fc,noise = 1 Hz and h0 = 2.30 m.

As pointed out above, the linear and weakly-dispersive nonlinear methods show
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similar skill to retrieve the significant wave height (see Hm0 error in Tab. 3 and

4). However, at the scale of individual waves, the two methods show strongly

different reconstruction, especially for highly nonlinear waves in the groups,555

within which some waves can be characterized as extreme (see criteria 34). Ac-

cordingly, in the following section, a wave-by-wave analysis of the whole dataset

is conducted in order to identify these nonlinear extreme waves and to further

conclude on the overall ability of each method.

4.2. A wave-by-wave analysis of the whole dataset560

In this section, a wave-by-wave analysis of the entire dataset is performed. For

each time series, relative errors for both linear and SNL reconstruction methods

are computed in terms of three parameters: the root-mean-square crest elevation

(ζc)RMS, the average of the highest one-tenth crest elevation (ζc)1/10 and the

skewness parameter Sk. Those are represented in Fig.15 as a function of the565

average nonlinear parameter εm computed as :

εm =
(Hm)RMS/2

h0
(35)

where (Hm)RMS is the measured root-mean-square wave height. AST mea-

surements allow to detect the wave crest of all individual waves of the entire

dataset. Of note, in a limited number of 10-minute time series some surface

elevation was missing locally in the front faces. For these time series, Sk could570

not be calculated properly.

For the linear reconstruction, the relative error (ζc)RMS increases with increasing

εm. For low εm (< 0.10), the RMS crest elevation error (see Fig. 15a) is less

than 10 %. The results of SNL method are roughly equivalent to those of the

linear reconstruction, even though the SNL method gives slightly smaller errors575

for low εm. As nonlinearities increase, the difference between both methods

becomes stronger with SNL error varying around 5 to 10 % while TFM error

hovers around 15 to 25 % for the highest εm (> 0.14).

This pattern is strengthened for (ζc)1/10 (see Fig. 15b). For low εm, the SNL

method is better than the linear method by 3 to 5 %. Both methods quickly580
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deviate for moderate to strong nonlinearities. For the highest εm, the SNL

method is significantly better than the linear method by 13 to 28 %.

In terms of Sk (see Fig.15c), the linear reconstruction fails to correctly describe

the skewed wave shape with a scattered Sk error between 16.6 % and 51.7 %

and an average error of 29.4 %. Indeed, parasite oscillations induced by the585

cutoff can strongly modify the shape of the most nonlinear waves which worsen

Sk prediction. Unlike the linear method, the SNL method skillfully recovers the

wave shape with a Sk error systematically lower than 20 % with an average of

8.5 %.
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Figure 15: Relative error (%) of (a) the root-mean-square crest elevation (ζc)RMS, (b) the

average of the highest one-tenth crest elevation (ζc)1/10 and (c) the skewness parameter Sk

as a function of the average nonlinear parameter εm. TFM - sharp cutoff: ζL (blue circles);

weakly-dispersive nonlinear reconstruction: ζSNL (red circles). fc = 0.32 Hz and fc,noise = 1

Hz.

Fig. 16 presents the dimensionless crest elevation of each 3560 detected indi-590

vidual waves for both reconstruction methods ((εi)L and (εi)SNL) against AST

measurements ((εi)m). Most of the detected waves are linear as most of (εi)m

values are relatively low (between 0.05 and 0.2). These linear waves correspond
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to 78 % of the whole dataset and are well predicted by both reconstruction

methods (see Fig. 16a and Fig. 16b).595

However, for higher values of (εi)m (> 0.25), the two methods show different

results. The linear method considerably underestimates the highest one tenth

dimensionless crest elevation (average error of 20.3 %; see Fig. 16c) while the

weakly-dispersive nonlinear method is able to recover the crests of the most non-

linear waves (average error of 6.9 %; see Fig. 16d). Blue crosses represent waves600

that meet the extreme wave criteria (Eq. 34). These extreme waves correspond

to 0.7 % of all detected waves and correspond to some of the most nonlinear

waves of our dataset (0.30 < (εi)m < 0.53), which are correctly recovered by

ζSNL, only. The linear reconstruction underestimates the dimensionless crest

elevation of the detected extreme waves with an average error and a maximum605

error of 27.9 % and 36.6 %, respectively, against 5.4 % and 16.7 % for the SNL

method.
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Figure 16: Reconstructed dimensionless crest elevations versus measured crest elevations for

all detected waves ((a) and (b)) and for the highest one-tenth dimensionless crest elevations

((c) and (d)). The color of each point represents its density (computed as the number of

neighbooring points within a 0.015 m radius). Blue crosses show the detected extreme waves

(Eq. 34). (a) and (c): TFM - sharp cutoff ζL. (b) and (d): weakly-dispersive nonlinear

reconstruction ζSNL; see the associated equations in Tab. 1 and 2. fc = 0.32 Hz and fc,noise

= 1 Hz.
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4.3. Discussion

In the above work, the weakly-dispersive nonlinear reconstruction (ζSNL Eq.

31) was found to be essential to accurately recover the highest waves, especially610

in the shoaling zone. However, we have focused on weakly-dispersive waves

outside the surf zone (µ ≤ 0.2; see Fig. 6). In this way, further investigations

need to be carried out to identify a threshold above which the fully-dispersive

reconstruction (ζNL Eq. 29) must be used instead of the weakly-dispersive one.

First findings, regarding wave data collected in laboratory experiment, seem to615

indicate that µ = 0.3 is the transitional value above which ζNL must be used

instead of ζSNL. Nonetheless, evaluating this transitional value in case of in situ

irregular waves would require additional wave data in fully-dispersive regime

(i.e. waves with shorter peak periods or propagating in deeper water depth; see

Fig. 17).620

Figure 17: Shallowness parameter µ as a function of peak period TP and mean water depth

h0. µ < 0.3 corresponds to weakly-dispersive regime (horizontal dotted line) and µ > 0.3

corresponds to fully-dispersive regime (vertical dotted line).

Although AST did not enable an accurate measurement of broken waves in our

experiment, it has still provided an approximate sight of the shape and crest

elevation of waves inside the outer surf zone. The weakly-dispersive nonlinear

42



reconstruction was found to correctly recover such waves. Inside the inner surf

zone, the sawtooth wave shape comes from the balance between the nonlinear625

distortion of the wave field and the turbulent dissipation within the wave front.

These rotational processes cannot be described with irrotational approaches.

Furthermore, the pressure distribution under such waves is mainly hydrostatic

(Lin and Liu, 1998 [42]). Nonlinear shallow-water equations are able to predict

waves inside the inner surf zone and the swash zone as they accurately reproduce630

the distortion of nonlinear waves (Bonneton, 2007 [43]). Hence, the hydrostatic

reconstruction (ζδmH Eq. 3) would tend to be the most suitable method to recover

the surface elevation of broken waves.

Concluding this section, Fig. 18 shows the range of validity of fully-dispersive,

weakly-dispersive and hydrostatic reconstruction methods. An accurate direct635

measurement of the surface elevation of fully-dispersive waves outside the surf

zone and broken waves inside the surf zone is still required for identifying two

thresholds: one for using ζNL or ζSNL and one for using ζSNL or ζδmH (see Fig.

18).
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Figure 18: Range of validity of reconstruction methods. x and z are the cross-shore axis and

the vertical axis, respectively. µ = (kh0)2 is a dispersion parameter (Eq. 1).

5. Conclusion640

We have applied and compared different methods to reconstruct the surface ele-

vation from pressure measurements in case of irregular weakly-dispersive waves

(µ < 0.2) propagating outside the surf zone (h0 < 4 m). The commonly-used

transfer function method (TFM) was found to give a reliable estimate of the

significant wave height (Hm0) with error not exceeding 7 % in near-breaking645

conditions which feature highly nonlinear waves. However, this method re-

quires the use of a cutoff frequency which restricts the reconstruction of the

most nonlinear waves. The TFM solution is very sensitive to the value of this

cutoff frequency, especially the reconstructed surface wave elevation. The latter

can be affected by the presence of parasite oscillations that strongly alter the650

shape of the highest waves. Associated with the TFM, several high-frequency

tail correction procedures were tested and found to slightly improve Hm0 predic-

tion. Nonetheless, these procedures still fail to describe the energy distribution
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in the highest frequencies leading to an underestimation of the crest elevation of

the highest wave and the skewness parameter. On the contrary, the recently de-655

veloped weakly-dispersive nonlinear reconstruction method (SNL) was found to

correctly reproduce the wave spectrum over a large number of harmonics which

allows an accurate estimation of the peaked and skewed shape of the highest

waves. More importantly, unlike the TFM, this method is able to recover the

most nonlinear waves within wave groups. Some of these waves can be charac-660

terized as extreme waves and are still accurately predicted by the SNL method

(average relative error of 5.4 %) compared the TFM (average relative error of

27.9 %). Well predicting these waves is essential for many coastal applications,

in particular those that require a correct estimation of the highest waves such

as studies on wave submersion, but also for predicting the break point posi-665

tion which is crucial for the calibration and the validation of wave propagation

models.
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