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ABSTRACT 19 

Neonicotinoids are widely used insecticides that have frequently been found in freshwater 20 

with concentrations ranging from ng to µg/L. It is known that these compounds impact non-21 

target invertebrates, such as bees and gammaridae, in terms of toxicity and behavior, but 22 

impacts and species differences on vertebrates such as fish are little explored. The aim of 23 

this study was to investigate and compare the effects of one widely used neonicotinoid, 24 

imidacloprid, on development and behavior of two fish model species: Zebrafish (Danio rerio) 25 

and Japanese medaka (Oryzias latipes). Fish were exposed for 5 (zebrafish) and 14 26 

(medaka) days from 0.2 to 2000 µg/L imidacloprid by aqueous exposure. Survival, 27 

development, behavior and histological features were monitored and organism-internal 28 

concentrations and biotransformation products measured. Imidacloprid caused sublethal 29 

effects in both species but the effects were much stronger in medaka with deformities, 30 

lesions and reduced growth being the most prominent impacts. Due to the overall longer time 31 

of development, time-integrated exposure of medaka was about 2-fold higher compared to 32 

zebrafish, potentially accounting for parts of the sensitivity differences. Our results underline 33 

the importance of taking species sensitivity differences into account especially when 34 

considering that medaka responded at imidacloprid concentrations that have been measured 35 

in the environment. 36 

KEYWORDS: Cyprinids, toxicokinetics, species sensitivity, metabolome, embryo toxicity, 37 

imidacloprid. 38 

HIGHLIGHTS:  39 

• Imidacloprid impacts on fish at environmentally relevant concentrations.40 

• At the same developmental stage, medaka are more sensitive than zebrafish.41 

• Our study supports the importance of taking species sensitivity differences into42 

account43 
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1. INTRODUCTION  45 

Neonicotinoids are one of the most produced pesticide families, even after the partial ban in 46 

Europe since 2013 (Van Dijk et al. 2013, Simon-Delso et al. 2014, Bonmatin et al. 2015, 47 

Wood et al. 2017). They are low molecular weight and highly hydrophilic insecticidal 48 

chemicals that are applied in agriculture in various ways, including foliar sprays and seed 49 

treatments (Bonmatin et al. 2015). The intended mode of action of these molecules is to bind 50 

to nicotine acetylcholine receptors (nAChR) in nervous tissues in insects, causing 51 

dysregulation of neurotransmission at cholinergic synapsis, which can lead to 52 

overstimulation, tremors, paralysis and death (Sánchez-Bayo 2012, Simon-Delso et al. 53 

2014). Yet, based on this mode of action, neonicotinoids could affect signal transmission and 54 

behavior of other organisms with a developed neuronal system (Sánchez-Bayo 2012). These 55 

include animals living in aquatic environments (Tennekes 2011, Sánchez-Bayo 2012, 56 

Roessink et al. 2013, Sánchez-Bayo 2014).  57 

Imidacloprid is one of frequently detected and well-studied neonicotinoids. It has been 58 

detected up to several hundred µg/L after agricultural use but has most commonly been 59 

found in the low ng/L range in continental water bodies (Moschet et al. 2014). Morissey et al. 60 

(2015) reported up to 320 µg/L imidacloprid in drainage ditches in the Netherlands while 61 

Anderson et al.(2015) documented a peak concentration of 0.7 µg/L in a Canadian surface 62 

water over a general background concentration of 0.04 to 0.05 µg/L. As demonstrated by 63 

aquatic species sensitivity distribution on survival after a few days of exposure (SI Figure 64 

S1), insects are the most vulnerable organism group, followed by crustaceans, while fish 65 

appear several orders of magnitude less sensitive to direct short-term exposure of 66 

imidacloprid. Indirect effects on fish, such as a loss of the quantity and quality of crustaceans 67 

serving as food (Hayasaka et al. 2012a, Gibbons et al. 2014, Chagnon et al. 2015), have 68 

been proposed. However, direct sub-lethal effects on fish, especially during early 69 

developmental stages, have rarely been explored. Reduced locomotion was reported in 70 

zebrafish larvae continuously exposed to imidacloprid from fertilization to five days (Crosby 71 
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et al. 2015). No impact was reported for zebrafish development when exposed to 72 

imidacloprid from fertilization to 48 hours (Tišler et al. 2009) and 96 hours (Scheil et al. 2009) 73 

of development, whereas growth of medaka adults and juveniles was reduced after long term 74 

exposure in mesocosms (Hayasaka et al. 2012b). Another study showed stress syndrome in 75 

medaka juvenile and increase parasite infestation after exposure to imidacloprid (Sanchez-76 

Bayo et al. 2005). All these studies used exposure concentrations in the mg/L range, which is 77 

much higher than the concentrations found in the environment. 78 

The aim of our study was to test if direct sub-lethal effects can be elicited by 79 

imidacloprid at concentrations that include environmentally realistic exposure levels during 80 

critical stages of development, i.e. early life, in model fish species: Zebrafish (Danio rerio) 81 

and Japanese medaka (Oryzias latipes). While both species share common features such as 82 

large broods, breeding all year and transparent eggs that develop outside the mother, a 83 

distinct difference is their time of development (SI Figure S2) (Kimmel et al. 1995, Furutani-84 

Seiki et al. 2004, Iwamatsu 2004). While zebrafish hatch after 3 days post fertilization (dpf), 85 

medaka require an average of 9 dpf to emerge as free-swimming larvae. Thereafter, free 86 

swimming larvae are completely established within 5 dpf in zebrafish where it takes 14 dpf in 87 

medaka. We thus hypothesized that potential sub-lethal effects would be stronger in medaka 88 

because of the longer developmental time and consequently greater time-integrated 89 

exposure. To test this hypothesis, internal imidacloprid concentrations and physiological and 90 

histological alterations were examined for both species at similar developmental stages. 91 

Medaka indeed was more severely affected than zebrafish by imidacloprid exposure which 92 

led us to explore the relative abundance of metabolites involved in energy metabolism and 93 

neurotransmission in this fish.  94 

95 
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2. MATERIAL AND METHODS 96 

2.1 Embryo collection 97 

Zebrafish wild type (WT) were maintained and bred on site at the Eawag facility according to 98 

the guidelines published by Nusslein-Volhard and Dahm, 2002 (Nüsslein-Volhard et al. 99 

2002). Fish were raised at 28°C in 14/10h light/dar k cycle in reconstituted water (294.0 mg/L 100 

CaCl2, 2H2O, 123.2 mg/L MgSO4, 7H2O, 64.74 mg/L NaHCO3 and 5.7 mg/L KCl; prepared in 101 

MilliQ water, pH 7.5) and fed twice daily with a combination of live food (Artemia nauplia) and 102 

dry flakes (Tetramin, Switzerland). Adult fish were maintained in a large breeding tank 103 

(Aquatic habitat) with a special spawning system for collecting eggs. Eggs were collected 104 

between 1 and 2 hours after the lights were turned on and fertilized eggs separated from 105 

unfertilized and placed in fresh medium in Petri dishes. Only spawns with more than 80% of 106 

fertilized eggs were kept for the exposure. Medaka embryos were ordered from AMAGEN 107 

platform in Gif-sur-Yvette (France). They were transferred to the laboratory in hermetic boxes 108 

and immediately used with exposure starting at 13 hpf. All procedures were in accordance 109 

with the animal protection guidelines. Experiments with zebrafish and medaka larvae were 110 

approved by the Swiss Cantonal Veterinary Office (Number 119/2014) and by the French 111 

ethic committee (Number A33-522-7), respectively. 112 

 113 

2.2 Imidacloprid exposure  114 

Based on concentrations reported from different water environments, the imidacloprid 115 

exposure range was set from 0.2 to 2000 µg/L. Imidacloprid (PESTANAL®, analytical 116 

standard, Sigma-Aldrich 37894) was prepared as a 200 mg/L stock solution in 250 mL of 117 

reconstituted water and aliquoted before being stored at -20°C. Serial dilutions with a factor 118 

of 10 were prepared daily from this stock solution (see below). Three times twenty-five 119 

fertilized embryos were placed in 3.5 cm Petri dishes with 3 mL of reconstituted water without 120 

(control) or with imidacloprid. Exposure lasted for 5 (zebrafish) and 14 (medaka) days post 121 

fertilization (dpf). Water exchange was done every 24 hours to ensure stable aqueous 122 

imidacloprid exposure concentrations (see chemical analysis below). Zebrafish were raised 123 
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at 28°C and medaka at 26°C in incubators (Economic Delux ECD01E model, Snijders 124 

Scientific, Tilburg, NL for zebrafish and Memmert ICP 700 for medaka) in 14/10h light/dark 125 

cycle in reconstituted water. 126 

 127 

2.3 Survival and development 128 

Survival was monitored daily under the microscope and dead embryos or larvae were 129 

removed. Fish were considered as dead when the heart did no longer beat. Percent survival 130 

was calculated as compared to control for the last time point by using the ratio of survival 131 

divided by the initial number of embryos.  132 

 133 

Hatch was likewise monitored daily. In controls, it is expected to occur around 3 days post 134 

fertilization (dpf) for zebrafish (Kimmel et al. 1995) and 9 dpf for medaka (Iwamatsu 2004). 135 

Hatchability was expressed as percent of control and calculated using the ratio of hatching 136 

larvae divided by the initial number of embryos.  137 

 138 

After hatching (at 3 dpf for zebrafish and 9 dpf for medaka), 10 larvae per replicate and per 139 

treatment were individually placed in 96 well plates. Microscope images of the whole body of 140 

each larvae were taken for length measurement. Size was measured from mouth to end of 141 

the tail. 10 larvae per biological replicate (3 replicates) were analyzed for a total of 30 fish per 142 

treatment. 143 

 144 

Developmental anomalies were analyzed at the same time as size measurements under the 145 

microscope following the protocol published by Le Bihanic (2013). Different types of 146 

anomalies were recorded: heart, yolk-sac or bone oedema, tail problems (lordosis, kyphosis 147 

or scoliosis), jaw or skull deformity, ocular lesions (missing eye, cyclopia and dystrophy), 148 

heart curvature/position, hemorrhage and presence or absence of swollen swim bladder. 149 

These results were expressed as percent compared to unexposed control. 150 

 151 
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2.4 Behavior  152 

Behavioral experiments were performed at 5 dpf with zebrafish larvae (using Zebrabox from 153 

Viewpoint) and at 14 dpf with medaka larvae (using Daniovision from Noldus 154 

EthovisionXT11) and distance moved was video-tracked in both cases. First, fish were 155 

acclimatized in well plates in the dark for 2 hours at their optimal temperature (26°C for 156 

medaka and 28°C for zebrafish) before the test and then recorded for 3 periods. The first one 157 

was in the dark (light off-1; L.off-1), the second one in light (light on; L.on) and the third one 158 

in dark (light off-2; L.off-2).  159 

 160 

For zebrafish, the procedure was as previously described ((Vignet et al. 2013, Vignet et al. 161 

2015). The tested plate was transferred into the Zebrabox. Then 12 randommly selected 162 

zebrafish larvae per replicate per treatment were tested in 24 well plates in 5 min intervals. In 163 

light-off periods, zebrafish larvae normally present an increase of activity. 164 

 165 

The procedure for medaka was as previously described in Granger Joly de Boissel et al. 166 

(2017). 10 larvae per replicate were randomly selected and placed individually in wells of a 167 

48 well plate. After acclimatization, medaka larvae were video tracked in 10 min intervals. 168 

The last Light off (L.off-2) period represents the peak activity for medaka. According to Le 169 

Bihanic (2014) and Chiffre (2016), medaka activity is constant during the L.off-1 period and 170 

slightly increases during the L.on whereas for the last period, when the light is turned off 171 

again, larvae react with an increase of activity.  172 

 173 

2.5 Histology  174 

Eight samples for histological assessment were collected from control and each treatment at 175 

5 dpf for zebrafish and at 14 dpf for medaka. The larvae were anesthetized with 0.01% MS 176 

222 (Tricaine Methanesulfonate), and then immediately fixed in the Surgipath Decalcifier 177 

(Leica) for 24 h at 4°C. After dehydration in ethan ol, all specimens were embedded in 178 

paraffin (Bio-Optica, Italy) and sectioned at a thickness of 5 µm with a rotary automatic 179 
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microtome (Leica Microsystems, Wetzlar, Germany). Serial sections were stained with 180 

hematoxylin and eosin (Bio-Optica, Isttaly), and examined with a motorized Zeiss Axio 181 

Imager Z1 light microscope (Carl Zeiss AG, Werk Göttingen, Germany), equipped with an 182 

AxioCam digital camera (Zeiss, Jena, Germany) for the acquisition of images. This protocol 183 

was already published (Fasulo et al. 2010, Maisano et al. 2016, Maisano et al. 2017) 184 

 185 

2.6 Liquid chromatography–high resolution mass spectrometry (LC-HRMS) analysis of 186 

imidacloprid and its biotransformation products in fish and exposure medium 187 

Internal concentrations of imidacloprid and its biotransformation products were determined in 188 

a separate set of experiments. A pool of 150 eggs was used in each of three independent 189 

experiments in which fish were raised up to 5 dpf for zebrafish and up to 14 dpf for medaka 190 

in two Petri dishes with 20 mL of reconstituted water in each with 0 or 2000 µg/L of 191 

imidacloprid. Zebrafish were sampled after fertilization and at 3 dpf (hatching day) and 5 dpf 192 

(larval stage and end of the exposure) while medaka were sampled after fertilization, at 3 dpf 193 

(same exposure days as zebrafish), 5 dpf (same exposure day as zebrafish), 9 dpf (hatching 194 

day) and 14 dpf (larval stage and end of the exposure). The 150 embryos or larvae 195 

(depending on the stage) per treatment were transferred into a cryotube and rinsed three 196 

times with nanopure water. Water was removed with a pipet as much as possible and tubes 197 

were weighted and immediately flash-frozen in liquid nitrogen.  198 

 199 

The sample preparation was based on the method by Rosch et al. (2017). In general, 100 µL 200 

of 100 µg/L imidacloprid_d4, 500 µL MeOH, and 300 mg of 1 mm zirconia/silica beads 201 

(BioSpec Products, Inc., U.S.A.) were added to the frozen organisms, followed by 202 

homogenization and extraction using a FastPrep bead beater (MP Biomedicals, Switzerland) 203 

in two cycles (15 s, 6 m/s). The homogenized samples were centrifuged (6 min, 10 000 rpm, 204 

20 °C) and filtered through 0.45 µm regenerated cellulose filters (BGB Analytic AG, 205 

Switzerland). The supernatant was collected and the filters were washed with 400 µL MeOH. 206 

The filtrate and the extract were eventually combined.  207 
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 208 

Imidacloprid concentration in embryo exposure medium was monitoring in the daily changed 209 

solution and was sampled over the exposure to measure the effective imidacloprid 210 

concentration (SI Table S1). All samples were stored at −20 °C until chemical analysis. The 211 

samples were analyzed by online solid phase extraction coupled to reversed phase liquid 212 

chromatography high resolution tandem mass spectrometry (online-SPE-LC-HRMS/MS) (Q 213 

Exactive, Thermo Fisher Scientific Inc.). Detection was done by full scan acquisition with a 214 

resolution of 70000 (at m/z 200) in polarity switching mode (electrospray ionization) followed 215 

by five (positive mode) and two (negative mode) data-dependent MS/MS scans with a 216 

resolution of 17000 (at m/z 200) with an isolation window of 1 m/z. Quantification was carried 217 

out for imidacloprid and its metabolites using standards and imidacloprid-d4 as internal 218 

standard. 219 

 220 

2.7 NMR-based metabolomics analysis in medaka larvae 221 

Endogenous polar metabolites from 14 dpf medaka larvae (n=3 pools of 20 fish each per 222 

group) were extracted using a “two-step” methanol/chloroform/water protocol, adequately 223 

modified (Wu et al. 2008, Cappello et al. 2017b). In brief, medaka larvae were homogenized 224 

in 8 mL/g of cold methanol and 2.5 mL/g of cold water by a TissueLyser LT bead mill 225 

(Qiagen) with 0.5 mm glass beads, for 5 min at 50 vibrations/s, twice. Homogenates were 226 

transferred into glass vials, and 8 mL/g chloroform and 4 mL/g water were added. Samples 227 

were vortexed for 30 s, and then incubated on ice for 10 min for phase separation. Following 228 

centrifugation at 2000 g for 5 min at 4 °C, 200 µL of the upper methanol layer were 229 

transferred into glass vials, dried in a centrifugal vacuum concentrator (Eppendorf 5301), and 230 

kept at -80°C. Prior to Nuclear Magnetic Resonance (NMR) analysis, the dried polar extracts 231 

were resuspended in 600 µL of a 0.1 M sodium phosphate buffer (pH 7.0, 10% D2O (Armar 232 

AG, Döttingen, Switzerland)) containing 1 mM 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) 233 

(Sigma-Aldrich Co) used as internal standard, and then pipetted into a 5 mm NMR tube.  234 

 235 
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Extracts of medaka larvae were analyzed on a Varian-500 NMR spectrometer operating at a 236 

spectral frequency of 499.74 MHz at 298 K. One-dimensional (1-D) 1H NMR spectra were 237 

obtained using a PRESAT pulse sequence to suppress the residual water resonance and 238 

6,009 Hz spectral width with a 2.0 s relaxation delay. A total of 256 transients were collected 239 

into 16,384 data points requiring a ca. 20 min acquisition time. All data sets were zero filled 240 

to 32,768 data points and exponential line-broadenings of 0.5 Hz were applied before Fourier 241 

transformation. All 1H NMR spectra were manually phased, baseline-corrected, and 242 

calibrated (DSS at 0.0 ppm) using Chenomx NMR Suite (version 5.1; Chenomx Inc., 243 

Edmonton, Canada) software. Peaks within the 1H NMR spectra were assigned using the 244 

Chenomx 500-MHz library and public databases. Chenomx NMR Suite was also used for 245 

metabolite quantification (Cappello et al. 2017a, Cappello et al. 2017b, Maisano et al. 2017). 246 

 247 

2.8 Statistical analysis 248 

In order to test survival, hatch, length, deformity, and behavior, a General linear mixed model 249 

(GLM with Statistica software) was applied. When the results from GLM indicated a 250 

significant difference, a Newman-Keuls post hoc test was applied to compare groups. 251 

Significance levels were set at p < 0.05. 252 

 253 

Statistical analyses for the metabolite data were conducted by the use of the GraphPad 254 

software (Prism 5.0, San Diego CA, USA). A one-way analysis of variance (ANOVA) was 255 

performed, followed by Dunnett’s post-test, in order to determine the effects of single 256 

treatment groups compared to controls. Significance levels were set at p < 0.05. 257 

 258 

 259 

3. RESULTS 260 

 261 

Imidacloprid did not cause an impact on survival for any of the exposure conditions in either 262 

species of fish (data not shown). Moreover, overall hatching rate was unaffected for both 263 
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species despite a significant but transient alteration in hatching for some of the imidacloprid 264 

concentrations at 7 dpf, and 8 dpf in medaka (SI Table S2). Yet, significant sub-lethal effects 265 

were observed and these were more prominent for medaka as described below. 266 

 267 

3.1 Impact on fish development and behavior 268 

 269 

While no chemical-induced deformities and lesions were seen in zebrafish, the percentage of 270 

total anomalies in medaka reached 67% at the lowest tested imidacloprid concentration, 0.2 271 

µg/L, and >80% at 2 µg/L and higher (Figure 1A). Lordosis/scoliosis, hemorrhage and 272 

jaw/skull deformity appeared in a concentration-dependent manner at ≥ 0.2 µg/L 273 

imidacloprid; oedema of the yolk and bones as well as tail deformities became visible at 274 

concentrations ≥ 20 µg/L (Figure 1B).  275 

 276 

The stark difference in responding with sub-lethal effects between zebrafish and medaka 277 

was also underlined in the histology. While no changes were found in the microscopic 278 

structure of the eyes of zebrafish (Figure S3A, S3B), medaka larvae from 0.2 µg/L to the 279 

highest concentration of imidacloprid exhibited a moderate disorganization of the retinal 280 

pigment epithelium (Figure S3C, S3D). Additionally, a marked thickening of muscle fibers 281 

was observed in zebrafish treated with 2000 µg/L of imidacloprid (Figure 2A, 2B) whereas in 282 

medaka an altered myomeric structure, as highlighted by heterogeneous alignment of the 283 

fibers and presence of white spaces among them, was evident starting from the exposure of 284 

≥ 2 µg/L of imidacloprid (Figure 2C, 2D). 285 

 286 

Fish growth, measured as total length, was impacted by imidacloprid exposure in medaka 287 

but not in zebrafish. All imidacloprid exposed medaka larvae were about 5% smaller than the 288 

unexposed control group though this effect was not concentration-dependent (SI Table S3).  289 

 290 
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No impact by imidacloprid was found for both fish species for behavior. It pointed toward 291 

hypoactivity though without a clear concentration-dependent pattern (Figure 3).  292 

 293 

3.2 Toxicokinetics of imidacloprid and its biotransformation products in the developing fish 294 

 295 

Imidacloprid was taken up by the developing fish. Yet, as demonstrated especially for 296 

medaka with its longer development phase, the chorion provided a significant barrier for 297 

uptake – only between 7 to 10% of the final organism-internal concentration were detected in 298 

the organisms at this early life stage. Imidacloprid was below the detection limit in control 299 

whereas concentrations in the exposed larvae drastically increased immediately after hatch, 300 

reaching 60 to 80% of the concentration measured in the larvae at the end of exposure 301 

(Table 1 column 1 and 2 and SI Table S4). 302 

 303 

Apparent bioconcentration factors (BCFs) were calculated at the end of the exposures by 304 

dividing the concentration of imidacloprid in the organism by the concentration measured in 305 

the water recognizing that steady-state conditions may not have been reached. These BCFs 306 

amounted to 1.5 L/kgwet weight (ww) and 1.2 L/kgww for medaka and zebrafish, respectively. In 307 

contrast in medaka just before hatch, the BCF was 0.1 L/kgww.  308 

 309 

Of the total imidacloprid quantified at the respective end of the exposures, i.e. in 5 dpf 310 

zebrafish and in 14 dpf medaka, about 15% were biotransformed as estimated based on the 311 

presence of three biotransformation products (Table 1 and SI Table S4). The predominant 312 

product in both species was hydroxyl-imidacloprid, which accounted for about 11% of 313 

biotransformation.  Urea-imidacloprid was found at less than 1% in both species. Finally, 314 

olefin-imidacloprid represented 1% in zebrafish and about 3% in medaka. Desnitro-315 

imidacloprid, which has been described in bees (Suchail et al. 2001), was not detected in 316 

either species.  317 

 318 
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3.3 Metabolic responses in medaka 319 

 320 

To better understand the responses of medaka to imidacloprid exposure, we monitored the 321 

levels of endogenous metabolites in medaka larvae. Compared with larvae from controls 322 

(see SI Figure S4 for a representative 1-D 1H NMR spectrum of 14 dpf medaka larvae), the 323 

exposure to imidacloprid resulted in significant changes (p < 0.05) in metabolites which can 324 

be assigned to either energy metabolism (namely glucose, pyruvate, succinate, ATP/ADP, 325 

and lactate) or to cholinergic (choline and acetylcholine) and to adrenergic (tyrosine and 326 

phenylalanine) neurotransmission (Table 2 and SI Figure S4).   327 

 328 

4. DISCUSSION 329 

The aim of our study was two-fold: (1) to explore if sub-lethal effects, ranging from impacts 330 

on development to behavior, can arise from imidacloprid early life stage exposure of two 331 

model fish – zebrafish and medaka – embracing concentrations close to environmental 332 

levels; and (2) to test if species differences arise. 333 

Imidacloprid caused sublethal effects in both species but the effects were much more severe 334 

in medaka. The most prominent impact was the induction of deformities and lesions. The 335 

mechanisms leading to such effects can be manifold and will need further investigations to 336 

be precisely understood. However, several lines of evidence point toward an involvement of 337 

nicotinic acetylcholine receptors (nAChRs), i.e. the specific target of imidacloprid in insects, 338 

keeping in mind that, while in insects nAChRs are restricted to the central nervous system, 339 

these same receptors are also present at neuromuscular junctions in vertebrates (Millar et al. 340 

2009).  341 

 342 

The first line of evidence for an involvement of nAChRs is that the anomalies herein 343 

observed in the muscle structure of medaka larvae, with the heterogeneous alignment of the 344 

fibers, could be explained by a dysregulation of muscle contractions due to interference by 345 
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imidacloprid with the fish neuromuscular nAChRs. The exposure to imidacloprid can provoke 346 

muscle contraction with consequent release of lactate, as evidenced by an increase in 347 

lactate levels at the lowest exposure concentrations. Increased levels of acetylcholine 348 

comprise the second line of evidence of the interference of imidacloprid with the fish 349 

nAChRs. Indeed, increased acetylcholine levels recorded in all the exposure groups are in 350 

agreement with the action and target-site selectivity of imidacloprid that saturates nAChRs 351 

(Matsuda et al. 2009), leading to an increase of free acetylcholine. Similar effects can be 352 

elicited in zebrafish, as demonstrated by Tufi et al (2016), but only at concentrations at least 353 

one order of magnitude higher than the highest concentration tested here. Along the lines of 354 

these sensitivity differences, the marked thickening of muscle fibers in zebrafish larvae at the 355 

highest concentration of imidacloprid in our study was 2000-fold higher than the lowest 356 

concentration at which this effect was observable in medaka. We therefore conclude that the 357 

neuromuscular nAChRs might be an important target of imidacloprid especially during early 358 

developmental stages in both species. The difference between medaka and zebrafish could 359 

be due to a greater affinity of the medaka nAChRs to imidacloprid or an overall higher 360 

activation of nAChRs due to greater time-integrated imidacloprid exposure levels in the 361 

developing medaka. Moreover, besides the alterations in the cholinergic system, 362 

disturbances in the adrenergic system were also detected herein in medaka, with increased 363 

level of phenylalanine, a precursor of tyrosine, which was, however, not followed by an 364 

increase in the level of tyrosine itself. Similar data were observed in zebrafish larvae after 365 

exposure to imidacloprid, which induced increased levels of phenylalanine but no change in 366 

the levels of tyrosine (Tufi et al. 2016). 367 

 368 

Zebrafish and medaka are similar in many traits, such as size, optimal temperature range 369 

and being oviparous (Furutani-Seiki et al. 2004). However, the developmental time from 370 

fertilization to free swimming larvae is about three times longer in medaka than in zebrafish 371 

(14 d for medaka, 5 d for zebrafish) (Kimmel et al. 1995, Furutani-Seiki et al. 2004, Iwamatsu 372 

2004)  373 
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At time of hatching (9 d for medaka, 3 d for zebrafish), medaka larvae contained about twice 374 

the amount of imidacloprid per g of tissue compared to zebrafish larvae. If passive uptake 375 

into the embryo is assumed, the higher accumulation in medaka larvae could be explained 376 

by the longer exposure time, assuming that steady-state-concentrations have not been 377 

reached. Yet another factor influencing accumulation could be the difference the composition 378 

of the chorion between medaka and zebrafish. While both zebrafish and medaka have a 379 

transparent chorion with 3 layers (Bonsignorio et al. 1996), there are differences in certain 380 

traits. The chorion of zebrafish is soft compared to the chorion of medaka and is as well 381 

smooth compared to the hair structures on the medaka chorion surface. The relative 382 

hardness of the medaka chorion could be due to a higher content of proline (Bonsignorio et 383 

al. 1996), which is known to contributes to the structural stability of proteins like collagen 384 

(Jaeken 2012). Such features, i.e. biochemical compositions and surface structures like hair, 385 

could contribute to the medaka chorion being more prone to chemical uptake than the 386 

chorion of zebrafish. 387 

After hatch, imidacloprid concentrations rose in both species of fish though overall apparent 388 

BCFs indicate that imidacloprid does not accumulate strongly in both species (1.5 L/kgwet weight 389 

(ww) and 1.2 L/kgww for medaka and zebrafish, respectively). This is in accordance with BCFs 390 

for imidacloprid reported for other species of fish (australoheros facetus (Iturburu et al. 2016) 391 

(1.4L L/kgww)) or amphibians (Van Meter et al. 2016) (0.2 to 0.7L L/kgww) whereas in 392 

gammarids, the BCF was higher (7.35 L/kgww) (Ashauer et al. 2010, Ashauer et al. 2012). At 393 

the end of the exposure, medaka showed a 1.3-fold higher accumulation compared to 394 

zebrafish, which contrasts with the orders of magnitude difference in developmental 395 

sensitivity of the medaka compared to zebrafish. Thus, while longer exposure time, paired 396 

with greater internal exposure, are conceivable contributors to the comparatively high 397 

sensitivity of medaka, other factors appear to contribute to the species sensitivity differences. 398 

One such factor could be biotransformation though the only notable difference was in the 399 

formation of olefin-imidacloprid. Interestingly, olefin-imidacloprid was found to be twice as 400 

lethally toxic than the parent compound in bees after 48 hours of exposure (Suchail et al. 401 
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2001). It was also shown to be potentially more toxic in mice (Lee Chao et al. 1997, 402 

Tomizawa et al. 1999). Thus, exploration of sensitivity toward olefin-imidacloprid is one future 403 

avenue to shed light on the species differences observed. 404 

 405 

The comparatively high sensitivity of medaka toward imidacloprid during early development 406 

underlines the importance of taking species differences for environmental risk assessment 407 

into account. As demonstrated in the species sensitivity distribution (SI Figure S1), only few 408 

species of fish have thus far been explored for their sensitivity to imidacloprid with a focus on 409 

acute exposure. Though the exact mechanisms of the high sensitivity of the medaka during 410 

early life stages still need to be further explored, this fish appears about three orders of 411 

magnitude more sensitive to imidacloprid than the zebrafish. The most important impacts 412 

measured herein with regard to ecological relevance are the developmental toxicity and the 413 

reduced growth of medaka. Both these types of impact can conceivably be linked. For 414 

example, the alteration of muscle fibers can result in reduced locomotion, which in turn can 415 

result in reduced ability to catch food. This thought is supported by the observed tendency 416 

toward hypoactive behavior and disturbances in the neurotransmission pathways, both in the 417 

cholinergic and adrenergic systems. Similarly, alterations to the structure of the eyes may 418 

obstruct perception of predator or prey. All these impacts therefore can severely hamper the 419 

fitness of the fish in their natural environment. In the future, research priorities to further 420 

explore the species sensitivity differences could be to i) explore the barrier function of the 421 

chorion on chemical uptake, ii) mechanisms of neuromuscular nAChRs and iii) the toxicity of 422 

olefin-imidacloprid in both species. In this regard it is important to note that 0.2 µg/L of 423 

imidacloprid, i.e. the lowest concentration at which strong effects were already seen in 424 

medaka, is in the range of concentrations (µg/L) reported in some environments like rivers, 425 

groundwaters, streams and estuaries (Anderson et al. 2015, Morrissey et al. 2015).  426 

 427 

 428 
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Figure 1. Deformities in medaka at hatch (9 dph). A. Percentage of total developmental anomalies. Stars indicate significant differences to control 442 

fish (0µg/L) for p ≤ 0.05 as determined by GLM. B. Anomalies are ranked into three categories. Group 1: non chemical-specific anomalies (plain 443 

grey to dark); they include lack of swim bladder inflation, ocular lesion (missing eye, cyclopia and dystrophy), heart oedema and heart 444 

position/curvature. Group 2: concentration dependent anomalies (dashed line patterns); they include lordosis/scoliosis, hemorrhage and jaw/skull 445 

deformity. Group 3: anomalies that became visible only at concentrations ≥ 20 µg/L (dotted patterns); they include oedema of the yolk and bones 446 

as well as tail deformity. These experiments was done 3 times with 10 embryos per treatment each time. 447 
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Figure 2. Histological sections of muscles of 5 dpf zebrafish (A-B) and 14 dpf medaka (C-D), stained with Hematoxylin and Eosin. A regular 461 

microscopic structure of the muscles of zebrafish from control group (A) and marked thickening of muscle fibers (double ended arrow) in zebrafish 462 

treated with 2000 µg/L of imidacloprid (B). Muscles of medaka from control (C) and a representative image showing an altered myomeric structure 463 

with heterogeneous alignment of the fibers (arrows), and presence of white spaces among them, found from 2 µg/L to the highest concentration of 464 

imidacloprid group (D). nc, nothocord; m, muscle. Scale bars, 20 µm. 465 
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Figure 3. Behavioral response in zebrafish after 5 days of exposure (A, B) and in medaka after 14 days of exposure (C, D) to different 467 

concentrations of imidacloprid. (A). Distance moved measured every 30 sec. (B). Distance moved measured every 5 minutes. (C). Distance moved 468 

measured every minute. (D). Distance moved measured every 10 minutes. Zf-Loff1: zebrafish Light off1 (5 min); Zf Lon: zebrafish Light On (5 min); 469 

Zf-Loff2: zebrafish light off 2 (5 min); m-Loff1: medaka Light off1 (10 min); m-Lon: medaka Light On (10 min); m-Loff2: medaka light off 2 (10 min).  470 

  471 

Table 1: Whole body internal concentration of imidacloprid and biotransformation products in ng/g w.t after imidacloprid exposure (n.d= not 472 

detected; n.q= detected but under limit of quantification (see Table S4). 473 

  Imidacloprid Hydroxyl-
imidacloprid 

Desnitro-
imidacloprid 

Olefin-
imidacloprid 

Urea-
imidacloprid 

zebrafish  

Unexposed larvae (3, 5 dpf) n.d n.d n.d n.d n.d 
Larvae at hatching day (3 dpf) 1267 ± 58 64 ± 4 n.q 9 ± 1 8 ± 0.5 

Larvae at the end of experiment 
(5 dpf) 2067 ± 153 263 ± 31 n.q  22 ± 3 11 ± 1 

medaka 

Unexposed embryo (3, 5 dpf) 
and larvae (9,14 dpf) n.d n.d n.d n.d n.d 

3 dpf (embryo) 180 ± 35 n.d n.d n.d n.d 
5 dpf (embryo) 273 ± 12 n.d n.d n.d n.q 

Larvae at hatching day (9 dpf) 2133 ± 115 160 ± 20 n.d 24 ± 3 11 ± 1 
Larvae at the end of experiment 

(14 dpf) 2667 ± 252 390 ± 36 n.d 76 ± 8 12 ± 1 

 474 

 475 

 476 
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Table 2. Percent changes in concentrations of metabolites between imidacloprid-exposed and control medaka (Dunnett’s test; *p < 0.05). 477 

  0.2 µµµµg/L 2 µµµµg/L 20 µµµµg/L 200 µµµµg/L 2000 µµµµg/L 

Metabolites relative to energy metabolism 

Glucose � 10% � 13% � 24% � 38% � 31% 

Pyruvate � 64%* � 70%* � 70%* � 39% � 43% 

Succinate � 62%* � 75%* � 58%* � 14% � 4% 

ATP/ADP � 30% � 42%* � 40%* � 14% no change 

Lactate � 52%* � 47%* � 50%* � 46%* � 21% 

Metabolites relative to cholinergic neurotransmission 

Choline � 24% � 40%* � 16% � 23% � 12% 

Acetylcholine � 64%* � 44%* � 34% � 25% � 17% 

Metabolites relative to adrenergic neurotransmission 

Tyrosine � 66%* � 29% � 16% � 10% no change 

Phenylalanine � 78%* � 70%* � 104%* � 68%* � 37% 

 478 

  479 
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• Imidacloprid impacts on fish at environmentally relevant concentrations. 
• At the same developmental stage, medaka are more sensitive than zebrafish. 
• Our study supports the importance of taking species sensitivity differences into 

account  

 




