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Key points 
 
Question: Do instrumental variable analyses leveraging genetic information provide evidence 
for a causal association of various vascular traits with Alzheimer's disease (AD) and all-
cause-dementia? How do these associations compare for white matter hyperintensity (WMH) 
burden, a highly prevalent marker of covert cerebral small vessel disease (cSVD), stroke, and 
blood pressure traits, the strongest known risk factor for cSVD and stroke?  
 
Findings: Using Mendelian randomization (MR) leveraging large, published genome-wide 
association studies, this study showed a putative causal association of larger WMH burden 
with increased AD risk after accounting for pulse pressure effects, and some evidence for 
association of lower BP with AD risk with possible confounding by shared genetic 
instruments. Longitudinal analyses on individual-level data also supported association of 
genetically determined WMH with incident all-cause-dementia and AD, independently of 
interim stroke.  
 
Meaning: This study using complementary genetic epidemiology approaches, identified 
increasing WMH burden to be associated with dementia and AD risk, suggesting the 
association as specific for cSVD and independent of BP and stroke. 
 
Abstract 
 
Importance: There is increasing recognition that vascular disease, which can be treated, is a 
key contributor to dementia risk. However, the contribution of specific markers of vascular 
disease is unclear and, as a consequence, optimal prevention strategies remain unclear.     
 
Objective: To disentangle the causal relation of several key vascular traits to dementia risk: (i) 
white matter hyperintensity (WMH) burden, a highly prevalent imaging marker of covert 
cerebral small vessel disease (cSVD); (ii) clinical stroke; and (iii) blood pressure (BP), the 
leading risk factor for cSVD and stroke, for which efficient therapies exist. To account for 
potential epidemiological biases inherent to late-onset conditions like dementia.  
 
Design, Setting, and Participants: This study first explored the association of genetically 
determined WMH, BP levels and stroke risk with AD using summary-level data from large 
genome-wide association studies (GWASs) in a two-sample Mendelian randomization (MR) 
framework. Second, leveraging individual-level data from large longitudinal population-based 
cohorts and biobanks with prospective dementia surveillance, the association of weighted 
genetic risk scores (wGRSs) for WMH, BP, and stroke with incident all-cause-dementia was 
explored using Cox-proportional hazard and multi-state models. The data analysis was 
performed from July 26, 2020, through July 24, 2022. 
 
Exposures: Genetically determined levels of WMH volume and BP (systolic, diastolic and 
pulse blood pressures) and genetic liability to stroke.  
 
Main outcomes and measures: The summary-level MR analyses focused on the outcomes 
from GWAS of clinically diagnosed AD (n-cases=21,982) and GWAS additionally including 
self-reported parental history of dementia as a proxy for AD diagnosis (ADmeta, n-
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cases=53,042). For the longitudinal analyses, individual-level data of 157,698 participants 
with 10,699 incident all-cause-dementia were studied, exploring AD, vascular or mixed 
dementia in secondary analyses. 
 
Results: In the two-sample MR analyses, WMH showed strong evidence for a causal 
association with increased risk of ADmeta (OR, 1.16; 95%CI:1.05-1.28; P=.003) and AD (OR, 
1.28; 95%CI:1.07-1.53; P=.008), after accounting for genetically determined pulse pressure 
for the latter. Genetically predicted BP traits showed evidence for a protective association 
with both clinically defined AD and ADmeta, with evidence for confounding by shared genetic 
instruments. In longitudinal analyses the wGRSs for WMH, but not BP or stroke, showed 
suggestive association with incident all-cause-dementia (HR, 1.02; 95%CI:1.00-1.04; P=.06). 
BP and stroke wGRSs were strongly associated with mortality but there was no evidence for 
selective survival bias during follow-up. In secondary analyses, polygenic scores with more 
liberal instrument definition showed association of both WMH and stroke with all-cause-
dementia, AD, and vascular or mixed dementia; associations of stroke, but not WMH, with 
dementia outcomes were markedly attenuated after adjusting for interim stroke.  
 
Conclusion: These findings provide converging evidence that WMH is a leading vascular 
contributor to dementia risk, which may better capture the brain damage caused by BP (and 
other etiologies) than BP itself and should be targeted in priority for dementia prevention in 
the population.  
 
 
Introduction 
 
As life expectancy rises worldwide, the prevalence of dementia is expected to reach 75 
million by 2030.1,2 Devising strategies to prevent or delay its occurrence is therefore a major 
public health priority. As has been documented over decades, it is now widely recognized by 
the scientific community that a majority of dementia cases, including Alzheimer’s disease 
(AD) in the population are, in fact, due to a combination of vascular and neurodegenerative 
lesions.3-6 A large majority (80%) of patients with clinically diagnosed AD are found to have 
cerebrovascular lesions on post-mortem examinations.7 Epidemiological and clinical studies 
have shown that stroke patients have at least a doubling of their risk for incident dementia.8,9 
At the population level, covert cerebral small vessel disease (cSVD), detectable on brain 
imaging in the absence of clinical stroke, is thought to be the main pathological substrate 
underlying the vascular contribution to cognitive decline and dementia,10 with nearly half of 
dementia cases exhibiting overlap of AD neuropathology with cSVD.11  
White matter hyperintensity burden (WMH) is the most common magnetic resonance imaging 
(MRI) feature of covert cSVD. Evidence from observational studies has established strong 
associations of WMH with increased stroke and dementia risk, including AD,12 yet with no 
proof of causality. Recently, a putative causal relation between WMH and AD has been 
suggested in a preliminary Mendelian randomization (MR) analysis that used genetic 
instruments as proxies for WMH volume, thus leveraging the natural randomization of genetic 
variation at conception to mitigate risks of confounding and reverse causation as seen in 
observational studies.13 Intriguingly, however, while high blood pressure is by far the 
strongest risk factor for WMH and easily accessible to efficient therapy, several MR studies14 
have reported inverse associations of genetically predicted blood pressure levels15 with AD. 
These associations were observed both in datasets using standard AD diagnostic criteria 
(IGAP)16-18 and in studies using self-reported parental history as a proxy for AD diagnosis 
(UK Biobank).19 “Selective survivorship”20 or age-dependent structural changes (arterial 
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stiffness)21 and neurodegenerative lesions in blood pressure regulated regions resulting in 
reverse causation have been discussed as possible hypotheses.22,23 These inconsistencies have 
led to many discussions about the causal role of vascular damage in AD, but an understanding 
of the contributions of specific vascular pathology is still limited. Indeed, understanding such 
causal relationships is crucial to prioritize interventions and target populations to prevent 
cognitive decline and dementia. 
  
Based on the sharing of a large proportion of genetic risk variants between WMH and blood 
pressure (BP) traits,24 we aim to address from a genetic epidemiologic perspective: 1) what 
are the putative causal associations of genetically defined different vascular pathologies to 
AD and all-cause-dementia; 2)  what are the potential biases that may contribute to the MR 
associations.  
 
 
Methods 
 
The study design is summarized in Figure 1.  
 
Analyses on summary level data  
 
A comprehensive suite of MR-based analyses leveraging summary statistics of large GWAS 
was used to establish causality of associations between vascular traits (WMH, BP, stroke) and 
dementia and to test for alternative interpretations of causality. A P value < .017 correcting 
for 3 independent traits was considered significant. 
 
Selection of genetic instruments for the vascular trait exposures in MR analyses 
Independent genetic variants (single-nucleotide polymorphisms [SNPs]) that are genome-
wide significant (P < 5x10-8) in large published GWAS and satisfying the instrumental 
variable definition25,26 were considered as genetic instruments for each of the exposures. 
These were derived from GWAS of WMH on 50,970 participants, of stroke on 
67,162/454,450 cases and controls, and of systolic blood pressure [SBP], diastolic blood 
pressure [DBP], and pulse pressure [PP] on up to 757,601 participants.15,24,27 (eMethods). The 
Cragg-Donald F statistic was used to evaluate instrument strength (eMethods).  

Dementia phenotypes used as outcomes in MR analyses  
For the MR analyses, we used the GWAS summary statistics of clinically diagnosed late-
onset AD (N=21,982/41,944 cases/controls)28 and of the combination of clinical AD cases (n-
cases=21,982) and proxy AD cases (n-cases=53,402) defined by parental history of dementia 
in the UK biobank (this combination being hereafter referred to as ADmeta, N=75,024/397844 
cases/controls).29 ADmeta is sometimes considered closer to a definition of all-cause-dementia 
than pure AD.30 In all instances AD diagnosis was based on clinical criteria and family history 
only, and not on neuropathology criteria (eMethods).   
Suite of MR analyses 
As a starting point the putative causal effect of a given risk factor (WMH, stroke, SBP, DBP, 
PP) on AD was estimated using a suite of instrumental variable analyses based on two-sample 
Mendelian randomization (2SMR). We first accounted for potential pleiotropic effects of 
genetic instruments (SNPs) directly on the outcome and that is uncorrelated with the exposure 
(uncorrelated pleiotropy)31 using MR Egger, MR-RAPs, weighted median and mode based 
methods (eMethods). Second, we used MR-CAUSE to account for possible correlated 
pleiotropy, whereby genetic instruments are correlated with both exposure and outcome 
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through the unmeasured confounders (eFigures 1-2 and eMethods).32 MR-CAUSE is a 
Bayesian approach that differentiates the causal model (𝛾) from the correlated-sharing (q) 
model based on the extent of the contribution of genetic instruments to the predicted effect. It 
provides a prediction accuracy (expected log pointwise posterior density, ELPD) for both 
models and their corresponding difference (ΔELPD=ELPD𝛾-ELPDq), which, if greater than 
zero, indicates that the causal model (𝛾) is a better fit than the correlated-sharing model (q) 
(eMethods). Third, for exposures for which MR-CAUSE suggested the causal model to be a 
better fit (ΔELPD > 0) but with significant residual effects in the sharing model (q), we 
performed multivariable MR conditioning for effects from potential confounders to confirm 
the putative causal relation using MVMR.33 Finally, for exposures with significant MVMR 
association (P value < .013, for 4 independent traits) the following sensitivity analyses were 
conducted: i) using Qhet-MVMR, confounding due to potentially weak instruments was 
accounted for, and the effect direction was confirmed,34 and ii) causal direction among the 
multiple exposures was further determined using two-sample bidirectional MR (eMethods). 
 

Analyses on individual level data from longitudinal cohort studies  
 
We additionally conducted analyses on individual level data from prospective cohort studies 
to study the relation of genetically determined WMH burden, BP, and stroke with incident 
dementia outcomes in a longitudinal setting, while exploring the impact of potential selective 
survival bias.35  
 
Association analyses of weighted genetic risk scores for vascular traits with incident 
dementia 
Analyses are based on genotype and phenotype information from 13 longitudinal cohorts 
(participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology 
[CHARGE],36 and large biobanks (Trøndelag health study: HUNT, Estonian biobank: EstBB, 
and UK biobank: UKB). Nearly all cohorts were population-based, except MEMENTO 
(memory clinic patients with cognitive complaints and no dementia) and Knight ADRC. 
Together these cohorts included 157,698 unrelated participants of European origin, of whom 
10,699 developed all-cause-dementia (which is more inclusive than ADmeta). Dementia 
diagnosis in these studies is based on standard criteria described in the eMethods along with 
the study design and participant selection. The mean age at dementia diagnosis across the 
cohorts is 71.4 years with a median duration of follow-up ranging between 3-25 years. 
Cox proportional hazard regression models were used to examine the association of genetic 
risk scores for the different exposures (WMH, stroke, BP traits) studied in the 2SMR analyses 
with incident all-cause-dementia. For each trait, we constructed an individual weighted 
genetic risk score (wGRS) using as weights the number of ‘effect’ alleles times the effect 
estimates (betas) of the respective genetic instruments constructed for a given exposure in the 
2SMR analysis.37 The wGRSs were standardized to have mean of 0 and a variance of 1, so 
that each unit change in the wGRS corresponds to one standard deviation (SD). Analyses 
were restricted to participants with at least one follow-up visit and no dementia at baseline. 
The Cox model with delayed entry included birth as time origin and age as the time scale and 
controlled for sex, education level, principal components of population stratification, and 
study-specific criteria (eTable 3). Data were censored at the age of dementia diagnosis for 
cases or age at the last follow-up for controls. Individual cohort-specific estimates were 
combined using a fixed-effects inverse variance weighted meta-analysis, implemented as an R 
(meta) package. Additional sensitivity analyses excluding individuals with a history of stroke 
at inclusion and adjusting for interim incident stroke were conducted (except in Knight ADRC 
where this information was not available).  
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Secondary analyses accounting for interval-censoring, competing risk of death, and 
dementia subtypes 
These in-depth analyses were conducted in two large CHARGE cohorts (3C [Three city], 
AGES [Age, Gene/Environment Susceptibility - Reykjavik study]) with nearly identical 
characteristics (sample sizes, age distributions, and dementia ascertainment) (eMethods).  
We first explored whether survival bias during follow-up might affect our results using illness 
death models (IDMs)38 accounting for interval-censoring of time-to-onset of dementia and 
competing risk of death. Second, we examined whether our vascular exposures of interest 
exhibit an association with different subtypes of incident dementia (all-cause-dementia, AD 
and vascular and/or mixed dementia, Supplementary Methods) at more liberal instrument 
selection thresholds using polygenic profile scores (PGSs), created by binning observations 
by p-value of the exposures in the original GWASs. A P value < .017 correcting for 3 
independent traits was considered significant.  
 
 
 
 

Results 
 
Exploring causal relations of WMH, BP, and stroke with AD risk using GWAS 
summary-level data 
The genetic instruments derived from GWAS of WMH, BP, and stroke strongly predicted the 
exposures, with a Cragg-Donald F statistic ranging between 22 and 65 (eTables 1-2).  
Using the inverse variance weighting method we found significant associations (P value < 
.017) of genetically determined larger WMH burden and lower BP (DBP, SBP, PP) levels 
with ADmeta (clinically diagnosed AD or parental dementia) risk (Figure 2, eTable 4a) and of 
lower DBP with clinically diagnosed AD risk (eFigure 3, eTable 5a). The complementary 
MR tools MR-RAPS, weighted-median and mode enabled us to robustly rule out uncorrelated 
pleiotropic effects (eTable 4b, 5b). The Bayesian MR-CAUSE method that accounts for 
correlated pleiotropy (Methods) supported a causal relation of WMH with both AD outcomes 
(clinical AD and ADmeta), with a posterior distribution of the causal model distinctively 
different from the sharing model (ΔELPD = 0.91 for AD; 0.50 for ADmeta) (eTable 6, 
eFigures 4-5). On the contrary, stroke and BP traits suggested a better fit of the sharing model 
with potential unmeasured confounders (ΔELPD < 0) than a causal model (eTable 6, 
eFigures 4-5). Notably, for WMH with AD and not for other exposure-outcome 
combinations, we observed the presence of a significant proportion of genetic instruments 
being shared with unmeasured confounders (q P value: 8.37x10-9, eFigure 5) along with a 
better fit of the causal model (ΔELPD > 0) (eTable 6). We, therefore, sought to confirm any 
putative causal association of WMH with AD in a multivariable analysis setting, adjusting for 
the effects of closely related traits using MVMR. Greater genetically predicted WMH burden 
was associated with a 27.8% increase in the probability of AD risk (OR: 1.28, CI:1.07-1.53, 
P=.008, per unit increase in WMH risk alleles) after accounting for PP effects (Figure 3, 
eTable 7). This represents a 16.5% increase in disease risk compared to the univariable 
estimates (OR:1.11, CI:0.95-1.31, P=.19), with a consistent direction of effect. The effect of 
other exposures (stroke, BP traits) on AD remained non-significant using MVMR after 
adjusting for the closely related traits (eTable 7). Finally, a bidirectional MR analysis 
between the exposures showing significant MVMR results (WMH, PP) suggested a causal 
path of higher genetically predicted levels of PP with larger WMH burden (eTable 8).  
 
Association of genetic risk scores for WMH, BP, and stroke with incident dementia 
using individual-level data 
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In a meta-analysis of thirteen longitudinal cohort studies, we observed a borderline significant 
association of increasing genetically predicted WMH burden with increased risk of incident 
all-cause-dementia (HR:1.02, CI:1.00-1.04, P=.06, per SD increase in WMH wGRS) (Figure 
4, eTable 9). After adjusting for education and interim stroke, this association remained 
substantially unchanged (Figure 4). There was no significant heterogeneity across cohorts (I2: 
7%, p=0.38; eFigure 6). Genetically determined BP traits and genetic liability to stroke failed 
to show significant associations with incident all-cause-dementia, with negative point 
estimates for stroke and SBP. Notably, all exposures showed at least a nominally significant 
association with increased risk for mortality, the most significant association being observed 
for SBP (eTable 9-10).  
In secondary analyses, using illness-death models (IDM) in two older population-based 
cohorts (3C, AGES, Methods), we ruled out potential biases related to competing risk of 
death during follow-up in the context of interval censoring. Indeed, per SD increase in 
genetically predicted WMH and BP levels, and genetic liability to stroke risk were not 
associated with incident all-cause-dementia in the IDM model, and the effect estimates were 
generally similar to those from the Cox model (eTable 11) in both cohorts.  
When examining the PGSs, where associations are binned according to significance of genetic 
instruments with less stringent instrument-significance thresholds (eMethods), we found that 
PGSs for WMH and stroke were significantly associated (P < .017) with increased all-cause-
dementia risk in both cohorts (eTable 12-13, eFigures 7-8). In sensitivity analyses excluding 
prevalent stroke and adjusting for interim stroke, the WMH PGSs associations with dementia 
outcomes remained unchanged, while the stroke PGSs associations with dementia risk were 
markedly attenuated in both cohorts (eTable 13, eFigure 8). Meta-analyses of effect 
estimates from individual PGSs bins in 3C and AGES showed a significant association of 
WMH and stroke PGSs with increased risk of all-cause-dementia, AD, and (for stroke) 
vascular and/or mixed dementia (eTable 14). Finally, most of the PGSs for BP traits failed to 
show significant associations with dementia risk; the significant protective association 
observed between SBP/DBP PGSs and AD in the AGES cohort was attenuated in sensitivity 
analyses excluding prevalent stroke and adjusting for interim stroke (eTable 15).  
 
 
Discussion 
 
In this study capitalizing on a comprehensive MR workflow, large GWASs and numerous 
longitudinal cohort studies and biobanks, we report a putative causal association of 
genetically predicted WMH burden with increased risk of both clinically diagnosed AD28 and 
ADmeta (AD and parental history of dementia).29 The former association was strengthened 
after accounting for PP using multivariable MR. In contrast we observed protective effects of 
BP traits with ADmeta (all BP traits) and AD (DBP) risk using two-sample MR,16-19 and 
provide evidence that these may at least partly be driven by the sharing of BP genetic 
instruments with unmeasured confounders. Genetic liability to stroke was not associated with 
AD or ADmeta. Next, using 13 large longitudinal cohorts and biobanks gathering 157,698 
participants with prospective dementia surveillance (N=10,699 incident dementia cases), we 
report a similar, borderline significant association trend of WMH with increased risk of 
incident all-cause-dementia, while genetic instruments for BP traits and stroke showed no 
association. In a subset of population-based cohorts, polygenic scores (encompassing risk 
variants at less stringent significance thresholds than MR instruments) for WMH burden and 
stroke were associated with increased risk of incident all-cause-dementia, AD, and vascular 
and/or mixed dementia. While the association between stroke PGSs and all-cause-dementia 
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attenuated markedly after adjusting for interim stroke, the WMH PGSs association with all-
cause-dementia remained significant. 
  
Overall, out of all the vascular phenotypes considered (WMH, BP traits, stroke), genetic 
instruments for WMH appear to show the most robust associations with dementia risk, 
including ADmeta, AD, and all-cause-dementia. These MR findings suggest causal 
mechanisms and highlighting WMH as an important causal pathway to target for the 
prevention of dementia (Figure 5). Our results support association of extensive WMH burden 
with dementia and AD risks described in observational studies,39-43 providing additional 
strong evidence for a possible causal relation. This reinforces our earlier preliminary 
observations of a putative causal association of WMH with ADmeta,24 and expands it to a 
larger ADmeta GWAS resource,29 and, importantly also to a smaller and more conservative 
definition of only clinically diagnosed AD.28 The fact that the latter association was more 
prominent after accounting for PP effects in a multivariable model, with a 16.5% increase in 
the disease risk compared to the univariable estimates, is intriguing. PP is a marker of the 
pulsatile component of BP and is correlated with measures of arterial stiffness,44,45 which was 
suggested to promote both white matter pathology and amyloid deposition.46,47 Interestingly, 
recent evidence for a causal relation of arterial stiffness with larger WMH burden was found 
to be reinforced after accounting for PP,48 in line with the present findings. Underlying 
mechanisms are speculative, but could potentially involve oxidative stress, implicated in BP- 
associated vascular damage49 and also an early and prominent feature of aging and 
neurodegeneration.50 Elevated PP may dysregulate brain endothelial cells and increase 
cellular production of oxidative and inflammatory molecules, which may in turn increased 
amyloid-β secretion by cerebral endothelial cells and induce blood-brain barrier breakdown.51-

53 Interestingly, although WMH is known to be associated with increased risk of stroke,12,13 
and stroke with a substantial increase in dementia incidence,54-56 associations of WMH PGSs 
with risk of dementia were unchanged after accounting for baseline and interim stroke, 
suggesting an independent effect of WMH on dementia risk.   

High blood pressure is the strongest known risk factor for WMH and other MRI-markers of 
cSVD, with MR studies suggesting a causal relation of increasing genetically determined BP 
with WMH volume, even in persons without clinically defined hypertension.24 Moreover, 
evidence from randomized controlled trials shows that WMH volume progression is slowed 
down by BP-lowering treatments in hypertensive individuals,57-61 especially by intensive vs. 
standard BP-lowering.61 Given the aforementioned associations of genetically determined 
WMH with dementia and AD it therefore appears “counterintuitive” to observe an inverse 
association of genetically determined high BP with lower risk of ADmeta and AD in our two-
sample MR analysis. It is however in line with earlier MR studies deriving instruments from 
earlier, smaller BP GWAS or using genetic proxies for the effect of BP-lowering drugs.16-19,62 
Our sensitivity analyses suggest that this unexpected directionality of association might at 
least partly be explained by pleiotropic effects from unmeasured confounders (MR-CAUSE), 
prompting caution with applying methods designed only to remove or downweigh pleiotropic 
variants (e.g., weighted median based MR methods).  

Moreover, while we saw suggestive evidence for selective survival during follow-up, given 
the late age of onset of dementia (85 years on average63), the strong association of high BP 
and stroke with premature death in our longitudinal data and extensive evidence from other 
studies,64-67 it is possible that the apparent protective effect of high BP on dementia risk could 
potentially reflect selective survival bias before entry into the study. Indeed, if the selection is 
a function of the exposure or the outcome, it could result in collider (index event) bias,68 
leading to an association in the absence of a causal effect.69-71 While we did not see any 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.08.23293761doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.08.23293761
http://creativecommons.org/licenses/by-nc-nd/4.0/


evidence for selective survival during follow-up using the illness-death model in our 
longitudinal cohorts, we cannot formally rule out selective survival before study entry. 
Although non-significant, the association of genetically determined PP and DBP with incident 
all-cause-dementia had point estimates above 1 in the longitudinal cohort studies, which are 
likely less exposed to selective survival than the AD case-control GWAS used for the 2SMR 
analyses, although they also tend to overrepresent healthy individuals at inclusion (as for any 
voluntary participation).72-74 Beyond these possible biases our results highlight the complexity 
of the relation between BP and dementia risk, with weak epidemiological evidence varying by 
age.75-77 Recent meta-analyses of clinical trials show evidence that antihypertensive 
medication reduces risk of secondary outcomes combining dementia with cognitive 
impairment,78,79 but not dementia alone. In a meta-analysis of 6 population-based cohorts, 
antihypertensive medication was associated with a reduced risk of incident dementia and AD 
in individuals with clinically defined high BP at baseline.78 However in another recent meta-
analysis of 7 population-based cohorts, dementia risk appeared lower for older individuals 
with higher SBP levels, with more distinctly U-shaped associations for participants older than 
75 years, which were not explained by SBP-associated changes in mortality risk.80 

In contrast with BP measurements, which show high intra-individual variability,81 WMH 
volume is also a more stable marker, reflecting white matter damage secondary to changes in 
structure or function of cerebral small vessels. Assuming that WMH at least partly mediates 
the association of BP with dementia in the population, WMH may better capture the brain 
damage caused by BP than BP itself. WMH and covert cSVD more broadly likely also 
reflects the impact of other parameters on white matter integrity, including other risk factors 
for cSVD such as cerebral amyloid angiopathy, or factors influencing the resilience of the 
brain white matter to vascular insults. Given the high prevalence of WMH in the general 
population in the absence of clinical stroke,75-77 our results highlight WMH as a major causal 
pathway to consider for the prevention of dementia (Figure 5). 

Strengths and Limitations 
Strengths of our study include the diversity and complementarity of the analytical approaches 
used, ranging from various state-of-the-art MR analyses, based on powerful published 
GWAS, to longitudinal analyses in large population-based cohort studies with prospective 
dementia ascertainment. We also acknowledge limitations. First, the GWASs used for the MR 
analyses have likely predominantly recruited patients with clinically diagnosed AD, thus 
leading to an underrepresentation of patients with mixed dementia, who likely represent the 
majority of AD cases in the population. Second, in our longitudinal analyses, the number of 
incident dementia cases remained modest, with some differences in the methods for dementia 
ascertainment, thus limiting power to detect associations. Third, we considered only one MRI-
marker for cSVD, WMH, for which there is most evidence for an association with dementia 
risk and the strongest genetic instruments. With increasing availability of larger GWAS for 
other MRI-cSVD markers (cerebral microbleeds, lacunes, perivascular spaces) future studies 
concomitantly assessing the impact of various genetically determined MRI-cSVD markers are 
warranted.82-85 Finally, validation of our findings in populations of non-European ancestry, as 
larger datasets become available, will be crucial.  

Conclusions 
In summary, our findings provide converging evidence that WMH is a leading vascular 
contributor to dementia risk and should be targeted in priority for the prevention of cognitive 
decline and dementia in the population. They also support WMH as a relevant surrogate 
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marker for clinical trials testing interventions to prevent dementia by better controlling 
vascular risk.61,86 Our data also prompt caution when interpreting MR studies where the 
outcome of interest is a late-onset disease such as dementia, especially if the instrument for 
the exposure of interest shows a strong association with survival. They highlight the 
importance of combining several complementary epidemiological approaches to compensate 
for respective limitations and of combining different studies, cohorts and biobanks rather than 
drawing definitive conclusions on single datasets to minimize the impact of study-specific 
shortcomings and biases.   
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Figures: 
 
Figure 1: Study workflow 
 

 
 
WMH, White matter hyperintensity burden; BP, Blood pressure (Systolic-SBP, Diastolic-
DBP, Pulse pressure-PP); AD, clinically diagnosed late-onset Alzheimer’s disease; ADmeta, 
combination of parental dementia status and AD; ACD, all-cause-dementia; Fstat, F statistics 
(genetic instrument strength); IVW, Inverse variance weighted; IVs, Instrumental variables; 
RAPS, Robust adjusted profile score; MVMR, Multivariable mendelian randomization; PGS, 
Polygenic profile score; *Association analyses in a subset of  CHARGE cohorts (3C, AGES).  
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Figure 2: Mendelian randomization results of vascular risk factors with ADmeta.  

 
Point estimates and confidence intervals from the inverse-variance weighted (IVW) method 
are shown. WMH White matter hyperintensity burden. SBP systolic blood pressure, DBP 
diastolic blood pressure, PP pulse pressure, RAPS Robust adjusted profile score, W-mode 
Weighted mode, W-median Weighted median. 
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Figure 3: Multivariable Mendelian randomization (MVMR) along with the univariable 
MR for AD as the outcome.  
 

 
 
WMH White matter hyperintensity burden. SBP systolic blood pressure, DBP diastolic blood 
pressure, PP pulse pressure.  
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Figure 4: Forest plot showing the meta-analysis results of risk factor wGRSs (per standard deviation increase) with incident ACD.  
 
 
 
 

 
 
 
 
 
Circle represents the model not adjusted for education level. Triangle represents the model adjusted for education. Square represents the model 
after further adjustment for interim stroke (prevalent stroke excluded). Association p-values are shown on the far right. ACD: all-cause-dementia. 
HUNT: Trøndelag health study, UKB: UK Biobank, RS: Rotterdam study, AGES: Age, Gene/Environment Susceptibility - Reykjavik study, 
EstBB: Estonian Biobank, 3C: Three-city, CHS: Cardiovascular Health Study, FHS: Framingham Heart Study, Knight-ADRC: Alzheimer’s 
Disease Research Centre, EPOZ: Epidemiological Prevention Study of Zoetermeer. 

Study Dementia Controls 
HUNT 3347 66228 

UKB 2033 19825 

RS1 1203 4632 
AGES 978 2937 

EstBB 790 34799 

3C 681 5213 
CHS 424 1661 

FHS 379 3680 

Knight-ADRC 371 975 
MEMENTO 266 1789 

RS2 180 1929 

EPOZ 28 393 
RS3 19 2938 

Total  10699 146999 
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Figure 5: Central role of WMH with dementia outcomes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VaD: Vascular dementia, B: baseline, P(S): probability of survival bias. Thick background arrows indicate inferences made from observational 
studies, and solid coloured lines indicate inferences from univariable Mendelian randomization studies. Orange dots and dashed lines represent 
the multivariable MR setting. 
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