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Abstract

Atomistic modelling of disordered yet textured carbons is notoriously diffi-

cult even though it can prove extremely helpful in rationalizing structure-

property relationships for this class of materials. In this work we introduce

a polygranular image-guided atomistic reconstruction method, which allows

building models with fine-tuned values of the in-plane (La) and out-of-plane

(Lc) coherence lengths, and of the orientation angle (OA). Applying a para-

metric study of grain size and orientation distribution, a database of 210

models is presented with parameters spanning domains characteristic of high

and medium textured pyrolytic carbons: 1.5-8 nm, 2-5.5 nm and 25-110◦,

for Lc , La and OA, respectively. A machine learning model based on a ran-

dom forest regression shows that these three measurable properties can be

accurately predicted from a limited set of microscopic information character-
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izing the distribution of local atomic environments in the models. Finally, the

computed diffraction properties and high-resolution transmission electron mi-

croscopy images of a series of six models, that best match the properties of a

set of well-characterized pyrocarbons, are extensively compared to experimen-

tal data, showing excellent agreement and drastically improving over former

modelling studies on high textured pyrocarbons, in addition to providing the

first atomistic model of a medium textured pyrocarbon.

Keywords: pyrolytic carbon, structure, texture, modelling, machine learning

1. Introduction

Low temperature pyrolytic carbons, or pyrocarbons (pyCs), are dense car-

bon coatings deposited by chemical vapor deposition (CVD) on a surface, or

infiltration (CVI) on the pore surface of a porous material [1, 2]. Conversely

to the formation of soot and blacks, the lower temperatures and pressures

considered during pyC preparation (T ∼ 1000◦C and P ∼ 1-10 kPa), allow

avoiding gas phase carbon nucleation and ensure the deposition of a dense and

relatively homogeneous turbostratic carbon [2, 3]. Owing to their excellent

mechanical and thermal properties, high melting point and low porosity, the

principal application of these materials is as constituents of continuous-fiber

reinforced composite materials: as matrices of C/C composite materials for

thermal protection systems and solid rocket motor parts in spatial applications

[4, 5] or for brakes in aeronautic or terrestrial transport [6, 7], as interphases

in C/SiC materials [8, 9] for the same types of applications [10] or as inter-

phases in SiC/SiC ceramic matrix composites for GenIV nuclear reactors or

nuclear fusion reactors [11–13] . PyCs are also considered as nuclear fuel
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cell coatings, in the tristructural isotropic (TRISO) particle fuel cell of the

high temperature reactor (HTR) technology [14], or around individual carbon

nanotubes for electron emission applications or near field microscopy probes

[15]. Pyrocarbons also have attractive properties when used in Li-ion battery

electrodes [16] or in supercapacitors [17]. Finally, due to their biocompatibil-

ity, pyC monoliths or coatings are also commonly used in medical implants or

prostheses [18, 19].

It has been long-known that pyC can present a wide variety of microstruc-

tures, depending on the gas phase precursor and deposition/infiltration con-

ditions [20–23]. PyC microstructures were first classified according to polar-

ized light optical microscopy (PLOM) observations of growth features [24].

A metric, the extinction angle (Ae) between crossed polars, was used to

characterize the texture anisotropy and three classes of microstructures were

observed, the high anisotropy rough laminar (RL), low anisotropy smooth

laminar (SL), and isotropic (ISO) pyCs [24, 25]. The dark laminar (DL),

intermediate between ISO and SL, was also identified [26].

High-resolution transmission electron microscopy (HRTEM) imaging as

well as selected area electron diffraction (SAED) have improved our under-

standing of pyC nanostructure and texture. Bourrat et al. have proposed a

sub-micrometer metric of the texture anisotropy, the orientation angle (OA)

defined from intensity profiles along the 002 arc in SAED patterns [27]. A

classification of pyC textures, based on both Ae and OA parameters, was

proposed by Reznik and Hüttinger, defining the bounds for isotropic (incl.

ISO), low (incl. DL), medium (incl. SL) and high (incl. RL) textured pyCs
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[28]. Few other pyC types were also identified, namely the granular (G) [29]

and regenerative laminar (ReL) [30] textures. Interestingly, G and ReL pyCs

show similar anisotropy to the SL and RL pyCs, respectively, yet with a few

different features. Especially, the ReL pyC shows a much broader Raman D

band, suggesting a larger amount of structural defects, than the latter, while

conversely, the G pyC presents a thinner D band than the SL pyC [29].

The structure of the different pyCs was investigated using HRTEM and

X-ray diffraction (XRD). As prepared, all these materials show a turbostratic

structure with an interlayer distance (d002) significantly larger than in graphite,

and the absence of the diffraction peaks characterizing 3D order. Diffraction

patterns are generally analyzed in terms of the widths of the 002 peak and

10 band, used to define the in-plane (La) and out-of-plane (Lc) coherence

lengths, which are usually found in the 1-5 nm range for as-prepared pyCs

[31–34]. Analysis of lattice fringe images from HRTEM experiments con-

firmed the nm-scale extent of graphene domains and stacks in pyCs [21, 30],

although such methods cannot be quantitative due to image artifacts like

Moiré patterns or signal superimposition effects, especially for medium or low

textured pyCs. This results in apparent fringe lengths (L2) that are generally

shorter than the coherence length La obtained from XRD[34]. These tech-

niques were also applied to investigate heat-treated pyC samples and have

shown that only high-textured pyCs, both RL and ReL, can graphitize when

taken to temperatures above 2500◦C [1, 31]. Also, pair distribution functions

of the as-prepared RL and SL pyCs [33], and of the ReL pyC as-prepared and

heat-treated at moderate temperatures (up to 1700 K)[34], were determined
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using neutron diffraction, allowing for a more detailed and resolved descrip-

tion of the nanostructure. It was shown that when heat-treated at 1500◦ C

the structure of the ReL pyC is almost identical to the one of the as-prepared

RL pyC [34].

Electron energy loss spectroscopy (EELS) was used to characterize car-

bon hybridization, showing that the materials are essentially constituted of

sp2 hybridized carbons [31, 35]. More precisely, by analyzing the relative in-

tensities of the π∗ and σ∗ peaks, Vallerot et al. determined a fraction of sp2

hybridized carbon atoms of about 80 % for SL, RL and ReL pyCs, the authors

recognizing that the missing 20 % cannot be accounted for by sp3 hybridized

carbon, but more certainly by disordered sp2 environments[31]. These envi-

ronments, and their EELS signature, have been evidenced later in the case of

irradiated graphite using a combination of classical molecular dynamics and

density functional theory predictions of EELS features [36].

Hydrogen content was measured using elastic recoil detection analysis

(ERDA) and/or secondary ion mass spectroscopy (SIMS). Earlier investiga-

tions report values increasing from about 2 at. % for SL pyC to 4 at. % for

RL pyC, the ReL pyC showing an intermediate value [30, 37]. More recent

investigations using the same techniques report values of 0.7 and 1.1 at. %

for the RL and SL pyCs, respectively [33], and a value of 2.5 at. % for the

ReL pyC, decreasing down to a non detectable value after heat treatment at

1300◦C [34].

Modeling the structure of such materials from the atomic scale up to

the nanotexture scale, with a typical representative length scale of 10-100
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nm, is extremely challenging. Common modeling strategies, either based on

introducing defects within crystalline materials [38–40], or on structure re-

construction approaches [41] or quench molecular dynamics simulations [42]

commonly used for extremely disordered or amorphous materials, obviously do

not apply here. About a decade ago, an original modeling approach was de-

veloped to generate realistic atomistic representations of high-textured pyCs

by combining image analysis and synthesis techniques with classical molec-

ular dynamics simulations [43, 44]. In this so-called image-guided atomistic

reconstruction (IGAR) method, grey-level statistics and spatial correlations,

measured on experimental HRTEM images, through a multi-resolution frame-

work, are extended to 3D under an orthotropy condition (i.e. the statistical

equivalence of all directions normal to the pyC deposition axis) and imposed

on a 3D image block. This 3D textured image is then used as an external

potential during a liquid quench MD, bringing the atoms to sit on dark areas

while creating a graphite-like network of bonds.

Following preliminary reports on the methodology[43, 44], atomistic mod-

els were produced for a series of well-characterized pyCs – including as-

prepared RL and ReL pyCs, as well as a series of heat-treated ReL PyC at

1300, 1500 and 1700◦C [34] – and validated against experimental HRTEM

(fringe and orientation statistics) and diffraction (coherence lengths, struc-

ture factors and pair distribution functions) data. It was shown that those

materials count from 96 to 98 % of sp2 hybridized C atoms, the remain-

ing being mostly sp3, and a few sp, atoms. These atoms are arranged as

stacks of faulted graphene layers, especially, the intra-sheet structure is made
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of misoriented nanometric graphenic domains connected by grain boundaries

made of pentagonal and heptagonal rings, in analogy with those found in

CVD graphene [45, 46]. While some edges may be saturated by hydrogen

atoms, the H content being very low with respect to La [30], the majority of

graphene edges are interconnected to neighboring domains via a disordered

network of screw dislocation dipoles - the so-called “car park access ramp”

arrangement [44] - where most sp3 and sp hybridized carbon atoms reside.

These IGAR pyC models were used to investigate elastic properties [47] and

rationalize indentation measurements by identifying the mechanisms under-

lying out-of-plane deformations under in-plane compressive loads, and their

effects on the apparent indentation modulus [48]. IGAR pyC models were

also used to investigate the behavior SiC/pyC interphases under shear [49].

Despite significant success, the applicability of the IGAR method remains

limited and has not allowed yet to propose a detailed structure/property re-

lationship for pyrocarbons. First, even though IGAR models have shown to

be extremely accurate in predicting pair distribution functions (i.e. the real

space distribution of interatomic distances), these models were shown to sig-

nificantly underestimate stacking order, as manifested by the underestimation

of the Lc parameter obtained from the 002 peak in Fourier space [34]. We

note that higher-order peaks, like 004, were barely visible on the predicted

structure factors. A more fundamental limitation is that existing experimen-

tal data on pyCs are rather scarce, which clearly limits the number of models

that can be reconstructed, noting that for each model, the IGAR approach

requires a high quality HRTEM image and accurate estimations of the H con-
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tent and density. Furthermore, by construction, only high-textured pyCs can

be modeled due to the 3D image construction strategy, which basically limits

its applicability to RL and ReL pyCs. Finally, establishing a well-informed

structure/property relationship would require to properly discriminate the ef-

fects of the important structural and/or textural parameters like La, Lc and

OA on the considered properties. However, as pointed out earlier [34, 47],

these properties are often correlated in actual pyCs.

In this work, we propose a variant of the IGAR method in which textured

image blocks are constructed using a priori defined grains. This polygranular

image-guided atomistic reconstruction (PG-IGAR) method is used to build a

large database of atomistic models with a parametric sampling of the La, Lc

and OA parameters. This database is then analysed using a machine learning

(ML) model to derive correlations between these parameters, measurable us-

ing diffraction data, and the distribution of local atomic environments and of

ring structures present in the models. Finally, a set of models, matching best

a series of experimental data on actual pyCs, is identified and their structure

and texture are compared to their experimental counterparts.

2. Methods

2.1. Atomistic reconstruction

A schematic of the PG-IGAR process is presented in Fig. 1. After defin-

ing the volume of the simulation cell and the target values of the La and

Lc parameters, a Voronoï tesselation with periodic boundary conditions (Fig.

1a) is created to accomodate nG grains with average volume VG = πL2aLc/4,
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where, in agreement with the common definition of the structural parame-

ters [50], we assume that La and Lc correspond to the diameter and height,

respectively, of a cylindrical crystallite. For the sake of simplicity, prescribed

values of La and Lc are set to be equal in this work, since grain orientations,

defining the a and c directions in the grains, are defined at a later stage.

Therefore, a unique parameter Lt =
(
4VG
π

) 1
3 , where subscript t refers to the

“target” value, is used to define the average grain size in textured images.

Figure 1: Principle of the PG-IGAR method. (a) 3D Voronoï tesselation with average

grain size VG . (b) Same image after decorating each grain with perfect 002 fringes and a

statistical distribution of grain orientations according to OAt . (c) 3D atomistic model after

a liquid quench MD guided by the image in (b). The represented case, containing 38 grains,

corresponds to a cube of 12.4 nm width with imposed Lt = 4 nm and OAt = 30◦. In (c)

atoms in graphene-like and defect environments appear in blue and orange, respectively.

In the texture mapping step, illustrated in Fig. 1b, each grain is decorated

with a 3D HRTEM-like pattern, corresponding to perfectly flat 2D fringes with

a stacking periodicity given by d002. Assuming that the z (vertical) axis defines

the growth direction of the pyC layer, such that the xy (horizontal) plane is

parallel to the fiber or substrate surface, the 002 direction in each grain can
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be defined using two angles: a polar angle θ defining the angle between the

002 direction and the z axis, and an azimuthal angle ϕ, defining the angle

between the projection of the 002 direction in the xy plane and the x axis.

In a purely isotropic state, ϕ would be uniformly distributed in [0 : 2π] and

cos(θ) in [0 : 1]. However, in textured pyCs, a certain degree of preferential

orientation is observed towards an alignment of the 002 direction parallel to

the z axis. Therefore, while a uniform distribution of ϕ was adopted, the

distribution of cos(θ) had to be biased to match prescribed OAt values. To

achieve this, for each grain, a random number q was drawn from a normal

distribution centered on 0 and with standard deviation equal to 1-cos(σθ)

where σθ = OAt/2.355 (note that the division by 2.355 correspond to the

conversion of the FWHM into standard deviation for a normal distribution).

Then, the value of cos(θ) was obtained as 1 -∥q∥. Examples of obtained

distributions for various OAt values are given in Fig. S1.

The 3D textured image is then filtered by applying a radial and directional

filter in order to obtain smoother transitions at grain boundaries. Therefore,

the filter performs in the Fourier domain and is defined by its band-pass

transfer function:

H(ρ, θ) = Hradial(ρ)Hangular(θ) (1)

whereHradial(ρ) = 1
σρ
√
2π
exp(− (ρ−ρ0)

2

2σ2ρ
) andHangular(θ) = 1

σθ
√
2π
exp(− (θ−θ0)

2

2σ2θ
).

Parameters (ρ, θ) are the polar frequency coordinates in the Fourier domain

with ρ0 = 1
d002

corresponding to the interlayer spacing and σρ = αρ0 is de-

fined from ρ0 with α ∈ ]0, 1[. Hradial(ρ) performs a Gaussian filtering around

ρ = ρ0 reducing high and low frequencies artifacts while preserving d002 fringes
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whatever their orientation.

The angular filter Hangular(θ) aims at preserving patterns which are oriented

around a reference orientation θ0 that fits the preferential orientation in the

image. The parameter θ0 is found by looking for the largest magnitude peak in

the Fourier transform modulus, yet by construction remains ∼ 0. Hangular(θ)

also performs a Gaussian filtering centered on θ0 with a standard deviation

of σ0. Typical values α = 0.5 and σ0 = 50◦ have proved to be a good com-

promise between artifact removal and structural preservation for anisotropic

pyrolitic carbons. Note that angular filtering is only applied to high textured

images (OAt < 50 degrees) in order to prevent the apparition of unwanted

artificial structures in less anisotropic images.

In the third step, as was done in former IGAR work [34, 43, 44], carbon in

the liquid state is progressively cooled down to room temperature under the

influence of an image potential UIm =
∑N
i=1 kimI(ri), where N is the number

of atoms, I(ri) is the grey level of the textured image at position ri of atom i

and kim is the proportionality factor between grey level and energy. After the

quench, the resulting atomistic model with prescribed structure and texture

is relaxed at room temperature and pressure in the absence of any external

potential (Fig. 1c).

All the PG-IGAR simulations reported in this work use a cubic cell of

12.4 nm width with periodic boundary conditions. 3D image templates of

1024×1024×1024 voxels are used, giving a resolution of ∼ 0.012 nm per

voxel. Texture mapping is performed using a constant d002 value of 0.345

nm, a typical value for low temperature pyCs [33, 34]. The carbon atom
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density, constant during the reconstructions, is set to d = 2.16 g/cm3, which

corresponds well to experimental data for high textured pyCs [34], yet may

be slightly larger than those measured for medium textured pyCs like the

SL pyC[33]. This results in systems composed of 206, 950 atoms for the

considered volume. Finally, for the sake of simplicity, hydrogen, which can

count for up to 2.5 at. % in the worst case scenario of the as prepared ReL

PyC, is neglected in this work.

A total of 210 pyC models were constructed by varying two parameters

in the textured image synthesis – the grain size Lt and the width of the

orientation distribution OAt – and the quenching scheme in the MD process,

defined here by the total quench time τQ. Note that quench rates, which

vary during simulations, have been adjusted with respect to the evolution of

the average potential energy with temperature, as prescribed in former work

[34]. The five quench schemes used in this work are detailed in Fig. S2

and have total quench time values τQ of 0.5, 1.5, 4.0, 4.4 and 8.4 ns. For

comparison, the IGAR reconstructions in Ref. 34 used a quench with τQ =

3.23 ns. Regarding the structural and textural parameters, the database was

constructed based on two sets of simulations. In the first one, OAt is fixed

at 30◦ and Lt varies in the in the 1-8 nm range by step of 0.5 nm. In the

second set, OAt varies from 10◦ to 100◦ by steps of 10◦, excluding the case

OAt = 30◦, for three fixed values of Lt : 2, 4 and 6 nm.

The image-guided quench is performed with the same in-house code as in

former studies [34, 36, 43, 44]. In these simulations, interatomic interactions

are described by the second-generation reactive empirical bond order potential
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(REBO2) [51]. The image potential at every atomic position is computed by

trilinear interpolation using the eight closest data points in the 3D textured

images (i.e. the eight vertices of the enclosing voxel) and applying a conver-

sion factor kim = 4 eV. Newtonian equations of motions are integrated with a

velocity-Verlet integrator [52] using a time step of 0.25 fs. The system tem-

perature, imposed through the stochastic thermostat proposed by Andersen

[53], is progressively decreased from an initial value of 8000 K down to 0 K,

with a minimal quench rate operating around the carbon melting point (see

Fig. S2 for details). The collision frequency of the thermostat is set to 4 ×

1012 s−1.

The initial atomistic configuration, common to all reconstructions, has

been prepared as follows. First, a 24 × 24 × 23 replication of the 16 atoms

graphite orthorhombic unit cell was rescaled to a cubic box at the suited

volume, and a number of atoms were removed to match the suited density.

Then this configuration has been equilibrated for 2 ns at 8000 K, using MD

in the NVT ensemble, with the LCBOPII potential [54] implemented in the

STAMP code [55]. Melting was quickly observed in the simulation and the

well-equilibrated liquid configuration obtained at the end of the 2 ns was se-

lected as initial configuration for the IGAR quench simulations. The LCBOPII

potential, improving over earlier empirical potential by including both medium-

range and long-range (i.e. van der Waals) interactions, was selected because

it provides a good description of carbon phases in both liquid [56] and solid

[57–59] states. Recent work has also shown that it is one of the most suitable

potentials to investigate elastic properties at high and ultra-high temperatures
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[60], which will be the purpose of future investigations.

After the reconstruction, this code and potential are used to relax the

atomistic models using MD in the NPT ensemble at 300 K and 1 atm, in the

absence of image potential. These simulations also use a velocity Verlet inte-

grator with the same time step as in the IGAR quench (0.25 fs). Temperature

(both NVT and NPT) and pressure (NPT) are controlled with Nosé-Hoover

style thermostat and barostat [61, 62], operated with damping constants of

0.1 and 1 ps for temperature and pressure, respectively. Note that the baro-

stat acts independently on the three cell lengths to fix the three diagonal

elements of the pressure tensor to the set value. Relaxations are run for 2

ns, amongst which the last 200 ps are used to determine equilibrium proper-

ties such as density, enthalpy as well as structural and textural properties, as

described below.

2.2. Structural analysis

Standard, single configuration coordination analysis is performed on the

reconstructed models. As in former studies [34, 36, 63], a 1.85 Å cutoff

distance is used to determine the network of covalent bonds and determine

bond statistics. This allows determining atoms forming bonds with two, three

and four neighbors, named as C2, C3 and C4 atoms, respectively and generally

associated to sp, sp2 and sp3 hybridized carbon atoms, even though some C2

atoms could also correspond to sp2 radicals. Then, an analysis of the ring

structure is performed on the subset of C3 atoms (i.e. sp2) using the “short-

est path ring” algorithm proposed by Franzblau [64], yielding ring statistics.

Coordination and ring structure data are finally used to identify six different
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atom types depending on their local environment, as proposed in Ref. 36

and then redefined in Ref. 63. In this classification, the C3 atoms are split

into four categories: Cα3 corresponds to sp2 atoms involved in three hexag-

onal rings; Cβ3 are sp2 atoms involved in three rings, including at least one

non-hexagonal ring; Cδ3 are sp2 atoms bonded to at least one C4 (sp3) atom;

and Cγ3 are sp2 atoms bonded to at least one C2 (sp) atom.

MD trajectories of the relaxed models were also analyzed to characterize

structural properties. First, the atomic pair distribution function is computed

for each model:

g(r) =
1

4πr 2ρN

N∑
i=1

N∑
j ̸=i

δ(r − ri j) (2)

where N is the number of atoms, ρ the total number density (N/V ) and where

δ(r − ri j) = 1 when carbon atoms i and j are distant by r and 0 otherwise.

The total reduced pair distribution function G(r) = 4πrρ[g(r) − 1] can be

Fourier transformed to produce the structure factor:

S(Q) = 1 +
1

Q

∫ rmax

0

G(r) sin (Qr)dr (3)

where rmax is set to 6 nm (i.e. ∼ half the simulation cell width).

The structural parameters Lc , La and d002 are extracted from S(Q) accord-

ing to the following procedure. First, structure factors are converted from Q

space to 2θ space according to the relation Q = 4π sin(θ)
λ

where λ = 1.542 Å is

taken as the X-Ray Cu Kα wavelength. As in former works [33, 34], the 002

peak is fitted with a pseudo-Voigt function and the d002 and Lc parameters are

obtained from the peak position and width at half maximum, using Bragg’s
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law and Scherrer’s relation, respectively. The 2θ domain of the 10 band and

004 peak is adjusted with the sum of a skewed Gaussian (10) and a Pearson

VII function (004). La is then obtained from the width at half maximum of

the fitted 10 band using Warren’s relation: La = 1.77λ/(βcosθ), where β is

the width of the peak and θ its position.

In the last section of this paper, these data are compared to experimen-

tal data, including structural parameters obtained from XRD, and G(r) and

S(Q) data obtained from Neutron diffraction [33, 34]. While the computed

data can be directly compared to XRD data, S(Q) data derived from neu-

tron diffraction are subject to an important experimental broadening. This

artifact needs to be accounted for in the computed S(Q) and G(r) for quanti-

tative comparison[34]. The neutron-corrected structure factor SN(Q) is thus

obtained as :

SN(Q) =
1

σ
√
2π

∫ Qmax

0

S(Q) exp−
(
(Q− q)2

2σ2

)
dq (4)

where σ = (σ2instru − σ2rmax)
1
2 is the broadening parameter accounting for the

instrumental broadening σinstru and subtracting the artificial broadening σrmax

due to the finite r range in the computed S(Q). The first term σinstru is given

by a 6th order polynomial: σinstru = −13.33× 10−9 Q6 + 788.8× 10−9 Q5 −

10.4× 10−6 Q4 − 24.31× 10−6 Q3 + 8.756× 10−3 Q2 − 62.51× 10−3 Q+

239.8×10−3. Evaluations of S(Q) using various rmax values have shown that

σrmax =
3
rmax

provides a good estimation of the truncation broadening. Finally,

the neutron-corrected pair distribution function GN(r) is given by the inverse
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Fourier transform of SN(Q):

GN(r) =
2

π

∫ Qmax

0

Q
[
SN(Q)− 1

]
sin (Qr)dQ (5)

where Qmax is set to 23.5 Å−1[34].

2.3. Textural analysis

HRTEM image simulation is performed on every reconstructed model with

two main purposes: i) determine the orientation angle (OA) corresponding to

the models, and ii) determine quantitative HRTEM image descriptors that can

be compared to experimental data. All the image simulations are performed

with Dr Probe [65]. Standard microscope parameters are used [33, 34]: 300

kV voltage, 1.2 and 1.5 mm spherical and chromatic aberration, respectively,

-58 nm Scherzer defocus and 7 mm defocus.

A fast Fourier transform (FFT) is first performed on the simulated HRTEM

image to obtain its spectrum. Then, 40 circular intensity profiles with splines

are performed on a ring of thickness r . The limits of the ring rmin and rmax

are given by the extremums of the 002 arcs present on the pattern. These

40 circular profiles are then subsequently averaged into a "master" intensity

profile curve, over which OA is determined as the full width at half maximum

(FWHM) of this profile, using a gaussian fit (see Fig. S3).

Simulated HRTEM images are also analyzed in terms of fringe lengths,

tortuosities and orientations. As in former works, an iso-grey level curve

tracking algorithm [66] allows retrieving lattice fringes in HRTEM images

and computing statistics on their length L2 and tortuosity τ , the latter be-
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ing defined as the ratio of their curvilinear length L2 over their end-to-end

Euclidean distance. Orientation statistics are drawn following the procedure

described in [67]. Local orientation is defined at any pixel of an image as the

direction of the iso-grey level curve (the direction a in the case of graphite

single crystal). Local orientations are computed using convolutional opera-

tors based on differential geometry [68] and regularized using the standard

structure tensor technique, which provides at every pixel u both an orientation

estimate θu and its confidence index ηu. The latter are finally processed to

produce the Rotation Invariant Mean Orientation Difference RIMOD(r,Ψ),

i.e. the average orientation deviance between two pixels located at a given

distance r and relative angle Ψ from each other:

RIMOD(r,Ψ) =
1∑

u ηuηu+δu

∑
u

ηuηu+δu|θu+δu − θu| (6)

with δu = (r cos(θu +Ψ), r sin(θu +Ψ)). In such a local coordinate system,

Ψ = 0◦ and 90◦ respectively correspond to the a and c directions. RIMOD

can differentiate between longitudinal (i.e., along the fringes, Ψ = 0◦) and

transverse (i.e., across the fringes, Ψ = 90◦) coherence losses. It has also

shown to be a good indicator as how coherence vanishes with distance, e.g.

[47, 67]. An interesting feature is the value of the plateau βMOD reached

by RIMOD(r,Ψ) when r → ∞, βMOD being interpreted as the long-term

orientation deviance within the HRTEM image.
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2.4. Machine Learning model

A random forest regressor (RFR) [69] is a non-parametric machine learn-

ing (ML) algorithm used for predicting a specific property given a set of input

features commonly called descriptors. An RFR generates a large number of

decision trees, each trained on a random subset of descriptors, and combines

their predictions to produce a final output. This combination of individual

predictions from multiple trees helps reducing overfitting and improves the

accuracy of the model. In other words, given a set x of descriptors, the final

predicted properties y are averaged over the individual intermediate predic-

tions yi:

y(x) =
1

Nt

Nt∑
i=1

yi(x) (7)

with Nt the total number of decision trees. In the present case, the struc-

tural/textural properties (Lc , La, OA) of reconstructed pyrocarbons are pre-

dicted while statistics on local atomic environments (Cα,β,γ,δ3 , C2, C4) and

ring structures (R5, R6, R7) play the role of input features.

The entire dataset was split into two (training 70% and testing 30%)

sub-datasets in order to assess the predictive capability of the model and

two metrics were used for quantifying the error of the prediction, e.g. the

Root Mean Squared Error (RMSE) and the coefficient of determination (R2),

widely used together with ML techniques. When dealing with small databases,

RFR has the advantage of possessing very few parameters such as the number

of decision trees Nt , their depth Dt and their minimum number of samples

N leafsamples. These parameters were set to 100, 15 and 5 respectively, and the

RFR implementation of the sklearn Python library [70] was used.
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3. Results

3.1. Testing the PG-IGAR method

Although grain sizes and orientations are prescribed during the textured

image construction, there is no guarantee that a one-to-one correspondence

exists between the structural and textural parameters computed from the

reconstructed models and these simulation inputs. We discuss this point in

this section by considering how input parameters and quench time actually

impact the computed La, Lc and OA parameters.
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Figure 2: Structure factors S(Q) of the PG-IGAR models reconstructed using OAt = 30◦,

τQ = 4.0 ns and grain sizes ranging from 1 (dark-red) to 8 (dark-blue) nm, by steps of 0.5

nm.

Fig. 2 shows the evolution of the computed S(Q) with increasing grain

size at fixed OA (30◦) and τQ (4.0 ns). We observe a significant increase of

the 002 and 004 peaks with increasing grain size from 1 to 8 nm, indicat-

ing an increase in the “out-of-plane” organization. However, although some

increasing trend is also observed for the 10 band, the latter is much more
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moderate than for 002 and 004, indicating a more limited increase in the “in-

plane” order. Oscillations also appear for the models with the largest grain

sizes. This corresponds to an expected truncation effect for models in which

stacking order exceeds the distance cutoff rmax (6 nm) used in the Fourier

transform of G(r).
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Figure 3: Evolution of (a) Lc and (b) La with imposed grain size (Lt) obtained at various

quench rates at fixed OAt = 30◦.

Computed values of Lc and La at fixed OAt = 30◦ and various quench

rates are presented as a function of Lt in Figure 3. We observe that the

computed Lc value is always close to the imposed grain size Lt , regardless

of the quench rate (Fig. 3a), showing that Lc is easily parameterized in the

PG-IGAR method. Although, looking more closely, computed Lc are slightly
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larger than Lt , typically by ∼ 0.5 nm, for low values of Lt , and then slightly

lower, by 0.5 to 2 nm and with some dependence on quench rate, at Lt = 8

nm.

The correlation between computed La and Lt is less clear, as shown in Fig.

3b. First, although La does increase with Lt , we observe that La is significantly

larger than Lt at short Lt , and lower at large Lt . Furthermore, we observe that

La stongly increases with quench time τQ in the investigated range. These

observations can be easily rationalized by considering that increasing τQ leads

to a thermodynamic stabilization of the graphenic domains by increasing the

fraction of hexagonal ring, and decreasing the fraction of non-hexagonal rings,

in the models [46]. Therefore, we can assume that with the considered τQ,

the system does not have enough time to build graphene domains as large

as 8 nm and thus possess intragranular boundaries and point defects. To

support this statement, we add that in Ref. 46 hexagonal domains no larger

than 3-5 nm were obtained using a similar quench scheme for a perfectly flat

monolayer. Conversely, for low Lt , hexagonal domains can extend through

neighboring grains provided that the latter have a similar orientation, which

is often the case at OAt = 30◦.
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Figure 4: Evolution of the computed OA as a function of the target value OAt for different

quench times and Lt = 2 (a), 4 (b) and 6 (c) nm.

Figure 4 presents a comparison of the computed orientation angle (OA)

and the imposed orientation angle (OAt) for various grain sizes and quench

times. The PG-IGAR method is largely successful in imposing OA and there

is no significant dependence of the results on quench time. However, a no-

ticeable deviation is always present at low OAt , typically below 30 degrees,

where the computed OA values surpass the corresponding OAt values. To

investigate the source of this behavior, the OA values corresponding to 2D

projection images of textured image blocks constructed with various OAt were

computed and a similar behavior was observed (Fig. S4). This suggests that

the behavior originates from the construction of the HRTEM signal, which

is 2D in nature and is not related to the atomic aspect of the reconstruc-

tion. Additionally, while OA and OAt show similar values for small grains

at large OAt , computed OAs tend to be lower than OAts for large grains

for OAt > 70◦. We show in Fig. S4 that this deviation occurs during the

(post-reconstruction) relaxation of the models.
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Figure 5: Evolution of computed coherence lengths Lc (a,c,e) and La (b,d,f) as a function

of the computed OA for target grain sizes Lt = 2 (a,b), 4 (c,d) and 6 (e,f) nm, and different

quench times τQ. Lt values are indicated with grey solid lines for clarity.

Fig. 5 shows the effect of OA on the obtained values of the structural

parameters for a few values of the target grain size, namely 2, 4 and 6

nm. The dependence of both Lc and La on OA is obvious. Whatever the

quench rate, both Lc and La decrease with incrasing OA for a given target

grain size. In the case of Lc , computed values are always larger than Lt at

low OA, and seems to converge towards it at large OA. The only exception

to this behavior is observed for the largest grain size and shorter τQ (Fig.

5), which clearly relates to a convergence issue (quench time effect) of the

reconstructed model. These observations indicate that stacking coherence

easily extends to neighboring grains in high textured (low OA) materials. As

mentioned above, the convergence of La with quench time is generally not
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Figure 6: Distribution of (a) Lc , (b) La, (c) OA, (d) d002 and (e) ρ, in the database.

achieved in our reconstructions, especially for large grain sizes. Yet, looking at

the case Lt = 2 nm (Fig. 5d), for which data seem converged with respect to

τQ for τQ ≥ 4 ns, we see that La behaves as Lc , namely that it is significantly

larger than Lt for low OA and should converge towards Lt as OA increases

towards isotropy. No clear conclusion can be inferred from the data at Lt = 4

nm (Fig. 5e) and 6 nm (Fig. 5f), because of the magnitude of quench time

effects.

3.2. Presentation of the database

Fig. 6 shows the distributions of some important measurable properties

within the database, namely Lc , La, OA, d002 and ρ. As shown in Fig. 6a,

computed Lc span values ranging from ∼ 2 to 7.5 nm, with distinct peaks in

the distribution at 2, 4 and 6 nm, corresponding well to the distribution of

input Lt in the reconstructions. As discussed above, La values are less directly
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related to Lt and the distribution is slightly narrower, 2 to 5 nm, and uniform,

with a peak around 3.5 nm (Fig. 6b). As for Lc , the distribution of OA (Fig.

6c) showing a broad range of values from 20 to 110◦, with a strong peak

around 30◦, also well reflects the distribution of OAt .

Interlayer spacing d002 ranges from 0.340 to 0.354 nm with a maximum

distribution at 0.345 nm (Fig. 6d) while density ranges from 2.12 to 2.21

g/cm3, with a maximum distribution at 2.19 g/cm3 (Fig. 6e). It is inter-

esting to note that the covered domains for Lc La and OA are considerably

larger than the ones covered by the previously reported IGAR models[34], es-

pecially for Lc and OA. Also, the d002 values of the PG-IGAR models is well

centered around the target (experimental) value whereas IGAR models were

significantly overestimating this quantity (i.e. values in the 0.353 to 0.366

nm).
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Figure 7: Evolution with La of the average interlayer spacing d002 and density ρ restricted to
models having OA in the 20-40 ◦ range. Data have been block-averaged by subsets of data
having a 0.5 nm La spread.

Fig. 7 shows the values of d002 and ρ as a function of La for the subset

of models having OA values in the 20-40◦range. While all the models were

reconstructed with the same input values, namely d002 = 0.345 nm and ρ =
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2.16 g/cm3, we see that both parameters show a significant depencency on

La after relaxation. As expected, with increasing La, d002 decreases and ρ

increases towards the values expected for graphite, even though remaining in

the common ranges for turbostratic carbons.

Snapshots of some selected models are shown in Fig. 8 to better illustrate

the variability in the structure and texture within the database. Models shown

in Fig. 8a-c have similar OA (35-39◦) and La (2.3-3.0 nm) but show an

increasing value of Lc from 2.6 to 6.6 nm. Fig. 8d-f have similar Lc (6.1-7.7

nm) and OA (25-28◦) but increasing La, from 3.1 to 5.4 nm. Finally, models

in Fig. 8g-i have close values of Lc (2.1-2.5 nm) and La (2.7-2.9 nm) but

increasing OA from 35 to 98◦. It is obvious that models with small La and Lc ,

and large OA, like the model in Fig. 8i have more defect than those with large

La and Lc and small OA as in Fig. 8f. We also note that models in Fig. 8d-f

have been obtained with the same textured image, yet with different quench

times, leading to very different La values.

The distributions of the different atom types in the database are shown in

Figure 9. Overall, the most encountered atom type is Cα3 , corresponding to

graphene-like environments, which shows a skewed distribution in the 40-88 %

range, with a peak at 80 %. The second most encountered atom type is Cβ3 ,

which corresponds to threefold (sp2) atoms involved in non-hexagonal rings,

counting from 10-45 %, then follow threefold atoms bonded to fourfold, Cγ3 ,

from 0.5 to 9 %, and threefold atoms bonded to twofold atoms, Cδ3, from

0.5 to 2.8 %. Fourfold (sp3), C4, and twofold, C2, atoms are also present,

yet in low amounts: 0.1-2.5 % and 0.2-2 %, for C4 and C2, respectively.
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Figure 8: Snapshots of one nm thick cross-sections of PG-IGAR models of increasing (a-
c) Lc , (d-f) La and (g-i) OA, the other parameters remaining ∼ constant. Blue: bonds
between C6 (graphene-like) atoms; orange: other (defect) bonds; red spheres: C4 atoms;
green spheres: C2 atoms. Detailed {Lc , La, OA} triplets read (a): {2.6, 2.3, 36}, (b):
{5.0, 2.7, 35}, (c): {6.6, 3.0, 39}, (d): {6.1, 3.1, 25}, (e): {7.1, 4.4, 28}, (f) {7.7, 5.4,
25}, (g): {2.5, 2.9, 35}, (h): {2.4, 2.8, 58} and (i): {2.1, 2.7, 98}.
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Figure 9: Distribution of the different atom types within the database sorted from (a) to (f)
by relative weight. (a): Cα3 , (b): Cβ3 , (c): Cγ3 , (d): Cδ3, (e): C4, (f): C2. Contributions of
models with small (red), medium (blue) and large (green) La are stacked from bottom to
top, respectively.
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As shown in Fig. 9, there is a marked correlation between the atom type

distributions and the La parameter. Especially we observe that the percentage

of Cα3 atoms increases with La while the percentage of Cβ3 atoms decreases,

which is consistent with the fact that Cα3 atoms form the coherent domains

(or grains) that contribute to La, and Cβ3 their grain boundaries and point

defects (Stone-Wales, etc.). We also observe that the percentages of the

four other atom types decrease with increasing La, indicating that fourfold

and twofold atoms are mostly present at the edges of graphene domains, as

free edges (C2) or interlayer cross-links (C4), as can be visually perceived on

the snapshots in Fig. 8 and discussed in former investigations [34, 44].

Atom type distributions similar to Fig. 9 yet colored according to Lc and

OA are given in Fig. S5 and S6, respectively. The correlation between atom

types and Lc is very similar to the one with La as these parameters are quite

correlated in the database. Regarding OA, we observe a strong correlation

with the amounts of Cβ3 Cγ3 , Cδ3, C4 and C2, all increasing with increasing

OA. This indicates that domain boundaries, which are sharper at large OA,

contain a higher density of defect atom types than at low OA (see also Fig.

8g-i).

The distributions of hexagonal (R6), pentagonal (R5) and heptagonal (R7)

rings are shown in Fig. 10. As expected the ring content is dominated by

hexagons (82-96 %), which, following the distribution of Cα3 , increases with

increasing La. Pentagons and heptagons are found in even amounts over the

database (i.e. from 2 to 8 %), which is expected in grain boundaries or planar

point defects [45, 46].
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3.3. Machine learning model

Here, we aim at connecting the structural/textural parameters La, Lc , OA

to the distributions of local atomic environments and ring statistics using the

RFR model applied to the database detailed above. In the first place, the en-

tire set of descriptor is used to predict La, Lc and OA and the corresponding

correlation graphs are presented in Figure 11. Excellent agreement is obtained
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Figure 11: RFR predictions of (a) Lc , (b) La and (c) OA. Red and blue squares correspond
to the predictions in the training and test sets, respectively. The diagonal black lines indicate
the equality between actual and predicted features, as a guide to the eye.

for both structural and textural parameters and the RMSE/R2 scores for both

training and testing datasets are reported on the graphs. A common practice
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while using RFR consists in investigating the sensitivity of the prediction to

the descriptors. In other words, one can find the features that are the most

correlated to the predicted properties in order to reduce the features space,

even though in the present case its dimension is rather small. Such strategy

was applied to the database and the prediction results are displayed in Fig-

ure 12. It is found that La can be predicted from the fractions of Cα3 and Cβ3
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Figure 12: RFR predictions of (a) Lc , (b) La and (c) OA using reduced feature sets. Only
the validation set is displayed. Considered features are (a) C2 and Cδ3, (b) Cα3 and Cβ3 , (c)
Cγ3 , Cδ3, C4 and C2.

atoms while considering only C2 and Cδ3 atoms allows for a good reproduction

of Lc . However, prediction of the textural parameter OA, requires more input

features, namely Cγ3 , Cδ3, C4 and C2 atoms. An almost equivalent accuracy

is obtained for the predictions of La and OA in comparison with the initial

model. On the other hand, the reduced features model leads to a slightly

larger error for the prediction of Lc , yet remaining acceptable. It is noted

that some values of R2 are actually higher for the optimized model, meaning

that some features were acting as noise and bias in the original RFR model.
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3.4. Comparison with actual pyCs

We compare in table 1 the properties of six selected PG-IGAR models to

the actual experimental properties measured for six pyC samples – including

SL, RL and ReL pyCs as prepared and the ReL pyC sample after heat treat-

ment at 1300 (ReL1300), 1500 (ReL1500) and 1700◦C (ReL1700) – from which

the properties have been reported in former work[33, 34]. The models were

selected among the 210 models database as those minimizing the following

error metric:

derr =
1

3

(
|Lc − Lec |
Lec

+
|La − Lea|
Lea

+
|OA−OAe |
OAe

)
(8)

where Lc , La and OA are the calculated structural and textural parameters

and Lec , Lea and OAe the corresponding experimental data. Note that d002 and

ρ data, given in table 1 and showing little variations for most models, are not

considered in the model selection procedure.

Table 1: Comparison of experimental and computed structural, textural and density data.
Lc , La and d002 are given in nm, OA in degrees and ρ in g/cm3. The error metric derr defined
in Eq. 8 is given in %. Experimental data are taken from Weisbecker et al. [33] for the SL
pyC and Farbos et al. [34] for RL and ReL pyCs (including heat treated samples). Estimated
error bars on the experimental data are of 0.1 nm, 0.3 nm and 5◦, 0.001 nm and 0.02 g/cm3

for Lc , La, OA, d002 and ρ, respectively [34].

Experiments Models
pyC Lc La OA d002 ρ Lc La OA d002 ρ derr
SL 2.6 3.3 68 0.345 1.93 2.3 3.3 67 0.342 2.17 4.9
RL 5.2 4.6 22 0.345 2.12 5.5 4.6 29 0.346 2.18 13.3
ReL 2.9 2.6 40 0.346 2.11 2.9 2.3 36 0.347 2.13 7.0
ReL1300 3.8 3.1 43 0.347 2.16 3.9 3.3 37 0.349 2.15 7.7
ReL1500 6.3 4.1 30 0.345 2.18 6.1 4.1 32 0.346 2.18 3.5
ReL1700 13.3 6.2 27 0.343 2.18 7.6 5.2 27 0.345 2.19 20.0
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The computed error functions derr ranges from 3.5 to 20 %, and most

values of the considered parameters (Lc , La and OA) are actually within the

error bars from the experimental data. A noticeable exception is the case

of the ReL1700 pyC, whose large value of derr (20 %) arises from a strong

underestimation of Lc (7.6 against 13.3 nm). We note that in this case,

the experimental value is larger than the considered simulation cell (12.4 nm

wide) and therefore cannot be captured in such a model. Computed values

of the interlayer distance, d002 are also very close to experimental data, for all

models, and the evolution of this quantity with heat treatment for the ReL

pyC is also in good agreement with experiments. The evolution with heat

treatment of the density of the ReL pyC is also well accounted for by the

models. However, density is overestimated for the RL and SL pyC models,

certainly because of the use of a rather large density in the PG-IGAR quench

simulation (2.16 g/cm3). Also, the experimental density of the SL pyC, 1.93

g/cm3, suggests the presence of some closed porosity in this material, which

would require a special treatment to be accounted for in the model.

The simulated neutron weighted structure factors (SN(Q)) and pair dis-

tribution functions (rGN(r)) of the six selected models are compared to the

corresponding experimental data in Fig. 13a and 13b, respectively. Overall,

we observe a good agreement between the models and experiments for both

SN(Q) and rGN(r). Especially, the evolution of peak intensities between the

different materials is well reproduced in the computed SN(Q), as is the devel-

opment of long-range correlations in rGN(r). While real-space (GN(r)) data

were already relatively-well reproduced by former IGAR high-textured pyC
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Figure 13: Comparison of experimental (dashed black lines) and calculated (straight colored
lines) neutron weighted (a) structure factors SN(Q) and (b) reduced pair distribution func-
tions rGN(r). Characteristic turbostratic carbon 3D peaks and 2D bands are indicated with
grey vertical dashed lines in (a).

models[34], the PG-IGAR models clearly improve over the latter regarding

the reproduction of stacking order in SN(Q). As can be seen in Fig. 13a, the

locations and intensities of the 002, 004, as well as the emergence of the 006

peak for the 1700◦C heat treated ReL pyC, are extremely well reproduced by

the PG-IGAR models, while these features were considerably underestimated

in the IGAR models (a comparison of the experimental, IGAR and PG-IGAR

SN(Q) and rGN(r) is given in Fig. S7 for the RL and ReL pyCs).
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Table 2: HRTEM image properties of actual pyC samples and their corresponding PG-IGAR

models.

Experiments Models

pyC L2 (nm) τ βMOD (◦) L2 (nm) τ βMOD (◦)

SL 0.33 1.0088 39.3 0.50 1.0044 16.5

RL 0.72 1.0033 8.6 1.67 1.0034 6.9

ReL 0.61 1.0032 10.1 0.92 1.0040 9.3

ReL1300 0.63 1.0030 10.6 1.15 1.0039 8.7

ReL1500 0.80 1.0029 8.2 1.47 1.0037 7.5

ReL1700 1.10 1.0027 7.3 1.87 1.0035 6.8

Some real space analyses of simulated and experimental HRTEM images,

including the average fringe length L2, tortuosity τ and the plateau value

βMOD of the rotationally invariant mean orientation difference (RIMOD) are

given in table 2. RIMOD plots as a function of distance and local orientation

are given in Fig. S8 in the supporting information. HRTEM images and their

orientation images from both experiments and simulation are also given for

the six materials in Fig. S9. Although quantitative differences exist between

the fringe properties extracted from simulated and experimental images, with

simulated L2 and τ values being slightly larger than experimental ones, as

was already observed in Ref. 34 with the IGAR Models, some qualitative

agreement can be observed. In both sets of data, the SL pyC presents the

shortest and more tortuous fringes while the ReL1700 pyC has the longest and

less tortuous fringes. Amongst the ReL pyC and its heat treated samples,

we observe that, overall, L2 increases and τ decreases with increasing heat

treatment temperature. In both data sets (i.e. experimental and simulation
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data), the RL pyC shows similar values to those observed for the ReL pyC

heat treated at ∼ 1500◦C.

Regarding βMOD values, characterizing the average disorientation between

coherent orientation domains in the HTREM images, we observe a good

agreement, both qualitative and quantitative, between experimental and sim-

ulation data. All high-textured pyCs have βMOD values in the 6-11◦ range,

with data from simulated images being ∼ one degree lower than those from

experimental images. The medium texured pyC (SL) has considerably larger

values, 39.3◦ and 16.5◦ for the experimental and simulation data, respectively.

Note that the reported experimental value for the SL pyC was taken as the

value of RIMOD at 6.2 nm, which is the largest distance that can be consid-

ered for the simulated images (which are periodic with a width of 12.4 nm).

Yet, at this distance RIMOD has not yet reached a plateau in the SL pyC

image (see Fig. S8), which indicates that orientations are correlated up to a

much larger distance in this material, despite La and Lc values of ∼ 3 nm.

Finally, even though no experimental data exists, to our knowledge, regard-

ing the energetics of pyCs, the calculated enthalpies of the six pyC models,

given in table S1, indicate an increase in stability following the order SL <

ReL < ReL1300 < ReL1500 < RL < ReL1700.

4. Conclusion

In this report we have introduced a new atomistic reconstruction tech-

nique, the PG-IGAR method, that uses texture mapping on a Voronoï tesse-

lation to drive a liquid quench towards the formation of dense nanotextured
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carbon models. Unlike its predecessor, the IGAR method, which was requiring

a complex treatment of experimental HRTEM images, the PG-IGAR method

is considerably simpler, as it requires very limited inputs, namely target values

of grain size (Lt), distribution of orientations (OAt), interlayer spacing (d002)

and density (ρ). We have shown in a first step that some parameters like

the Lc and OA parameters, measurable from X-ray and electron diffraction

experiments, are easily controlled in the reconstruction. Conversely, the La

parameter, also measurable using XRD, is slightly more difficult to fine-tune,

as it depends on the quench time τQ and can be strongly coupled to OA.

Applying this method by varying independently three reconstruction pa-

rameters Lt , OAt and τQ, we have built a large database of atomistic models

with values of the Lc , La and OA parameters covering the domains char-

acteristic of low temperature (i.e. ≤ 1700◦C) high and medium textured

pyrocarbons. These allow us identifying some interesting correlation between

measurable parameters like the fact that d002 and ρ respectively decreases

and increases with increasing La in high textured pyCs.

The models were then analyzed in terms of the different local atomic

environments which were also correlated to the measurable (diffraction) pa-

rameters. It was shown that the proportions of atoms in graphene-like envi-

ronments (Cα3 ) increase with La while those of the other atom types, corre-

sponding to defects, decrease. Atoms in non-hexagonal sp2 rings (Cβ3) were

attributed to in-plane grain boundaries and point defects while sp, or sp2 radi-

cal, (C2) and sp3 (C4) atoms were attributed to graphene edges and extended

cross-links (screw dislocations), respectively.
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A machine learning engine was proposed to predict structural and textural

parameters from the distribution of such local atomic environments and it

was shown that Lc can be accurately predicted from the proportions of C2

and Cδ3 where the latter are sp2 atoms bonded to C2, La from the proportions

of Cα3 and Cβ3 , and OA from the proportions of Cγ3 (i.e. sp2 atoms bonded to

C4), Cδ3, C4 and C2 atoms.

Then the six models that best match the Lc , La and OA values measured

for an experimental database of six pyCs were extensively compared to exper-

imental data. It was shown that the models give an excellent reproduction

of all the properties of the five high textured pyCs, including Lc , La, OA,

d002 and ρ values that were found in better agreement than those obtained

with the former IGAR models. This is especially the case of the Lc param-

eter that was significantly underestimated with the IGAR models. Neutron

diffraction structure factors and pair distribution were found in almost perfect

agreement with experimental data, including again the out-of plane diffraction

peaks position and width for all models.

Also, the PG-IGAR has allowed us to produce, for the first time, a model

of the smooth laminar (medium-textured) pyC, with the same accuracy as the

one discussed above for most properties. The only exception is the density of

the reconstructed SL pyC model, ∼ 12 % too large. This indicates that this

material comprises some, probably closed, micropores, that should be explic-

itly included in the reconstruction. Another future refinement should be the

inclusion of hydrogen (0 - 2.5 at. %), which could be achieved as in former

works with the IGAR method [34]. Eventually, a quantitative comparison of
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experimental and simulated HRTEM images was presented for the six materi-

als. The agreement between experiments and simulations on such properties

was found as good as the one obtained with the IGAR method, in which

HRTEM images properties were used as inputs, validating the superiority of

the PG-IGAR method.

Compared to the earlier IGAR method, PG-IGAR indeed appears more

straightforward, as discussed above, more versatile, as it can be applied to

any level of texture, and more accurate, as out-of-plane diffraction properties

are accurately captured. Another clear advantage is that it allows constructing

models of any prescribed nanotexture, existing or not, which can be a clear

advantage in building structure (or texture)-property relationships for this

class of materials.
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