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A B S T R A C T   

This study presents an inverse modeling strategy for organic contaminant source localization. The approach 
infers the hydraulic conductivity field, the dispersivity, and the source zone location. Beginning with initial 
observed data of contaminant concentration and hydraulic head, the method follows an iterative strategy of 
adding new observations and revising the source location estimate. Non-linear optimization using the Gauss- 
Levenberg-Marquardt Algorithm (PEST++) is tested at a real contaminated site. Then a limited number of 
drilling locations are added, with their positions guided by the Data Worth analysis capabilities of PYEMU. The 
first phase of PEST++, with PYEMU guidance, followed by addition of monitoring wells provided an initial 
source location and identified four additional drilling locations. The second phase confirmed the source location, 
but the estimated hydraulic conductivity field and the Darcy flux were too far from the measured values. The 
mismatch led to a revised conceptual site model that included two distinct zones, each with a plume emanating 
from a separate source. A third inverse modelling phase was conducted with the revised site conceptual model. 
Finally, the source location was compared to results from a Geoprobe@ MiHPT campaign and historical records, 
confirming both source locations. By merging measurement and modeling in a coupled, iterative framework, two 
contaminant sources were located through only two drilling campaigns while also reforming the conceptual 
model of the site.   

1. Introduction 

The location of contaminated groundwater plumes remains one of 
the most difficult challenges in contaminant hydrogeology. This task is 
challenging predominantly due to geologic heterogeneity and uncer
tainty regarding pollution sources (Atmadja and Bagtzoglou, 2001). 
Well defined site characteristics (geology and hydrogeology) can facil
itate source location, as shown by the success of High-Resolution Site 
Characterization (HRSC) methods (Barber et al., 2014; McCall et al., 
2014; McCall et al., 2017; Meyer et al. 2008; Rosenberg et al. 2021). 
These strategies and techniques use scale-appropriate measurement and 
sample density to define contaminant distributions and the physical 
context of the area with better certainty, supporting faster and more 
effective site cleanup. This work has been advanced considerably by the 
capabilities of Geoprobe© MiHPT, to sample the subsurface more 
rapidly and with higher resolution than standard drilling techniques. 
However, although is the direct-push technique can be less expensive 

than drilling in many situations, it still represents a large cost for site 
remediation. Clearly, there are great advantages to use methods that can 
reduce the number of samples needed by strategically placing them in 
locations that carry important information regarding the plume 
location. 

Over the past 30 years, groundwater flow and pollutant transport 
models have been coupled with inversion methods for source identifi
cation (Gorelick et al., 1983; Wagner, 1992; Michalak and Kitanidis, 
2004a; Bashi-Azghadi, et al., 2016). Many methods have been tested on 
synthetic cases, generally relying on concentration data. These methods, 
compiled in Table 1 and described in more detail in Essouayed et al. 
(2020), can be classified as: nonlinear optimization; geostatistical; or 
backward simulation (Bagtzoglou and Atmadja 2005). Unfortunately, 
few of the proposed methods have been tested on real cases and because 
of their dependence on knowledge of the hydraulic parameters, or as
sumptions of homogeneity, they may not be applicable on real sites. A 
recent exception to this is the study by Hwang et al. (2020) who applied 

Abbreviations: GLMA, (Gauss Levenberg Marquardt Algorithm); DW, (data worth); SVD, (Singular Value Decomposition); RMSE, (Root-Mean-Square-Error); N- 
RMSE, (Normalized-Root-Mean-Square-Error. 
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a backward transport approach (Neuman et al. 2012) to a real site where 
the hydraulic conductivity field is supposed to be know precisely. 
However, as generally the K field has a large uncertainty this approach 
may indicate a wrong source position at most of the field sites. Another 
field test has been successful but it required both concentrations and 
time-lapse electrical resistivity tomography of a tracer injection (Tso 
et al. 2020). As a result, it is still an outstanding challenge to locate 
contaminant sources in realistic heterogeneous conditions, with unkown 
K field, while also minimising sample collection cost. 

In practice, an approach with a high computational burden may not 
be used, even if it could reduce monitoring costs. Therefore, for appli
cations to contaminant transport on real sites, which may require many 
model runs to account for significant uncertainty, there can be real ad
vantages to employ a parsimonious approach, such as the Gauss- 
Levenberg-Marquardt-Algorithm method (GLMA). Essouayed et al. 
(2020) presented the use of GLMA to identify jointly the source location, 
and the hydraulic and transport properties. However, this study only 
considered synthetic cases, as a proof of concept of the approach for sites 
with heterogeneous, unknown values of hydraulic conductivity (K), 
transverse dispersivity (αT), and source location for a continuous 
pollutant release. 

The major objective of this study is to locate a contaminant source at 
a real contaminated site using a new method (Essouayed et al. 2020). To 
our knowledge, it is the first example of application of an iterative 
searching strategy at a real site. Due to the site specificities the potential 
source position is mainly varying along a direction perpendicular to 
flow. The site has a chlorinated ethenes plume, but the location of the 
source is uncertain. Very few observations were available at the begin
ning of the study. The method was tested on a synthetic case study in a 
previous publication (Essouayed et al. 2020), The present study aims to 
extend that work by:  

- testing if the method can be applied at a real site; 

- determining, for this site, how many drilling campaigns are neces
sary to reach a precise source location;  

- analysing the results to see if the estimated parameters, especially 
the hydraulic conductivity field, are consistent with site knowledge; 
and  

- verifying at the end of the study if the estimated source location was 
consistent with other information 

This last point is key to the study and may seem surprising. In most 
field studies, historical data and direct-push are used early in the 
investigation. But our objective was to test the ability of the localization 
method. Therefore, we withheld this information from the investigators 
and used it for verification. 

Data worth (DW) analysis was used to optimize the location of new 
measurements to support source location. Data worth analysis cycle to 
optimize the data collection has been studied widely in hydrogeology 
(Freeze et al., 1992; James and Freeze,1993; James and Gorelick, 1994; 
Fu and Gómez-Hernández, 2009; Gates and Kisiel, 1974; Maddock, 
1973; Dausman et al., 2010; Hill et al., 2013). In this study, PYEMU 
(White et al., 2016) is used for measurement optimization. DW and data 
collection are conducted in an iterative framework: new observations 
are identified; then the conceptual and numerical models are updated; 
and the DW is repeated, as necessary. Final testing of the source location 
is based on comparison with measurements collected after the analyses, 
namely Geoprobe© MiHPT profiles and detailed historical positions of 
potential sources. 

2. Material and methods 

2.1. Site context 

2.1.1. General information 
The site is located on an industrial park active since 1970 s. Several 

investigations were carried out on the site but the area for this investi
gation has not been studied before. The site is polluted by chlorinated 
ethenes due to historical tanks potentially present inside the building 
(TCE used for machines degreasing). The source location approach is 
focused on the zone presented in Fig. 1 with a potential chlorinated 
ethenes source located below the FF building (a conceptual model is 
presented in fig. S1 of the supporting information). Before the present 
study, four monitoring wells of 18–20 m depth were present within the 

Table 1 
Existing approaches with their characteristics (Hm: homogeneous, Ht: hetero
geneous, K : known, U : unknown).  

Method References Kfield  αL  Source  

Linear Optimization Gorelick et al. (1983) Hm/K K Transient 
Non-linear 

Optimization 
Wagner (1992) Hm/K K Continuous 
Mahar and Datta (1997) Hm/K K Continuous 
Mahar and Datta (2000) Hm/K K Transient 
Sun et al. (2006) Hm/K K Transient 
Datta et al. (2009) Hm/U K Transient 
Cao et al. (2019)* Ht*/K K Transient 
Zhang et al. (2015) Ht/K K Transient 
Bashi-Azghadi et al. 
(2016) 

Ht/U K Transient 

Hybrid method Aral et al. (2001) Ht/K K Transient 
Singh et al. (2004) Hm/K K Transient 
Ayvaz (2016) Ht/K K Transient 
Xu and Gómez-Hernández 
(2016) 

Ht/K K Transient  

Xu and Gómez-Hernández 
(2018) 

Ht/U K Transient 

Geostatistical 
method 

Snodgrass and Kitanidis 
(1997) 

Hm/K K Transient 

Michalak and Kitanidis, 
(2004a) 

Ht/U K Transient 

Gzyl, et al. (2014) Ht/U K Transient 
Butera et al. (2013) Ht/K K Transient 

Backward 
simulation 

Bagtzoglou et al. (1992) Ht/K K Transient 
Neupauer and Wilson 
(1999; 2005) 

Ht/U K Transient 

Michalak and Kitanidis 
(2004b) 

Ht/ 
Hm/K 

K Transient 

Cupola et al. 2015) Hm/K K Transient  
Hwang et al. (2020) Hm/K  Transient 

*: in the Cao et al. (2019), K value is known at sampling points and several 
extension of zones of equal values around these points are tested. 

Fig. 1. Map of the industrial site and location of the potentially contaminated 
building (FF) and the potential contaminated area. At the beginning of this 
study, 4 monitoring wells are available (P23, P29, P30, P32). Blue arrows 
indicate the potential flow direction estimated from regional flow. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

E. Essouayed et al.                                                                                                                                                                                                                              



Journal of Hydrology X 13 (2021) 100111

3

zone of investigation (P29, P32, P23 and P30 in Fig. 1). 

2.1.2. Geology and hydrogeology 
The site is located on a quaternary alluvial formation overlapped on 

the Upper Cenomanian formation and in the Glauconius Clay of the 
Lower Cenomanian formation. The main geological facies are:  

- filling materials from 0 to 3.5 m deep;  
- alluvial formation composed of sand, silex and silty sand from 3.5 to 

7 m deep;  
- orange-brown coarse sand from 7 to 18 m deep (Upper Cenomanian 

formation); 
- compact grey clay from 18 to 22 m deep (Upper Cenomanian for

mation); and 
- sand from 22 to 30 m deep delineated on the bottom by the Glau

conius Clay (Lower Cenomanian formation). 

The Cenomanian formation is located in the orange-brown coarse 
sand from 7 m below ground level (bgl). This layer is 23 m thick and is 
delineated on the bottom by the Glauconius Clay (lower Cenomanian 
formation). However, based on the presence of a compact grey clay 
located at 18 m bgl in piezometer logs available over the whole site, the 
Cenomaian formation is in fact divided into two aquifers; an upper 
aquifer with a thickness of 11 m (7–18 m) and a shallow aquifer (22–30 
m). That means, that the clay layer limits the movement of the pollutant 
plume to the shallow aquifer. No chlorinated ethenes concentrations 
were found in the few piezometers lying in the lower aquifer. No in
formation are available about a potential sorption of solvents on top of 
the clay layer. The general groundwater flow direction is from the 
North-East to the South-West 

2.2. Site flow and transport model 

To cover the area of interest while being able to assign well-defined 
boundary conditions far from the plume, the domain used for the model 
extends 980 m in x and 880 m in y (Fig. 3), with 5 m thickness. Water 
head measurements in existing wells did not show significant vertical 
gradients, so flow was simulated using a two-dimensional plan view 
model. Groundwater samples obtained at different depth in the aquifer 
show small vertical gradient (see fig. S2), suggesting that transport could 
also be simulated with a 2D approach. To limit computational effort 
while minimizing impacts on the accuracy of the source location, a 
variable grid size was used. Specifically, the area of interest (potential 
contaminated area and monitoring wells in Fig. 1), corresponding to 
building FF, has a finer grid with a mesh size of 5 × 2 m. The rest of the 
model has a larger mesh of 20 × 10 m. Flow was modeled with Mod
flow2005 (Harbaugh 2005). 

Monitoring was conducted from July 2017 to August 2018 on P29 
and P23 to estimate piezometric temporal variations. The results 

showed minimum temporal variations in hydraulic head, allowing for 
the flow system to be represented as steady state. It was found that after 
a simulation period of 1400 days, there were no further changes in 
contaminant concentration within the domain, allowing the plume to be 
modeled as steady state. 

The natural limits represented by a nearby watercourse are located 
more than 1 km from the site (downstream and upstream). The 
boundary conditions were defined based on the water levels measured in 
the monitoring wells located at the downstream and upstream limits of 
the site (44.10 m in the North-East and 42.20 m in the South-West, 
Fig. 3). The other boundaries are considered to be coincident with 
flowlines, represented as no flow boundaries. 

2.3. Source location strategy 

The global strategy is based on an iterative approach to minimise 
uncertainties at each source location phase. This strategy is well suited 
to real-world application, as it can be initiated with observations in only 
a small number of wells in the plume and then expanded with one or two 
additional sampling campaigns. The Fig. 2 shows a schematic repre
sentation of the strategy. One cycle corresponds to one run of the source 
location algorithm (GLMA using PEST++ software) and addition of new 
observations to provide new hydraulic heads (H) and concentrations (C). 
For each cycle, the method provides estimated parameters (K field, αL 
and the source position) including uncertainties on these parameters. 
The position of the pollution source along the Y-axis, is defined as Ys. 
The Y axis, aligned with the building’s major direction, makes an angle 
of approximately 30◦ with the head contours, and is thus the building is 
oriented nearly perpendicular to the flow direction, which makes the Y 
axis a good candidate to segregate the source position. Uncertainties 
linked to Ys are analysed through a DW analysis to identify new drilling 
locations that are most likely to provide reliable information regarding 
the source location. In this paper one iteration consists of new drillings, 
concentrations measurements, GLMA run to estimate the parameters 
and data worth to find the points for the next iteration. 

2.4. GLMA approach 

GLMA, implemented through PEST (Doherty, 2015), adjusts selected 
parameters to reduce the gap between observed and simulated data. In 
the present study, the adjustable parameters are hydraulic conductivity 
(K) field (obtained through kriging with pilot points), the longitudinal 
coordinate of the source (Ys), and the transverse dispersivity (αT). as the Fig. 2. General diagram of the global approach.  

Fig. 3. Initial piezometric map manually drawn in the domain from the 11 
wells presented. Model boundary conditions are shown as solid lines for no flow 
and dashed lines for fixed heads (heads given in the figure).. 
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present work is on a steady plume, the concentrations may vary much 
more along the Y axis than the X one. This is why it was assumed, as a 
first step, that the position variation occurred along the Y axis. The 
number of unknowns (K field and transport parameters) is larger than 
the number of observations. Therefore, to obtain a stable solution for 
this under-determined system, Tikhonov regularisation and Singular 
Value Decomposition (Tonkin and Doherty, 2005) are applied here. 

The global approach (Fig. 2) composed of two steps:  

(i) an initial optimization to estimate the pilot point parameters for 
the K field by simulating only the hydraulic head data (H) ;  

(ii) a second optimization to estimate all of the parameters based on 
fitting both the hydraulic head (H) and concentration data (C). 
The values of the pilot points estimated in Step 1 are not updated 
in this step. 

The values of K and αL were log10 transformed to stabilize the 
variation among parameters and the observations were square root 
transformed to increase the weight on low concentration values in the 
global objective function. Further details about the parameter settings 
are given in Essouayed et al. (2020). 

2.5. Data worth analysis cycle 

The prediction of interest is Ys (y coordinate of the source). Existing 
data are represented by the contaminant concentration in each cell of 
the domain once the simulation is completed. Determining the sensi
tivity of each parameter to the simulated data through GLMA allows 
consideration of all of the potential sampling locations in the domain 
that reduce the uncertainty on the prediction of interest (the source 
position). 

Vilhelmsen and Ferré (2018) define the DW as follows: 

DW =
σ2

dec

σ2
base

(1) 

where σ2
dec and is the variance of the prediction of interest after 

adding data and σ2
base the variance value of the prediction of interest on 

the existing data at the beginning of the analysis. DW varies between 
0 and 1. For the optimization method, assessment of adding new ob
servations is realised with PyEMU (White et al., 2016). With the Jaco
bian matrix, PyEMU computes the variance σ2

dec associated with each 
point (each cell of the model). Then, (1 − DW) is calculated to identify 
zones within which new observations are most likely to reduce the un
certainty of Ys. 

Several authors detail the approach for a large number of additional 
wells (e.g. Xue et al. 2014), however, in practice, it is not feasible to 
conduct a DW analysis for each new well; it is much more economically 
reasonable to expect that multiple wells will be sited and contracted 
together. For this study, the number of additional observations after 
each iteration has been set to three. A first point (p1) is chosen in the 
zone where (1 − DW) is the highest. Essouayed et al. (2020) developed a 
geostatistical approach to selected 2nd and 3rd points. Directional var
iograms are calculated based on the concentration field (with the 
simulated plume from GLMA) with the variogram parameters estimated. 
These parameters are used to construct an ellipse P(xP, yP, rx, ry)
centered on the first selected additional observation. The dimensions of 
the ellipse, rx and ry, correspond to 2/3 of the corresponding range of 
the two directional variograms (Doherty, 2010). It is assumed that 
additional measurements within this ellipse will be too highly correlated 
with p1. As such, the second point, p2, is identified as the zone where 
(1 − DW) is highest outside of this ellipse around p1. Similarly, p3 is 
identified as the zone where (1 − DW) is the highest outside of ellipses 
around p1 and p2. 

2.6. Site parametrization 

To represent the site heterogeneity, 95 pilot points were regularly 
distributed on a relatively loose grid outside the area of interest and with 
a higher density inside. Kriging with a spherical type variogram and a 
range of 100 m, and a zero nugget, was chosen to interpolate the hy
draulic conductivity among the pilot points. 

The parameterization scheme for GMLA for source location is 
implemented in the same way as in Essouayed et al. (2020), including 
the hydraulic conductivities represented by the pilot points, K, the Ys 
coordinate of the source, and the dispersivity, αT (see Table 2). As the 
ratio αT / αL is kept constant (0.1), varying αL leads to a proportional 
variation of αT which has the major influence on the plume concentra
tions. The Xs coordinate is considered fixed given the limited informa
tion available in the building and the low impact of this parameter on 
the location of the source. 

TCE and cis-DCE are the two main chlorinated ethenes present in the 
aquifer. As at the site no VC was found it is supposed that cis-DCE 
degradation does not occur the TCE + cis-DCE sum can thus be 
considered as a tracer. In the intial stage a few model runs were done to 
estimate a potential concentration in the source which reached a fixed 
concentration of 75 µmol.L-1, This is a point source, i.e. its width equal 
the cell width or 2 m here. The concentration value will be calibrated in 
the last iteration when enough data will be available. Due to the low 
concentrations the model only includes dissolved phase transport. 
Sorption was neglected as the model is run until steady state. The 
simulation was done with MT3DMS using the TVD scheme for 
advection. 

3. Results 

3.1. Iteration 1 

3.1.1. Initial state 
Because of the small number of existing wells (only 4), a first drilling 

campaign was conducted before applying the presented approach, 
adding piezometers F1, F2, and F3. Limited existing information in this 
area meant that it was possible that there could be a source beneath the 
building. Initial wells were added to test this possibility. The piezometric 
map using these points is given in Fig. 3, showing a global flow direction 
from North-East to South-West. 

The measured contaminant concentrations around the FF building 
are shown on Table 3 and Fig. 4 as the molar sum of TCE + cis-DCE. Due 

Table 2 
Parameters of the GLMA approach used for the site (transformation, increment 
type and value of the increment refer to the regularization method provided in 
PEST manual (Doherty 2010).  

GROUP OF PARAMETERS 
K number of pilot points 95  

Variogram range (m) 100  
min - max (m/d) 0.5–450  
Transformation log  
Increment type relative  
Value of the increment 0.01 

αT  min - max (m) 0.05–1  
Transformation log  
Increment type relative  
Value of the increment 0.01 

Ys  min - max (m) 400–710  
Transformation None  
Increment type absolute  
Value of the increment 1 

OBSERVATION GROUPS 
H Number 12  

Transformation Square root 
C Number 6  

Transformation Square root  
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to limited access to the building, water sampling at P30 was not possible. 
The highest concentration (17 µmol L-1) was measured at P29, a moni
toring well located a priori in the upstream part of the plume. F3, F2 and 
P32 appear to be located in the middle of the plume with similar con
centrations (2–3 µmol L-1). At the downstream site boundary, P23 pre
sents the lowest measured concentration (1.46 µmol L-1). 

3.1.2. Glma 
An initial model was constructed to loosely mimic the measured 

hydraulic head by a first GLMA optimization. This first step allows the 
model to have initial value for the Kpp, used for the second step of 
optimization. Then, the GLMA optimization based on the measured 
concentration and hydraulic head was conducted, leading to an esti
mated source position at Ys = 642 ± 14 m and a dispersivity of 0.5 ±
0.13 m. The estimated steady state plume based on the best fit parameter 
values is presented in Fig. 5. The Root-Mean-Square-Error (RMSE) be
tween simulated and observed data for hydraulic head (H) and con
centration (C) are 0.06 m and 1.2 μmol L-1, respectively. For Iteration 1, 
the coefficients of variation (Normalized RMSE) were 5% and 7.9% for H 
and C, respectively (Fig. S3). This indicated acceptable calibration based 
on the preselected limits of 5% for H and 10% for C. The number of PEST 
iteration steps for the flow fitting is generally between 5 and 10 to reach 
stabilization but this step is quite fast however. For the transport runs 
the number of PEST iterations to estimate the K field and dispersivity 
was limited to 30 due to computation time. For the present model, this 
leads to approximately 2 days of calculations on a 20 core machine. 

3.1.3. Data worth analysis cycle 
The Data worth (DW) analysis was conducted within the plume area. 

A total of 8720 points (each cell of the model in this area) were added to 
create the Ys uncertainty map. Similar to the strategy shown in 
Essouayed et al. (2020), two directional variograms were determined 
from the simulated concentrations following Iteration 1. The ellipses 
centered on already sampled points have dimensions equal to the var
iogram ranges, i.e. of 130 m in the x-direction and 55 m in the y- 
direction. 

Inaccessible areas (e.g. beneath buildings) were eliminated from 
consideration. Piezometer F7 was chosen because it is located in an 
accessible zone where the uncertainty is the highest (yellow and red 
zones in Fig. 6a). When identifying the second sampling location, points 
within an exclusion ellipse around F7 were disqualified. The highest (1- 
DW) areas in consideration are located northeast of this ellipse. Strictly 
following the DW protocol would have required that the point with the 
highest (1-DW) should have been chosen. However, in keeping with the 
practical nature of this study, an existing piezometer (P30) which could 
not be sampled during the Iteration 1 and that was located in a 
comparably high (1-DW) zone, was selected to minimize cost. An ellipse 
around P30 covers the areas of highest (1-DW). The location with the 
highest value outside of the first two ellipses is F6. Because an existing 
unsampled well was used, it was decided to add a fourth sampling 
location. The accessible areas presenting the highest (1-DW) outside of 

Table 3 
Concentrations of chlorinated ethenes in Iteration 1 (It1) and Iteration 2 (It2) from May to September.   

cis-DCE (µg L-1) TCE (µg L-1) Σ (µmol L-1)        

May         
(It1) Aug. Sept        
(It2) May         
(It1) Aug. Sept        
(It2) May         
(It1) Aug. Sept        
(It2)          
P29 392 111 351 1728 1550 870  17.24  12.98  10.26 
P32 39 28 34.5 292 250 111  2.6  2.2  1.2 
P30 – 21 15 – 899 883  –  7.08  6.9 
P23 12 <5 <5 175 29 33  1.46  0.22  0.25 
F1 18.9 14.46 <5 243 92 82.58  2.05  0.85  0.63 
F2 <5 <5 <5 356 384 505  2.72  2.94  3.86 
F3 <5 <5 10 395 374 152  3.02  2.86  1.26 
F5 – <5 <5 – 1433 1120  –  8.65  8.55 
F6 – <5 <5 – 150.3 133  –  1.15  1.01 
F7 – <5 2201 – 57.65 145  –  7.67  23.8  

Fig. 4. spatial distribution of the sum of TCE + cis-DCE expressed in µmol L-1 in 
Iteration 1. 

Fig. 5. Location of the source after the GLMA in Iteration 1. The contour 
presents the concentrations on the plume using the best estimate of the source 
position (given here as Ys) and dispersivity. 
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the three ellipses around the first three sampling points led to the choice 
of F5 as the fourth sampling location. 

3.2. Iteration 2 

3.2.1. Initial state 
Iteration 2 sampling was conducted on September 2018 (one month 

after drilling) in 10 piezometers (F1, F2, F3, F5, F6, F7, P30, P29, P32 

and P23). The results of the chlorinated ethenes concentrations mea
surements are presented in Table 3. Fig. 7 summarizes the concentra
tions measured at the beginning of Iteration 2. The maximum combined 
molar concentration (23.80 µmol L-1) was observed in F7. It appears that 
F6 (1.01 µmol L-1) is not affected by the plume. It can be seen that F6 is 
surrounded by locations (F7, F5, and F2) that show evidence of 
contamination, but are farther downgradient than F6. 

3.2.2. GLMA 
Following Iteration 1, the inferred values were: Ys = 642 ± 14 m and 

αL = 4.97 ± 1.27 m. Optimization based on all of the observations (15 for 
H and 10 for C), results in a source allocation of Ys = 634 ± 3.66 m and a 
dispersivity αT of 0.51 ± 0.11 m (Fig. 8b). The RMSE of H and C are 0.08 
m and 2.5 μmol L-1 (NRMSE - H = 5% and NRMSE - C = 11%), respec
tively (Fig. S3). This represents considerable reduction in the uncer
tainty of both parameters. 

3.2.3. Data worth analysis cycle 
The reduction in uncertainty following each iteration can also be 

seen in the DW maps. Comparing the area covered by high (1-DW) 
values after Iteration 1 (Fig. 6) and Iteration 2 (Fig. 6b) shows both a 
relocation of the areas likely to provide additional information as well as 
a reduction in the high (1-DW) area. 

Fig. 6. Distribution of the Ys uncertainty (1-DW) in the modeled area. (a) 
Uncertainties calculated in Iteration 1 with a source located at a Ys = 642 m. 
The data worth map allows the location of the future monitoring wells (P30, F7, 
F6 and F5) and the corresponding exclusion ellipses (dashed white lines). (b) 
Uncertainties calculated in Iteration 2 with a source located at a Ys = 634 m 
thanks to the new observations. In addition, observe that uncertainties in 
Iteration 2 are lower than in Iteration 1. 

Fig. 7. spatial distribution of the molar sum of chlorinated ethenes measured in 
Iteration 2. Color linked to concentrations. 

Fig. 8. (a) Spatial distribution of the hydraulic conductivity at the end of 
Iteration 2 (in log10(m d-1). The anomaly found is framed in blue. (b) Location 
of the source and plume simulated in Iteration 2. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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3.3. Iteration 3 

3.3.1. Initial state – Iteration 3 
Hydrogeologic investigations are commonly data-limited. As a 

result, it is common to collect data that lead to hydrologic ‘surprises’ 
(Bredehoeft, 2005) as the example in Iteration 2. The sequential nature 
of the proposed approach encourages an investigator to reanalyse data 
as they are collected and to use the updated analysis to plan additional 
data collection. Indeed, K field estimated by the GMLA model following 
Iteration 2 indicates areas of very low K at the edge of the FF building 
(Fig. 8). However, this low K feature is likely an anomaly that does not 
represent the real context of the geology and soil found at the site 
(coarse sand and no impermeable foundation present close to the FF 
building at such depth). In addition, the Darcy fluxes measured (inte
grated over the representative depth) using the Direct Velocity Tool 
(Essouayed et al., 2019) in the field do not agree with the velocities 
obtained by the model (blue points in Fig. S4). This additional infor
mation made it possible to evaluate the origins of the uncertainties 
encountered in Iteration 2 for source location. 

Based on the poor agreement between the inferred K field and 
knowledge of the site geology, on the disagreement between the model- 
derived Darcy fluxes obtained and field measurements, it must be 
considered that the conceptual model of the site was inadequate. Spe
cifically, it was decided to test an alternative model that proposes the 
existence of a second source zone. In this case, the results suggested that 
an acceptable model could not be formed based on a single contaminant 
source. However, as with many real-world investigations, data had 
already been collected. Therefore, the first step was to assess the pos
sibility of there being more than one source based on the data gathered 
in Iteration 2. 

During the field investigations, measurements of pollutant concen
trations and Darcy fluxes in the monitoring wells close to the FF building 
were conducted using the DVT (Essouayed et al., 2019). This made it 
possible to evaluate the contaminant mass fluxes passing through each 
piezometer (Fig. 9a), giving additional information on the plume 
dynamics. 

F3 and F6 wells show quite small fluxes, which suggest that a plume 
is not crossing this region. Moreover, well F5 contains the highest TCE 
concentration but no DCE (Fig. 9b), suggesting that it is not possible that 
the water sampled at this point came from the north (F6 and F7). Such a 
TCE concentration, with the observed low fluxes zone along F3 and F6, 
would however be consistent with the presence of a second TCE plume 
in the south. Two separate plumes are shown as color-filled elliptical 
areas on Fig. 9a. The results shown on Fig. 9b suggest that the northern 
plume represents degradation of TCE to cis-DCE close to the source, as 
cis-DCE is present over the whole zone, whereas the southern plume is 
entirely composed of TCE. 

3.3.2. GLMA – Iteration 3 
In order to integrate this new conceptual model, two sources were 

manually included in the numerical model. One source was placed at 
Ys1  = 620 m with a concentration of 50 μmol L-1 and a second one Ys2 
= 522 m with an initial source concentration of 40 μmol L-1. Transverse 
dispersivity was considered to be known with a value of 0.51 m, esti
mated during the previous GMLA analysis. The pilot points were cali
brated approximately before optimization began. Then, the GMLA 
optimization was done and the results show: (i) a first source, Ys1, at a 
distance equal to 624 ± 8 m and a concentration of 72 μmol L-1 and (ii) a 
second source, Ys2, at a distance equal to 533 ± 6 m and a concentration 
of 17 μmol.L-1 (Fig. 10b). The RMSE values are equal to 0.08 m (NRMSE 
= 4.6%) and 1.9 μmol.L-1 (NRMSE = 8%) for H and C, respectively. The 
source in the North impacts piezometers F7, P29 and F3 and a source in 
the South impacts F2, F5 and F1. 

As part of this analysis, a new K field was inferred. This new K field 
shows much better agreement with the site geological characteristics, 
with smoother spatial variations of logK and the absence of long and 

straight lines (Fig. 10a). The possible rapid degradation of TCE to cis- 
DCE in the north plume has been validated through reactive transport 
modelling (not presented here). Owing to the small amount of data on 
the possible reducing area and the degradation rates we considered that 
it was not possible to include the reactive model inside the source 
localization approach, it would have carried too many uncertainty. The 
reactive transport model was just used to verify that the K field and 
source position were compatible with the observed cis-DCE/TCE ratio 
(no Vinyl Chloride or Ethene found) at observation points. In addition, 
the simulated Darcy fluxes are much closer to the measured values than 
those inferred following the Iteration 2 analysis based on a conceptual 
model of a single source (red points in Fig. S4). 

3.4. Validation 

Independently from the source location approach, two strategies 
were adopted to estimate the source positions: 

First, a classical historical review of the storage and main use of 
chlorinated ethenes in the factory was conducted. This allowed to 
delineate areas in the factory that were most likely to have been 
contaminated (Fig. 11). The vertical rectangle (oriented south to north) 

Fig. 9. (a) Distribution of chlorinated ethenes mass flux, the dashed zones 
represent a potential zone of similar mass fluxes. (b) Concentration of TCE and 
cis-DCE 
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does not provide more information about a potential location of a 
source. On the other hand, due to the flow orientation, any leakage in 
the rectangle oriented in the west to east direction would lead to a plume 

reaching F7, which thus highly increases the potential presence of a 
plume around this area. Therefore, the Ys1 source found through the 
presented approach is likely to come from this area. 

The second validation step was done through Geoprobe© MiHPT 
drilling along a transect (triangles on Fig. 11). The Geoprobe© MiHPT 
was carried out before the development of the source localization 
method which explains why only the part of the Ys2 was investigated. 
Results of this campaign were consulted only at the end of the study, to 
avoid the knowledge of potential sources during the source localization 
process. 

Chlorinated ethenes were only encountered at two locations (red 
triangles on Fig. 11) and at quite low concentrations. However, these 
locations are in good agreement with the inferred position of the Ys2 
source found through the iterative approach. Unfortunately, the Geop
robe work was completed before the hypothesis of a second source at 
Ys1, so no results are available yet to test the location of the presence of a 
source in the north. 

4. Discussion and conclusion 

The strategy of a contaminant source location was tested on a real 
contaminated site to evaluate the reliability of the method developed 
and presented in Essouayed et al. (2020). Due to the limited information 
available in the chosen zone and in order to perform the method 
developed in synthetic cases, only one potential source was considered 
in the FF building at the beginning. Molar sums of TCE and cis-DCE and 
hydraulic head were used as observed values for the first two iterations 
of the iterative data collection – calibration – data worth analysis cycle. 

To our knowledge, this is the first realization of this data collection 
strategy, including unkown K field, at a real field site. It is certainly the 
first attempt to combine GLMA and DW. The approach was successful in 
two ways. First, there was continual reduction of the uncertainty of the 
location of a source and the transverse dispersivity through the first two 
iterations of the process. Second, the approach led to clear proposals for 
additional data collection that are objective and defensible. Third, 
because the process requires a hydrologist to reevaluate data as it is 
collected and before new data collection is proposed, the procedure 
forced to reconsider the conceptual model after Iteration 2. This led to 
the consideration of complementary data (mass flux measurements) 
and, ultimately, to the proposal of a second contaminant source. The 
final round of data collection was guided by this revised conceptual 
model, leading to a much-improved analysis, consistent with all 
collected data, following Iteration 3. 

The final round of analyses led to two separate sources, which impact 
F7 and P29 in the North, and F2 and F5 in the South, with different 
chemical signatures. The two sources were identified at Ys1 = 623 ± 8 m 
Ys2 = 532 ± 6 m (Fig. 10b). The results of historical records related to 
potential contaminant sources and to a Geoprobe© MiHPT investigation 
support the inferred source locations. The use of two sources arose from 
the poor result of one source at stage 2. Owing to the small amount of 
data before iteration 2 we think that the 2nd source option could have 
been tested before this iteration. In general with the proposed method 
and the small amount of available we cannot suggest any theoretical 
approach to estimate the number of source zones in practice. 

The proposed approach to data collection is designed to reduce the 
amount of data necessary to optimize specific targets of a field investi
gation. As shown here, the method does not replace expert judgement, 
rather it allows an expert to make full use of models to optimize data 
collection. The approach is limited by the initial knowledge about the 
site, as embodied in the conceptual model and existing data. But this is 
the case for any approach to hydrologic field investigations. The real 
advantage of this modular and sequential approach is that it forces a 
hydrologic investigation to couple data collection and analyses, 
continually improving data collection efficiency and effectiveness as 
understanding of the site improves. This and similar approaches should 
be used more widely in the industry, eventually completing historical 

Fig. 10. (a) Spatial distribution of the hydraulic conductivity at the end of 
Iteration 3 (in log10(m d-1). (b) Location of the 2 sources estimated in Itera
tion 3. 

Fig. 11. Position of the sources estimated with the iterative approach (Ys1, Ys2 
octogons). Triangles are the position of the Geoprobe© MiHPT (MiHPT is a 
combination of MIP (Membrane Interface Probe) for VOC measurement with 
HPT (High Pressure Tool))transect, with MIP log positioned on the right side 
and shows impacts in two points from 5 to 15 deep, represented with red tri
angles. Black rectangles show the positions of the potential (historical analysis) 
source zones in the factory. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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approaches that rely on extensive data collection at the beginning of a 
project followed by modeling with little or no use of the model to guide 
data collection. 

This work presents a first test of the method. Application at other 
sites will be required before it can be determined to be broadly vali
dated. There are interesting subtle points in our results. Specifically, the 
method is aimed specifically at source location. Therefore, as with all 
model applications, care must be taken when interpreting other hy
drologically interesting results. For example, we show that inverse 
modeling could match the concentrations if the hydraulic field was 
allowed to vary. However, for the presented case, we demonstrate that 
the inferred hydraulic conductivity field was incorrect. Such an error 
may not be as clear in other cases. This result is, perhaps, to be expected. 
The limited available data could not uniquely constrain the variable 
hydraulic conductivity field, the X,Y source location and its concentra
tion, and the dispersivity. Dimensional reduction requires both recog
nition of the uncertainty of some of the inferred parameters (e.g. K(x,y)) 
and a willingness to narrow the scope of an investigation to match the 
available data. In this study, we decided to search for the Y coordinate 
only, not both the X and Y. This was a practical consideration – the 
procedure could have been applied to search for the X location, but this 
would have required drilling inside the factory. The high cost of this data 
collection meant that this objective was outside the scope of this paper. 

Like many site investigations, the presented study is based on a 2D 
model. Here, we could assume reasonably that vertical variations of 
concentration were negligible. We believe that the model can be 
extended to consider site conditions that suggest that flow and transport 
occur in 3D. But, practically, this would be limited to sites that can be 
simplified to two or three layers and it would require very detailed in
formation on the plume and geology. The authors would be happy to 
collaborate with hydrogeologists who would like to extend the method 
to these more complex conditions. 
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review & editing. G. Cohen: Writing – review & editing. N. Guiserix: 
Funding acquisition. O. Atteia: Conceptualization, Supervision, Writing 
– review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This work was developed during Elyess ESSOUAYED PhD and sup
ported by INNOVASOL, Bordeaux INP ENSEGID and “EA 4592 Geores
sources et Environnement”. Data of the developed method is available 
through Essouayed et al. 2020 with a previous use in synthetic cases. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.hydroa.2021.100111. 

References 

Aral, M.M., Guan, J., Maslia, M.L., 2001. Identification of contaminant source location 
and release history in aquifers. J. Hydr. Eng. Am. Soc. Civil Eng. 6 (3), 225–234. 

Atmadja, J., Bagtzoglou, A.C., 2001. Pollution source identification in heterogeneous 
porous media. Water Resour. Res. 37 (8), 2113–2125. 

Ayvaz, M.T., 2016. A hybrid simulation–optimization approach for solving the areal 
groundwater pollution source identification problems. J. Hydrol. (Elsevier) 538, 
161–176. 

Bagtzoglou, A.C., Dougherty, D.E., Tompson, A.F.B., 1992. Application of particle 
methods to reliable identification of groundwater pollution sources. Water Resour. 
Manag. (Springer) 6 (1), 15–23. 

Bagtzoglou, A.C., Atmadja, J., 2005. In: The Handbook of Environmental 
ChemistryWater Pollution. Springer-Verlag, Berlin/Heidelberg, pp. 65–96. 

Barber, J., Dyment, S., Pitkin, S., 2014. High Resolution Site Characterisation for 
Groundwater Short Course. Tech. rep, United States Environmental Protection 
Agency.  

Bashi-Azghadi, S.N., Kerachian, R., Bazargan-Lari, M.R., Nikoo, M.R., 2016. Pollution 
source identification in groundwater systems: application of regret theory and 
bayesian networks. Iran. J. Sci. Technol. Tran. Civil Engineering (Springer) 40 (3), 
241–249. 

Bredehoeft, J., 2005. The conceptualization model problem—surprise. Hydrogeol. J. 13 
(1), 37–46. 

Butera, I., Tanda, M.G., Zanini, A., 2013. Simultaneous identification of the pollutant 
release history and the source location in groundwater by means of a geostatistical 
approach. Stochast. Environ. Res. Risk Assess. (Springer) 27 (5), 1269–1280. 

Cao, T., Zeng, X., Wu, J., Wang, D., Sun, Y., Zhu, X., Lin, J., Long, Y., 2019. Groundwater 
contaminant source identification via Bayesian model selection and uncertainty 
quantificationIdentification de la source des contaminants dans les eaux souterraines 
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