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A B S T R A C T   

Background: Consistent noise variance across data points (i.e. homoscedasticity) is required to ensure the validity 
of statistical analyses of MRI data conducted using linear regression methods. However, head motion leads to 
degradation of image quality, introducing noise heteroscedasticity into ordinary-least square analyses. 
New method: The recently introduced QUIQI method restores noise homoscedasticity by means of weighted least 
square analyses in which the weights, specific for each dataset of an analysis, are computed from an index of 
motion-induced image quality degradation. QUIQI was first demonstrated in the context of brain maps of the 
MRI parameter R2 * , which were computed from a single set of images with variable echo time. Here, we extend 
this framework to quantitative maps of the MRI parameters R1, R2 * , and MTsat, computed from multiple sets of 
images. 
Results: QUIQI restores homoscedasticity in analyses of quantitative MRI data computed from multiple scans. 
QUIQI allows for optimization of the noise model by using metrics quantifying heteroscedasticity and free 
energy. 
Comparison with existing methods: QUIQI restores homoscedasticity more effectively than insertion of an image 
quality index in the analysis design and yields higher sensitivity than simply removing the datasets most cor
rupted by head motion from the analysis. 
Conclusion: QUIQI provides an optimal approach to group-wise analyses of a range of quantitative MRI parameter 
maps that is robust to inherent homoscedasticity.   

1. Introduction 

The use of linear regression methods for the analysis of brain MRI 
data is widespread in neuroscience and neurological studies. Linear 
regression methods model MRI data as a linear combination of explan
atory variables that may pertain to disease evolution (Beveridge et al., 
2018; Ong et al., 2021; Panda et al., 2019; van der Plas et al., 2021; Scott 
et al., 2003), treatment (Plaikner et al., 2018), environmental factors 
(Hu et al., 2022; Ong et al., 2022) or phenotypes (Boots et al., 2020; 
Honigberg et al., 2020; Papadaki et al., 2019). To estimate the co
efficients of the combination, linear regression methods assume uncor
related noise across measurements, sampled from normal distributions 

with equal variances (i.e. homoscedasticity). The assumption of homo
scedasticity must be satisfied to ensure the validity of statistical in
ferences arising from the analyses of the relationship between 
explanatory variables and MRI data, e.g. using Student T-tests or F-tests 
(Hayes and Cai, 2007). 

Head motion during data acquisition degrades the quality of MR 
images and affects brain feature estimates computed from the data 
(Castella et al., 2018; Esteban et al., 2017; Mortamet et al., 2009; Reuter 
et al., 2015; Rosen et al., 2018; Savalia et al., 2017). In particular, 
motion degradation impacts the noise level of relaxometry estimates 
computed from raw MRI data (Castella et al., 2018). Heterogeneous 
degrees of motion degradation across cohorts leads to the 
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homoscedasticity assumption in Ordinary Least Square (OLS) analyses 
being violated (Lutti et al., 2022). One solution consists of excluding the 
data most affected by head motion, identified from an image-based 
index of data quality (‘Motion Degradation Index’, MDI) (Castella et al., 
2018; Esteban et al., 2017; Mortamet et al., 2009; Pizarro et al., 2016; 
Reuter et al., 2015; Rosen et al., 2018; Savalia et al., 2017). However, 
determining a suitable threshold value for the index to exclude datasets 
of poor quality is challenging (Gilmore et al., 2021). As a result, the 
resulting decrease in cohort size may lead to a sub-optimal reduction in 
analysis sensitivity. 

The Weighted Least Square (WLS) alternative consists of including 
the estimate of the variance in each dataset as weights into the linear 
regression model. WLS analyses constitute an optimal solution because 
they guarantee residual homoscedasticity and preserve sensitivity. 
However the variance, i.e. the noise level in each individual dataset, is 
generally unknown. The recently introduced QUIQI method (Lutti et al., 
2022) allows the variance to be estimated from the value of the MDI for 
each dataset through use of Restricted Maximum Likelihood (REML, 
(Friston et al., 2002b). QUIQI was shown to be more effective at 
ensuring residual homoscedasticity and at optimizing analysis sensi
tivity than simple exclusion of the datasets with high MDI values. 

The QUIQI method was first demonstrated for the analysis of brain 
maps of the transverse relaxation rate R2 * , computed from a single set 
of raw image volumes acquired on the MRI scanner in a single scan with 
variable echo time (TE) (Lutti et al., 2022). R2 * is primarily a correlate 
of iron content (Fukunaga et al., 2010; Stüber et al., 2014; Yao et al., 
2009), but with sensitivity to other tissue metrics, notably myelin and 
water content (Bagnato et al., 2018; Hametner et al., 2018). To disen
tangle the likely drivers of parameter change or difference, neuroscience 
studies commonly combine the analysis of multiple, complementary 
MRI parameters (‘Multi-Parameter Mapping’, (Callaghan et al., 2014; 
Carey et al., 2018; Schall et al., 2020). For example, the MRI parameters 
R1 and MTsat show increased sensitivity to myelin content within brain 
tissue (Henkelman et al., 2001; Lutti et al., 2014; Sereno et al., 2013). 
However, the estimation of R1 and MTsat requires several sets of raw 
MR images with different contrasts, and the motion level may vary 
across these images. Also, each MRI parameter is computed from the raw 
images using specific signal models (Helms et al., 2008a; Helms et al., 
2008b), and is differentially sensitive to head motion as a result (Bal
bastre et al., 2022; Mohammadi et al., 2022). The original demonstra
tion of the QUIQI method only involved maps of R2 * computed from a 
single scan. The generalizability of QUIQI to analyses of MRI parameter 
maps computed from several scans remains to be demonstrated. This 
requires investigation of the dependence of the residuals on the MDI in 
OLS analyses. In particular, this investigation should concern the suit
ability of the polynomial form assumed by QUIQI in its original imple
mentation and its generalization to multiple MDIs – one for each scan 
involved in the calculation of the qMRI data. 

In this work, we investigate noise heteroscedasticity induced by head 
motion in OLS analyses of quantitative relaxometry MRI data (qMRI) 
computed from several sets of images. Using the global and local metrics 
of homoscedasticity introduced in (Lutti et al., 2022), we assess the 
ability of the QUIQI method to ensure the validity of statistical analyses 
of data degraded by motion. Our hypothesis is that QUIQI can restore 
homoscedasticity when the noise is modelled as a polynomial combi
nation of the MDI of all scans involved in the calculation of the qMRI 
data under analysis. Multiple models of the relationship between noise 
estimates and indices of motion-induced image degradation are 
considered. We identify the optimal noise model from the global and 
local metrics of homoscedasticity, combined with the free energy esti
mates provided by REML. We compare the sensitivity of the WLS sta
tistical analyses conducted with QUIQI with that of standard OLS 
analyses after exclusion of the datasets most affected by motion degra
dation. Finally, we compare WLS analyses conducted with QUIQI with 
an alternative approach based on inserting the MDI into the design 
matrix of OLS analyses. 

2. Methods 

2.1. MRI acquisition 

MRI data was acquired in a large cohort of 1432 healthy research 
participants as part of the ‘BrainLaus’ study (https://www.colaus-psy
colaus.ch/professionals/brainlaus/ (Loued-Khenissi et al., 2022; Trofi
mova et al., 2021). The acquisition protocol included multi-echo 
T1-weighted (T1w), Proton Density-weighted (PDw) and Magnetiza
tion Transfer-weighted (MTw) scans, conducted with a custom-made 3D 
FLASH sequence. B1+ mapping data were also acquired to correct for the 
effect of transmit field inhomogeneity on the qMRI maps (Lutti et al., 
2010; Lutti et al., 2012). Relevant acquisition parameters are available 
in (Lutti et al., 2022). The total acquisition time was 27 min. 

2.2. Map computation and processing 

Computation and spatial processing of the qMRI maps were per
formed offline with the hMRI toolbox (Tabelow et al., 2019), as 
described in detail below. Image analysis was conducted using the SPM 
software (www.fil.ion.ucl.ac.uk/spm, Wellcome Centre for Human 
Neuroimaging) and customized scripts written in Matlab (R2021a, The 
MathWorks Inc., Natick, MA, USA). 

2.2.1. Computation of the qMRI maps 
Maps of the MRI parameters R1, MTsat and R2 * were computed 

from the raw T1w, PDw and MTw images of each participant. The R2 * 
maps were computed using the ESTATICS approach from the regression 
of the log signal of the raw images with respect to their echo times 
(Weiskopf et al., 2014). To investigate the effect of the number of scans 
involved in the map calculation on homoscedasticity, maps of R2 * were 
computed from the T1w and PDw images only (‘R2 *(2) maps’) and from 
the T1w, PDw and MTw images (‘R2 *(3)’) (results from R2 * maps 
computed from one set of images only (‘R2 *(1)’) are described in (Lutti 
et al., 2022). 

Maps of R1 were computed from the T1w and PDw acquisitions using 
the rational approximation of the Ernst equation (Helms et al., 2008a). 
MTsat maps were estimated using the T1w, PDw, and MTw acquisitions 
using a closed form expression of the MT weighted signal (Helms et al., 
2008b). In total, the performance of QUIQI was assessed on four types of 
quantitative maps: R2 *(2), R2 *(3), R1 and MTsat maps. 

2.2.2. Normalization and segmentation 
Complete details of the image processing steps are available in (Lutti 

et al., 2022). The MTsat maps were used for spatial normalisation of the 
data into the Montreal Neurological Institute (MNI) template space. The 
MTsat maps were segmented into maps of grey and white matter 
probabilities using Unified Segmentation (Ashburner and Friston, 
2005). The nonlinear diffeomorphic algorithm Dartel (Ashburner, 2007) 
was used for inter-subject registration of the tissue classes. To preserve 
the quantitative estimates, the qMRI maps were normalized into the MNI 
space following the voxel-based quantification procedure proposed in 
(Draganski et al., 2011). 

2.2.3. Motion Degradation Index 
The MDI used for QUIQI analysis is computed by the hMRI toolbox 

(Tabelow et al., 2019). This MDI was introduced in a validation study 
against the history of head motion that occurred during data acquisition 
(Castella et al., 2018). It is calculated as the standard deviation across 
white matter of R2 * maps computed separately from each set of 
multi-echo T1w, PDw and MTw images: each set of raw images was 
assigned a specific value of the MDI. 

2.3. Inserting a motion degradation index into image analysis 

QUIQI ensures noise homoscedasticity in analyses of MRI data 
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affected by motion degradation by means of weighted least square an
alyses (WLS). The weights, specific to each dataset of an analysis, are 
computed from a noise covariance matrix (V) modelled as a linear 
combination of matrices built from the MDI values of the analysis data 
(‘basis functions’). 

From the heuristic analysis of the empirical relationship between 
analysis residuals and the MDI (Lutti et al., 2022), these basis functions 
were set to contain powers of the MDI values: 

Vi =
∑Nscan

n=1

∑αmax

α=0
λα,nMDIα

n,i (1)  

where Vi is the ith diagonal element of the covariance matrix V, i.e. the 
noise estimate of the ith dataset. MDIα

n,i is the αth power of the MDI of the 
ith dataset and the nth contrast weighting. The basis functions and the 
resulting noise covariance matrices V were diagonal because noise is 
uncorrelated between datasets (i.e. participants). 

Estimation of V involved the MDI of each scan involved in the 
computation of the qMRI data to be analysed (index n in Eq.1), and 
separate basis functions were computed from each MDI. Nscan is the 
number of scans involved in this computation: Nscan= 2 for R2 *(2) and 
R1 maps as these data were estimated from the PDw and T1w raw im
ages. Nscan= 3 for MTsat and R2 *(3) maps as these data were estimated 
from the PDw, T1w and MTw raw images (see Section 2.2.1). 

The optimal value of αmax, the maximum power of the MDI used to 
compute the noise covariance matrix, was determined in a model 
comparison (see Section 2.5.1). 

V and λα,n were estimated using the Restricted Maximum Likelihood 
(REML) algorithm as implemented in SPM12 (Friston et al., 2002a). The 
subsequent estimation of the weights (W = 1̅ ̅̅

V
√ ) for WLS analyses was 

conducted with the standard analysis tools of SPM12. 

2.4. Measures of analysis validity 

The results of OLS and WLS analyses were compared using local and 
global metrics of heteroscedasticity, and a measure of free energy. These 
metrics were also used to identify the optimal model of the dependence 
of the noise in qMRI maps on image quality. 

2.4.1. Residual heteroscedasticity 
We characterized noise heteroscedasticity from the maps of the re

siduals ϵ, computed for each participant and qMRI maps after estimation 
of the coefficients of the linear model. 

2.4.1.1. Global heteroscedasticity. We computed a global noise index 
var(ϵ), as the spatial variance of the residual maps across a whole tissue 
type (i.e. grey or white matter) (Lutti et al., 2022). Consistent with Eq. 
1., the effect of motion degradation on the global noise index was 
modelled as a cubic polynomial combination of the MDI of all the scans 
involved in the computation of the analysis data. The cubic order was 
selected for consistency with the original implementation of QUIQI 
(Lutti et al., 2022) and subsequently proved to be the optimal model in 
terms of ELBO gain (see Section 3.1). For R2 *(2) and R1 maps, the MDI 
of the T1w and PDw raw images were considered. For R2 *(3) and MTsat 
maps, the MDI of the T1w, PDw and MTw raw images were considered. 
Fitting the global noise index with the assumed polynomial combination 
of the MDI led to the estimation of var(ϵ)fit, the modelled dependence of 
the global noise level on motion degradation. 

The global heteroscedasticity index was taken as the coefficient of 

determination R2 = 1 −

∑N
i=1

(var(ϵ)i − var(ϵ)fiti
)
2

∑N
i=1

var(ϵ)
2

i

. From this definition, a high 

value of R2 (~1) would indicate a strong dependence of the global noise 
index on motion degradation and therefore high heteroscedasticity. 
Conversely, a low value of R2 (~0) would indicate a weak dependence of 
the global noise index on motion degradation and therefore low noise 

heteroscedasticity. 
To provide a graphical rendering of heteroscedasticity we will 

plotvar(ϵ) against var(ϵ)fit: a linear relationship between var(ϵ) and 
var(ϵ)fit would reflect high heteroscedasticity. The absence of relation
ship between var(ϵ) and var(ϵ)fit would reflect low heteroscedasticity. 

2.4.1.2. Local heteroscedasticity. At the local scale, we assessed noise 
heteroscedasticity in each image voxel using the Engle’s Arch test 
(Engle, 1982), which tests for no linear relationship between consecu
tive samples of a series of squared residuals. At a given voxel, the re
sidual series was computed from the residual maps at this voxel location. 
The series samples were organized according to the predicted impact of 
motion degradation by arranging them in ascending order of the poly
nomial combination of MDIs (var(ϵ)fit), associated to the tissue class of 
the given voxel. 

The Engle’s Arch test was conducted at each voxel of the residual 
maps, with a maximum lag of 40 points. The local index of hetero
scedasticity was the proportion of voxels with significant hetero
scedasticity (i.e. rejecting the null hypothesis), calculated after false 
discovery rate correction using the Benjamini-Hochberg procedure 
(p < 0.05); (Glickman et al., 2014). 

2.4.2. Free energy 
REML estimates the hyperparameters λ that are used to compute the 

matrix V (Eq.1) by maximizing the evidence lower bound objective 
(ELBO) function, a measure of negative variational free energy. Intui
tively, the ELBO favours the accuracy and penalizes the complexity of 
the model. We used the ELBO estimates provided by the REML imple
mentation in SPM12 (Friston et al., 2002a) to identify the optimal model 
of the relationship between noise in the qMRI maps and the degradation 
of the raw images induced by head motion (see Section 2.5.1). 

2.5. Image analyses 

Linear regression analysis was conducted on qMRI maps of R2 *(2), 
R2 *(3), R1 and MTsat. This allowed the assessment of noise hetero
scedasticity in WLS and OLS analyses, separately for different MRI pa
rameters and different numbers of scans involved in their estimation. 
The quantitative MRI data were modelled as the linear combination of 5 
regressors that represented age, square and cubic values of age, gender 
and brain volumes. 

2.5.1. Noise model comparison 
The coefficients of the general linear model were estimated from the 

full dataset (N = 1432). OLS analyses were conducted with αmax= 0 in 
Eq.1, i.e. assuming uniform noise level across all datasets as would be 
done in a standard analysis. WLS analyses were conducted with 5 models 
of the noise covariance matrix that covered a wide range of polynomial 
order: αmax= 2–5 with λ ∈ R, and αmax= 4 with λ ∈ R+. The latter model 
was considered to assess the effect of enforcing positivity of the λ 
hyperparameters on noise heteroscedasticity and free energy, and for 
consistency with (Lutti et al., 2022). 

OLS and WLS analyses were compared by considering differences in 
heteroscedasticity and free energy. Across the WLS analyses, the optimal 
noise model was identified as that which led to the lowest values of 
heteroscedasticity and the largest increase in ELBO. 

2.5.2. Age sensitivity 
We compared the sensitivity of WLS analyses against that of standard 

OLS analyses using statistical F-tests of age-related differences in R2 *(2), 
R2 *(3), R1, and MTsat. The analyses were performed on a subsample of 
the full dataset, obtained by randomly selecting up to 10 images per age 
bin of 5 years. The size of the resulting dataset was 123, close to the 
typical cohort size of similar studies (Callaghan et al., 2014). 

The WLS analyses were conducted with the optimal noise model (see 
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Section 2.5.1). OLS analyses were conducted after exclusion of the 
datasets most degraded by head motion, i.e. with the highest MDI values 
averaged across the scans involved in the calculation of the qMRI maps. 
Exclusion of 3%, 7%, 13%, 20% and 30% of the most degraded datasets 
was considered (Castella et al., 2018; Esteban et al., 2017; Mortamet 
et al., 2009; Pizarro et al., 2016; Reuter et al., 2015; Rosen et al., 2018; 
Savalia et al., 2017). The optimal fraction of excluded datasets was 
identified as the smallest value leading to local and global hetero
scedasticity estimates comparable to those obtained in WLS analyses 
with the optimal noise model. 

2.5.3. Specificity 
To assess the specificity of the OLS and WLS analyses, we recorded 

the rate of false positives in two types of analyses frequently conducted 
in neuroscience studies. I) In a subset of the full dataset with up to 10 
images per age bin of 5 years (N = 123), the participants’ age was 

randomly assigned from a uniform distribution ranging from the mini
mum to the maximum age of the data subsets and statistical F-tests of 
age-related differences in R2 *(2), R2 *(3), R1 and MTsat maps. II) In a 
subset of the full dataset within a narrow age range (56–58 y.o.; 
N = 129), we conducted unbalanced comparisons of a group of 10 qMRI 
maps with a group of 119 maps, using two-sample T-tests. Given that no 
age-related effect would be expected in these analyses, any significant 
effects were deemed to be false positives. 

We conducted analyses I and II 1000 times for different subsets of 
data and monitored the rate of significant results, i.e. false positives, 
across repetitions at the cluster level (p < 0.05, FWE-corrected), with a 
cluster forming threshold of p < 0.001 uncorrected. 

2.5.4. Inserting the Motion Degradation Index in the analysis design 
In a subset of data in a narrow age range (56–58 y.o.; N = 129), we 

considered an alternative method to QUIQI to correct motion degrada

Fig. 1. : WLS analyses reduce hetero
scedasticity and increase ELBO. Each graph 
shows heteroscedasticity and ELBO levels for 
different qMRI maps R2 *(2) (top left), R2 *(3) 
(top right), R1 (bottom left) and MTsat (bottom 
right)). The top part of each graph shows local 
and global heteroscedasticity levels for OLS 
analyses and WLS analyses with different noise 
models (i.e. αmax), in white matter (WM) and 
grey matter (GM). The bottom part shows dif
ferences in ELBO between WLS and OLS ana
lyses. WLS analyses strongly reduce noise 
heteroscedasticity, for all noise models and 
qMRI maps. WLS analyses also lead to an in
crease in ELBO, except for two noise models in 
the GM of MTsat maps.   
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tion effects, which consists of inserting the MDI as a confounding factor 
in the analysis design. Here, powers of 1–4 of the MDI values were 
included as regressors in the design matrix. We compared noise heter
oscedasticity between OLS analyses and WLS analyses with the optimal 
noise model (αmax = 4,λ ∈ R, identified from 2.5.1). 

3. Results 

3.1. Noise model comparison 

With standard OLS analyses, global heteroscedasticity ranges from 
0.44 to 0.7 across the different types of analysed qMRI data, and the 
fraction of voxels with significant local heteroscedasticity ranges from 
0.42 to 0.85 (Fig. 1). Global and local heteroscedasticity are largely 
comparable across the analyses of R2 *(2) and R2 *(3) maps, suggesting 
little effect of the number of scans involved in the computation of the 
qMRI maps on heteroscedasticity. The generally lower level of hetero
scedasticity in analyses of R1 and MTsat maps suggests a bigger effect of 
the type of analysed qMRI data. 

WLS analyses reduce global and local heteroscedasticity for all types 
of qMRI data, models of covariance matrix and tissue types (Fig. 1). 
Local heteroscedasticity is below 0.05 with αmax = 2,4or5,λ ∈ R). With 
these models, the global measure R2 is below 0.16. The two alternative 
models (αmax = 3, λ ∈ R and αmax = 4, λ ∈ R+) lead to higher global 
and local heteroscedasticity, particularly for MTsat data. 

Across the noise models with (λ ∈ R), the increase in ELBO compared 
to OLS analyses reaches a maximum forαmax = 3, closely followed by 
αmax = 4. Noise models with αmax = 2and αmax = 5 lead to a decrease in 
ELBO in analyses of MTsat maps. The gains in ELBO compared to OLS 
analyses are higher in analyses of R2 *(2) data followed by R2 *(3), R1, 
and MTsat data, suggesting an effect of both the type of analysis data and 
of the number of scans involved in their computation. Enforcing posi
tivity for the REML hyperparameter (i.e.λ ∈ R+) further increased the 
ELBO. However, noise heteroscedasticity is comparably high for this 
model of the noise covariance. 

Noise homoscedasticity is essential to ensure the validity of statisti
cal inference and was the key requirement in our selection of the optimal 
model of the noise covariance. Among the models that ensure noise 
homoscedasticity (αmax = 2, 4 or 5, λ ∈ ℝ), we deemed αmax = 4, λ ∈ R 

to be optimal as it leads to the highest increase in ELBO compared to OLS 
analyses, for all types of analysis data and both tissue types. With this 
model, analysis residuals depend only weakly on the value of the MDI of 
the analyses data (i.e. global heteroscedasticity R2 ≤ 0.16 see Fig. 2A). 

The ELBO systematically increases compared to OLS analyses, by an 
amount that varies according to the type of qMRI data and number of 
scans involved in the map calculation (see Fig. 2B). 

3.2. Age sensitivity 

Differences in age sensitivity between OLS and WLS analyses con
ducted on the full dataset show substantial effects, both positive and 
negative (Supporting Fig. S1). This is consistent with the effect of noise 
heteroscedasticity in OLS analyses, which might lead to under- or over- 
estimation of the noise level - both of which invalidate associated in
ferences. To ensure a valid comparison of age sensitivity with WLS an
alyses, we investigated the exclusion from the OLS analyses of the 
datasets most affected by head motion, which we identified from their 
high MDI values. Overall, global and local noise heteroscedasticity 
decrease with increasing fraction of excluded datasets (Fig. 3). After 
exclusion of the 30% of the datasets with the highest MDIs, global het
eroscedasticity lies in the same range as WLS analyses overall 
(R2~0.1–0.2), except for R2 *(2) and R2 *(3) data in white matter (R2 

=0.34). However, local heteroscedasticity remains generally higher 
than for WLS analyses (<0.05), and reaches 0.12 in R2 * data and 0.25 
in the white matter of MTsat data (solid bars in Fig. 3). Higher exclusion 
fractions, which would have reduced local heteroscedasticity further, 
were deemed too prohibitive to be investigated. 

The age sensitivity of the WLS analyses was compared with that of 
OLS analyses after exclusion of the 30% of datasets with the highest 
MDIs. Statistical F-maps of age-related changes in qMRI data, obtained 
from WLS analyses, exhibit predominant features that are consistent 
with previous findings from the literature (Fig. 4, (Callaghan et al., 
2014). These include an increase in R2 * with age in sub-cortical areas 
attributed to a local increase in iron concentration, and a decrease in 
MTsat and R1 in frontal white matter attributed to fibre demyelination. 
With WLS analyses, statistical scores are larger and the significance 
threshold is lower due to the higher number of samples (see inset in 
Fig. 4). The number of voxels above significance increases by a factor 
varying from 2.6 to 5.5 with WLS analyses, except for the R1 and MTsat 
parameters in white matter, where the increase is of 20% and 5% 
respectively (Fig. 5). With WLS analyses, the spatial distribution of 
significant voxels shows enhanced symmetry between the left and right 
hemispheres (Fig. 5). Regions of significant voxels also show improved 
spatial continuity. 

Fig. 2. : Noise homoscedasticity and ELBO increase with the optimal noise model. (A) With the optimal noise model (αmax = 4,λ ∈ R), global heteroscedasticity (R2) 
does not exceed 0.16, for all types of qMRI maps and in both grey and white matter. (B) WLS analyses lead to an increase in ELBO, for all types of qMRI maps and in 
both grey and white matter. This increase varies according to the type of qMRI data and the number of scans involved in the map calculation. 
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3.3. Specificity 

OLS analyses and WLS analyses with the optimal noise model (αmax =

4, λ ∈ R) show equivalent rates of false positives in both F-tests and 
imbalanced two-sample T-tests (Table 1). On average, OLS and WLS 
analyses show significant results at the cluster level in 5.4% and 6.5% of 
the tests, in agreement with the expected rate of 5%. The rates of false 
positives are slightly lower for the tests with shuffled age regressor but 
remain comparable between OLS and WLS analyses (3.1% and 2.5% 
respectively). 

3.4. Inserting the motion degradation index in the analysis design 

The level of noise heteroscedasticity in WLS analyses conducted with 
QUIQI was compared with that of OLS analyses after insertion of the 
MDI into the design matrix. Residual heteroscedasticity remains present 
in OLS analyses (R2

WLS< R2
OLS), for all data and tissue types (Fig. 6). 

4. Discussion 

Analyses of MRI data using linear regression rely on the assumption 
of noise homoscedasticity to ensure the validity of statistical inference. 
Degradation of MRI data quality due to head motion invalidates this 
assumption. The resulting mis-estimation of the noise variance leads to 

erroneous statistical inference and increased risks of false positives or 
negatives. The QUIQI method restores the validity of statistical analyses 
by conducting weighted least-square estimations, with weights that are 
computed from an index of data degradation due to head motion. The 
benefit of QUIQI has recently been demonstrated from a large dataset of 
R2 * maps computed from a single scan (Lutti et al., 2022). Here, we 
extended this method to brain maps of the MRI parameters R2 * , R1 and 
MTsat, computed from multiple scans. Despite the different signal 
equations used for the computation of each parameter map, their 
different sensitivity to head motion, and potential inter-scan motion 
effects, we could demonstrate that a linear combination of the MDI of 
the scans involved in the calculation of each parameter map was effec
tive in reducing heteroscedasticity. The impact of restoring statistical 
validity is substantial and consistent with under- or over-estimation of 
the noise variance in OLS analyses (Supporting Fig. S1). WLS analyses 
show higher sensitivity to brain differences across a dataset than OLS 
analyses that excluded the most corrupted data (Figs. 4 and 5). WLS 
analyses are also more effective at ensuring homoscedasticity than 
insertion of the MDIs as regressors in the design matrix of the analysis. 

QUIQI requires modelling of the noise covariance matrix from a 
Motion Degradation Index (MDI) of the analysis data. The relationship 
between analysis residuals and the MDI in an OLS analysis constitutes a 
good baseline to infer a suitable form for this model (Lutti et al., 2022). 
The original implementation of QUIQI showed that a polynomial model 

Fig. 3. : Exclusion of the most degraded datasets improves noise heteroscedasticity in OLS analyses. After exclusion of 30% of the datasets, global heteroscedasticity 
lies in the same range as WLS analyses overall (R2~0.1–0.2), except for R2 *(2) and R2 *(3) maps in white matter (R2 =0.34). However local heteroscedasticity 
remains generally higher than for WLS analyses (<0.05), and reaches 0.12 in R2 * data and 0.25 in the white matter of MTsat data. 
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of the MDI allows accurate description of the noise variance. For the 
current application, we therefore chose to define the candidate models 
on polynomial combinations of the MDI of each of the scans involved in 
the computation of the R2 * , R1 and MTsat maps. We compared 
candidate models, with different polynomial degrees and constraints on 
the hyperparameter λ, from measures of local and global noise hetero
scedasticity, and from ELBO - a measure of free energy. The global index 
of heteroscedasticity is a measure of the relationship between the 

residual variance and a cubic polynomial combination of the MDIs. The 
cubic order was originally chosen for consistency with the original 
implementation of QUIQI (Lutti et al., 2022). Our choice of polynomial 
order was supported by the gains in ELBO, an independent measure of 
model efficiency, which proved to be maximum for a cubic polynomial 
function of the MDI. 

WLS analyses strongly reduced heteroscedasticity for all the types of 
qMRI data analysed here. Also, the same subset of models consistently 

Fig. 4. : WLS analyses show increased sensitivity to brain differences. Statistical F-maps of age-related changes (FWLS), obtained in WLS analyses of 123 samples of 
the full dataset, show predominant features that include an increase in R2 * with age in sub-cortical areas and a decrease in MTsat and R1 in frontal white matter 
(top). WLS analyses exhibit higher Fscores than OLS analyses after exclusion of 30% of the most corrupted data, in all types of qMRI data and throughout grey and 
white matter (bottom). For each type of qMRI maps, the inset indicates the threshold for statistical significance (p < 0.05, FWE corrected). 

Fig. 5. : WLS analyses increase the spread of significant voxels in statistical maps. Maps of voxels with significant age-related changes (blue) (p < 0.05, FWE 
corrected) show increased spatial extent with WLS analyses (top) than OLS analyses with exclusion of 30% of the most corrupted data (bottom), for all types of qMRI 
data. The insets indicate the fraction of significant voxels in grey and white matter. 
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led to optimal restoration of homoscedasticity. From this subset, we 
identified the optimal noise model that led to the highest increase in 
ELBO compared to OLS analyses. The use of higher powers of the MDI 
increased the complexity of the noise covariance model, leading to a 
decrease in the ELBO. Candidate models with polynomial orders above 5 
were therefore not considered in these analyses. 

The sensitivity of OLS analyses and WLS analyses conducted with 
QUIQI were compared in the context of age-related effects (MacDonald 
and Pike, 2021). For our comparison, the 30% of datasets with the 
highest MDI were removed from the OLS analyses to achieve a similar 
level of homoscedasticity than the WLS analyses. The higher sensitivity 
of the WLS analyses conducted with QUIQI arises from its ability to 
exploit the full dataset to increase statistical power. With WLS analyses, 
the spatial distribution of significant voxels shows improved biological 
plausibility in the form of greater spatial continuity and enhanced 
symmetry between the left and right hemispheres. This increase in 
sensitivity preserves specificity, i.e. the rate of false positives in the 
statistical analyses remained under control. 

QUIQI is available for use within the hMRI toolbox (https://hmri- 
group.github.io/hMRI-toolbox/). This implementation relies on the 
REML algorithm of SPM12 that is commonly used to correct for temporal 
correlations and group-level analyses of fMRI data (Friston et al., 
2002a). Following specification of the design matrix (‘factorial design’), 
the QUIQI_Build module builds a dictionary of basis functions from MDI 
values provided by the user. By default, QUIQI_Build computes the basis 
functions as powers of the MDI that are specified by the user. Alterna
tively, the noise model can be readily adapted to different analysis 
datasets and MDIs (see hmri_quiqi_build.m). By default, no constraint is 

imposed on the hyperparameters (see (Lutti et al., 2022) for details on 
adding a positivity constraint). The QUIQI_Check module can be used 
after image analysis to estimate global heteroscedasticity in the data. 
Here, the degree of the polynomial used to estimate var(ε)fit is inde
pendent of the powers of the MDI used to model the noise covariance 
matrix in QUIQI Build. 

5. Conclusion 

Degradation of image quality due to head motion invalidates the 
homoscedasticity assumption in the statistical analysis of MRI data. 
Here, we extended the QUIQI method to the analysis of brain maps of the 
MRI parameters R2 * , R1 and MTsat, computed from multiple scans. 
QUIQI restores homoscedasticity and the validity of statistical inference, 
and allows for optimization of the noise model using specially-dedicated 
metrics of heteroscedasticity and free energy. QUIQI is more effective at 
ensuring homoscedasticity than regressing out the image quality indices, 
and yields higher sensitivity than removal of the datasets most corrupted 
by head motion from the analysis. QUIQI is available in the hMRI 
toolbox for the study of brain differences from MRI data. 

Ethics approval statement 

This study received approval from the local Ethics Committee and all 
participants gave their written informed consent prior to participation. 

Table 1 
Imbalanced group comparison & over-sensitivity.  

R2 *(2)   GM WM R2 *(3)   GM WM 
Two-sample T-test OLS 0.054 0.040 Two-sample T-test OLS 0.055 0.043 
(cluster level) WLS 0.067 0.055 (cluster level) WLS 0.065 0.066 
F-test OLS 0.031 0.027 F-test OLS 0.032 0.028 
(cluster level) WLS 0.023 0.022 (cluster level) WLS 0.027 0.022 

R1   GM WM MT   GM WM 
Two-sample T-test OLS 0.096 0.036 Two-sample T-test OLS 0.069 0.039 
(cluster level) WLS 0.088 0.047 (cluster level) WLS 0.063 0.066 
F-test OLS 0.055 0.019 F-test OLS 0.036 0.018 
(cluster level) WLS 0.038 0.018 (cluster level) WLS 0.030 0.021  

Fig. 6. : Including the motion degradation index as regressors in the design matrix does not restore homoscedasticity. Despite inserting the MDI in the design matrix, 
OLS analyses exhibit a high level of global noise heteroscedasticity (high R2), for all types of qMRI maps and in both grey and white matter. Homoscedasticity is 
restored with WLS analyses. 
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