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Incoming adenoviruses seize control of cytosolic transport mechanisms to

relocate their genome from the cell periphery to specialized sites in the nucle-

oplasm. The nucleus is the site for viral gene expression, genome replication,

and the production of progeny for the next round of infection. By taking con-

trol of the cell, adenoviruses also suppress cell-autonomous immunity

responses. To succeed in their production cycle, adenoviruses rely on well-

coordinated steps, facilitated by interactions between viral proteins and cellu-

lar factors. Interactions between virus and host can impose remarkable

morphological changes in the infected cell. Imaging adenoviruses has tremen-

dously influenced how we delineate individual steps in the viral life cycle,

because it allowed the development of specific optical markers to label these

morphological changes in space and time. As technology advances, innovative

imaging techniques and novel tools for specimen labeling keep uncovering pre-

viously unseen facets of adenovirus biology emphasizing why imaging aden-

oviruses is as attractive today as it was in the past. This review will

summarize past achievements and present developments in adenovirus imaging

centered on fluorescence microscopy approaches.

Keywords: adenovirus; live-cell imaging; microscopy; viral genome; virus
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Adenoviruses (Ads) are nonenveloped icosahedral

viruses with a diameter of ~ 90 nm with slight struc-

tural differences between genotypes. The majority of

the Ad capsid shell is composed of 240 hexon trimers,

and each of the 12 vertices of the icosahedron is occu-

pied by a penton. Pentons are involved in cell attach-

ment and receptor recognition and are composed of

the pentameric penton base from which the trimeric

fiber molecule extends. Minor capsid proteins IIIa, VI,

VIII, and IX are embedded in the capsid and con-

tribute to capsid stability. Protein VI is located at the

inner surface of the capsid, and biochemical data sug-

gest that it may connect the capsid to the core contain-

ing the viral genome via protein V. The genome is a

~ 36-kb double-stranded linear DNA molecule with

the terminal protein (TP) covalently bound to each 50-
end. Adenovirus genomes are highly condensed and

organized into chromatin by several hundred copies of
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the histone-like protein VII and the protamine-like

basic protein X/µ-peptide. The capsid contains a small

number of protein IVa2 involved in genome packaging

and of the adenovirus protease (AVP) required for

capsid maturation (summarized in Ref. [1]).

A denovirus particles are not static entities, and the

viral life cycle is a coordinated process of conditional

steps triggered by capsid alterations. Maturation of

newly assembled virions leads to the cleavage of precur-

sor proteins IIIa, VI, VII, VIII, TP, and X to convert

the capsid into a metastable entity [2]. Maturation is

required for the subsequent stepwise disassembly pro-

cess upon cell attachment [3]. Most fluorescence micro-

scopy (FM) studies employed AdC2/5 in epithelial cell

systems, and cumulative evidence has shown that they

attach and enter cells within ~ 5 min and by ~ 15 min

postinfection reach the cytosol [4–8]. It takes about

~ 30–45 min for Ads to traverse the cytosol and to accu-

mulate at the nuclear pore complex (NPC) for nuclear

genome import. At each step, the capsid undergoes

structural changes until capsid disintegration at the

NPC liberates the genome [6]. Gene expression starts

within ~ 1–2 h postinfection with expression of the E1A

protein [9]. E1A promotes S-phase progression and

drives expression from the E2, E3, and E4 transcription

units, which are essential to start genome replication

and suppress antiviral immunity responses including

apoptosis, DNA damage response (DDR) and inflam-

mation [10–12]. Replication compartments (RC) are

formed at ~ 6–8 h after initial entry and lead to dra-

matic morphological changes in the nucleus. Replication

is required for late gene expression of most structural

proteins [13] before nuclear capsid assembly, and pack-

aging of replicated genomes gives rise to the next gener-

ation of viral particles [14]. New virions then undergo

maturation by the AVP and are released from cells for

the next infection round [15]. It should be noted that the

indicated timing for gene expression and replication

given in this review depends on the experimental condi-

tions used in the cited references and is influenced by cell

type and the amount of input virus.

Visualization of Ads is limited by their small size

and requires high resolution and high signal intensities.

Early images of Ads date back to the 1950s and were

taken by electron microscopy (EM) of cells infected

with a new viral agent [16,17]. This agent was named

adenovirus after the adenoid tissue from which it was

originally isolated [18]. Early time-course analysis

describing Ad entry using EM has shaped our under-

standing of the underlying mechanisms [4]. Light

microscopy and especially FM soon complemented

knowledge from EM by labeling defined targets [19–

22]. Fluorescent probes that label Ad particles for use

in FM of living infected cells have added temporal and

spatial resolution introducing dynamic aspects of Ad

infection [23,24]. The detailed knowledge of the viral

life cycle is the cumulative work of almost 70 years of

research in the Ad field and is discussed in detail

within the different chapters of this special issue.

Imaging Ads complements biochemical, mutational,

and structural approaches to understand how viruses

take control of the host. In this review, we focus on

past and present FM approaches that have helped

decipher the Ad life cycle at the cellular level. Because

most studies use C-type viruses, particularly AdC2 or

AdC5 in epithelial cells, we will focus on this model.

We start our review with a brief overview of the differ-

ent labeling and detection strategies used when imag-

ing Ads. We then discuss examples where imaging has

contributed to clarify steps of the general Ad life cycle,

following the sequential events from entry to egress,

and provide examples where these contributions were

subsequently exploited to study Ad interactions with

the host. We conclude the review with a brief outlook

to novel approaches and open questions.

General considerations when imaging
Ad

Ad imaging with FM requires the definition of a labeling

strategy, a suitable cell model, and imaging technique; all

options have advantages and disadvantages. The following

section provides a brief overview of the most frequently

used FM approaches and labeling strategies. For more

detailed reviews, the reader is referred to [25–27].

Choosing an imaging approach

Wide-field, epifluorescence microscopy is a cost-effective

and robust imaging method, which has been frequently

used to image Ad infection [7,28–32]. This technique

allows the generation of bright signals at fast temporal

resolution because the entire sample is visualized at

once. To illuminate the sample, light, usually from a

LED source, is filtered through an excitation filter to

achieve the desired wavelength compatible with the fluo-

rophore of choice. Emitted light from the sample then

passes through an emission filter and is collected by a

camera. The camera captures the entire emission signal

from the whole sample including out-of-focus photons.

Therefore, bright signals at fast temporal intervals can

be generated at the cost of increased image noise due to

scattered light (blurry images).

Total internal reflection fluorescence (TIRF) is a

variation of wide-field microscopy based on the reflec-

tion of the light on coverslips, allowing excitation of

3420 FEBS Letters 593 (2019) 3419–3448 ª 2019 Federation of European Biochemical Societies

Imaging adenovirus N. Pied and H. Wodrich

 18733468, 2019, 24, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.13690 by U

niversite D
e B

ordeaux, W
iley O

nline L
ibrary on [30/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the sample via an evanescent wavelength. Only the

part of the sample close to the coverslips is illumi-

nated. This reduces photobleaching and decreases

noise from out-of-focus excitation, but limits the pene-

tration depth to ~ 100 nm. Consequently, TIRF is

essentially used to image Ad processes close to the cell

surface [33,34].

To overcome the problems associated with wide-field

illumination, laser scanning confocal microscopy

(LSCM) [35] has been used for Ad infection [36–40].

LSCM uses an excitation laser of a specific wavelength

to scan a defined area of the sample, while emission

light is collected through a pinhole that removes out-

of-focus photons coming from the sample. This feature

controls the depth of the field of view and allows col-

lecting serial optic sections, providing improved spatial

resolution and image contrast. The drawback of pin-

hole collection is the reduced amount of collected pho-

tons, which requires high intensity of excitation light.

Slower acquisition time and higher light input can

cause photobleaching and phototoxicity, which can be

a major limitation when analyzing living cells, fast bio-

logical processes, or weak signals. To limit the excita-

tion energy and increase acquisition speed, spinning

disk confocal microscopy can be used. Rather than

using a single pinhole, several pinholes are placed on a

rotating disk allowing for multiple simultaneous scans

of the entire sample, essentially keeping the technologi-

cal advantages of the LSCM approach; this is espe-

cially suitable for live-cell imaging of Ads [41–43].

However, arrayed pinholes collect less light and the

reduction of out-of-focus light is less efficient due to

pinhole cross talk reducing the image contrast.

Techniques have been developed for LSCM such as

fluorescence recovery after photobleaching (FRAP) to

study protein dynamics and fluorescence resonance

energy transfer (FRET) to study protein interactions

[44]. FRAP uses fluorophore bleaching and fluores-

cence recovery as a parameter to characterize the

dynamic behavior of the labeled molecule [45,46].

FRET uses the transfer of excited state energy of a

donor fluorophore to an acceptor fluorophore as read-

out for proximity. Close proximity of donor and

acceptor quenches donor fluorescence and reduces its

fluorescence lifetime, while separation of the labeled

partner results in fluorescence lifetime increase [8].

The diffraction limit of light restricts optical resolution

to ~ 200 nm lateral and ~ 500 nm axial resolution [47],

which is far above the 90 nm size of Ads. Super-resolu-

tion microscopy techniques (nanoscopy) overcome this

diffraction limit pushing resolution into the nm scale.

The deterministic approach uses confocal technology to

precisely determine the exact spatial localization of the

signal, while the stochastic approach uses wide-field tech-

nology to determine the origin of the signal. Stimulated

emission depletion microscopy (STED) combines an

excitation laser and a depletion laser. The depletion laser

forms a geometrical pattern around the excitation laser

and forces excited fluorophores back into dark state

without emitting fluorescent light, essentially limiting the

illuminated area at the focal point, greatly enhancing the

spatial resolution at the cost of photon collection. The

STED resolution limit is infinite and only determined by

the laser power, but practically ~ 50 nm in lateral and

~ 150 nm in axial resolutions are routinely achieved [48].

STED remains technically challenging, and few applica-

tions for Ads exist [43,49]. Single-molecule localization

microscopy uses sequential excitation and detection of a

limited number of molecules over time using photocon-

version of a dye attached to the specimen of interest. Sin-

gle images are then processed to generate a computed

probability (stochastic) image of the origin of the fluores-

cence. Image generation through photoactivated localiza-

tion microscopy (PALM) uses dyes that are activated,

detected, and bleached (single use), while stochastic opti-

cal reconstruction microscopy (STORM) uses photo-

switchable dyes (multiple use) that have a dark state

[50,51]. Both PALM and STORM can reach up to

20 nm in lateral and less than 50 nm in axial resolution,

but require extensive, time-consuming postprocessing of

individual images and so far have not been used to study

Ad infection.

Labeling strategies for Ad particles or capsid

components thereof

To use FM in Ad imaging, labeling strategies are crucial.

Figure 1 provides an overview of the different strategies

for capsid and genome labeling discussed in this section.

Indirect immunofluorescence (IF) using antiserum from

AdC5-inoculated rabbits paired with fluorescein-labeled

secondary antibodies was the first FM strategy to stain

virus-infected cells and allowed quantifying the number

and timing of appearance of infected cells [20]. Subse-

quent studies used IF to detect Ads and adenoviral gene

products even before their biological significance was

fully understood, exemplified by the P-antigen [22,52]

later shown to detect the single-strand DNA binding pro-

tein (DBP) [53,54], and the T-antigen [21,22] later shown

to detect the transforming early E1B-55k protein [55–57].

Today, several specific antibodies for FM exist against

structural and nonstructural Ad proteins, summarized in

Table 1.

To study intact Ad particles such as upon entry,

direct labeling of Ad capsids was developed to comple-

ment IF analysis and extend observations to living
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cells [23,24]. The principle is based on limited labeling

of the capsid with dyes reactive to accessible primary

amine groups [58–60]. This strategy is applicable to

other Ad species [61] or viral proteins [62]. Alterna-

tively, Ads have been labeled with biotin groups to

couple quantum dots (Q-dots), small particles contain-

ing highly photostable inorganic dyes via streptavidin

[63]. An ever-expanding range of dyes with different

excitation properties and ready-to-use kits has made

direct capsid labeling a valuable and easy-to-use

approach [64]. For site-specific labeling of individual

proteins on the capsid surface, reactive side groups can

be introduced during virus production either geneti-

cally [65] or through metabolic labeling with unnatural

amino acids [66,67], or sugars [68] followed by cova-

lent modification with fluorophores using biocompati-

ble click chemistry [69].

An alternative capsid tagging method is the cloning

of a fluorescent protein (FP) fusion tag into the viral

genome such as the enhanced GFP [70]. Enhanced

GFP and variants are small, relatively inert FPs with

high quantum yields, and specific excitation and emis-

sion spectra ideal for in vivo detection in FM. Their

size (26 kDa) puts practical limitations to the amount

of FP molecules that can be incorporated into Ad

particles. Tagged Ad particles exploited the carboxy

terminus of surface-exposed minor capsid protein IX

[71–74] and the core-associated proteins V, VII, and

X, either expressed from heterologous promoter

[73,75] or as tagged genomic versions [76]. However, in

all instances, the tag was reported to negatively

Fig. 1. Adenovirus labeling strategies.

Left: Capsid labeling strategies; detection

of Ad capsids in FM can be either indirect

using immunofluorescence methods or

through direct labeling of the whole capsid

using nonspecific labeling with amine

reactive dyes or site-specific incorporation

of chromophore reactive groups. Right:

genome labeling strategies; detection of

viral genomes can be done by detecting

genome-associated proteins with

immunofluorescence methods or by

metabolically labeling the genomes with

modified nucleotides during production.

Fluorescent proteins binding to the DNA

or the viral core are suitable tools to

detect Ad genomes in living cells (see text

for details).

Table 1. Antibodies against adenoviral proteins used in

fluorescence microscopy.

Structural proteins Nonstructural proteins

Ad protein Reference Ad protein Reference

Hexon [38] VIa2 [326]

Hexon (R70) [163] DBP [54,327]

Penton [321,322] preTP [229], described

in Ref. [328]

Fiber [321] E1A (AdC5) [329], described

in Refs [330,331]

IIIA [323] E1A (AdA12) [332]

V [260], described

in Ref. [324]

E1B-55k [57]

VI [146] E2-Pol [333], described

in Ref. [334],

EM only

VII [42,176,177] E3-11.6k [261], described

in Ref. [335]

VIII [258], western

blot only

E4-ORF6 [336]

IX [322] E4ORF3 [337]

X N.A. L1-52/55k [249]

AVP (L3-23k) [2,325], western

blot only

L4-22k [253]
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influence several parameters of viral infectivity. Many

capsid tagging approaches were used for in vivo imag-

ing, for example, of conditionally replicating oncolytic

adenoviruses in mouse models, which is discussed else-

where [77–84].

Direct detection of Ad genomes was initially done

through different fluorescence in situ hybridization

(FISH) techniques [85–88]. A drawback of FISH is the

harsh specimen treatment to denature the DNA target.

Cell-permeable labeling of viral DNA with ‘clickable’

nucleoside analogs such as 5-ethynyl-20-deoxycytidine
(EdC) permitted metabolic labeling of viral genomes

during replication and, upon cell fixation, their detec-

tion via azide-modified FPs [49,89]. A widely used alter-

native is metabolic 5-bromo-20-deoxyuridine (BrdU)

labeling and subsequent antibody detection of BrdU

incorporated into viral genomes [88–91]. Antibody

detection of the genome-associated protein VII is fre-

quently used as an indirect method for Ad genome

detection. Protein VII detection results in clear punctu-

ated signals for genomes after nuclear arrival at least

during the first hours of infection [42,92,93]. Antibodies

against TAF1b/SET, which associates with protein VII

on incoming genomes, provide an alternative detection

method for incoming genomes [42,92,93]. The ability to

quantitatively bind protein VII on incoming genomes

was exploited as the first robust detection system for

incoming genomes in live-cell imaging by fusing

TAF1b/SET with GFP or mCherry [42,89,94]. Few

attempts have been made to label Ad genomes in living

cells throughout the replication cycle. In the AdLite sys-

tem, multiple genomic copies of the TetO repressor

binding sequence were generated and viruses were

grown in GFP-tagged TetR protein-expressing cells.

This allowed visualizing particles during cytosolic trans-

port upon entry, but the signal was lost during nuclear

genome import [29]. AnchOR3-tagged Ad is the first sys-

tem permitting genome detection throughout the whole

replication cycle in living cells without negative impact

on transcription or replication. AnchOR3 uses genomic

insertion of short repeats, based on the bacterial parti-

tioning system [95]. The sequence promotes oligomer-

ization of a GFP-tagged reporter protein (OR3-GFP)

upon binding to double-stranded viral DNA, generating

a bright fluorescent spot that marks individual incoming

as well as replicated genomes [46].

Labeling strategies and use of cell models

Labeling the host cell is an important part of FM in

Ad imaging. A plethora of commercial antibodies exist

to detect specific proteins in cells. In addition, several

specific compartment or cellular organelle markers exist

and can be used to provide a reference in infected cells

[25,96]. The nonexhaustive list comprises chloromethyl-

X-rosamine known as MitoTracker for mitochondria

[97], BODIPY or ER-Tracker for the endoplasmic

reticulum [98], or LysoTracker for lysosomes [99]. pH-

sensitive dyes such as fluorescein are used to monitor

pH changes in the cell [100], and silicon rhodamine

dyes have been used to stain actin and tubulin filaments

[101]. Tagging overexpressed proteins with FP-tags is

also widely used in live-cell imaging, and several com-

panies offer a range of suitable expression vectors. To

visualize endogenous proteins in living cells, FP-tagged

nanobodies (chromobodies) provide several advan-

tages. Nanobodies are the smallest antibody structure

with binding capacity [102,103]. Chromobodies are

expressed as FP-targeting endogenous epitopes [104]

compatible with live-cell imaging and super-resolution

approaches [105,106].

The vast majority of FM of Ad infection uses adher-

ent immortalized cell culture models such as cervix

carcinoma-derived HeLa or KB epithelial cells

[5,7,24,37,107,108] the latter being contaminated with

HeLa cells and should not be used anymore. Other cell

models include lung epithelia-derived adenocarcinoma

A549 cells [8,60,109] or osteosarcoma-derived U2OS

epithelial cells [42,110,111]. All of these cell lines sup-

port the Ad life cycle, and their flatness and favorable

nucleus-to-cytosol ratios make them ideal for FM. Ads

display tropism for epithelial cells and, depending on

the subgroup, may use different receptors such CAR

(coxsackie and adenovirus receptor) and integrins,

CD46, or sialic acids [112,113]. Functional receptor

availability is important, and model cell lines may have

different receptor densities [61], limiting infection effi-

ciency [114]. For example, CAR is present on many

epithelial cells, but is hardly expressed on monocyte-

derived THP-1 cells [115] or alveolar macrophages

[116], while in neurons, CAR holds additional func-

tions in Ad entry [117]. Many cell lines have dysfunc-

tional pathways affecting the Ad life cycle [118]. In

contrast, adherent primary cells such as fibroblasts

may retain vital signaling pathways, but are difficult to

infect due to the lack of primary receptors. Restoring

CAR expression in fibroblasts can circumvent this

problem [119] and help identify differences to immor-

talized cells [39,120].

Primary immune cells such as macrophages or den-

dritic cells might also be employed to study Ad infec-

tion and antiviral responses. Low expression of CAR

makes them difficult to infect [116], and their morphol-

ogy is less convenient for imaging approaches although

feasible [121–123]. Choosing an appropriate cell model

for Ad imaging thus depends on a balance between

3423FEBS Letters 593 (2019) 3419–3448 ª 2019 Federation of European Biochemical Societies
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convenience of use and the biological question to be

addressed.

From the cell surface to the nuclear
pore

Ad infection starts with specific cell surface receptor

binding on the target cell. Receptor binding triggers

virus uptake by endocytic mechanisms. Endocytosed

viruses undergo structural alterations and escape from

the endosomal compartment by membrane lysis to

enter the cytosol. Cytosolic viruses use directed micro-

tubule transport to reach the nucleus. Docking at the

NPC promotes capsid disassembly and genome

import. Imaging Ad using FM methods was instru-

mental and provided direct evidence for many of these

steps.

Cell attachment and endocytosis

Receptor binding at the cell surface was first visualized

by detecting AdC5 with IF [124] or rhodamine-labeled

AdC2 capsids [23]. Both studies showed that low-tem-

perature binding results in a uniform cell surface distri-

bution that transforms into clusters upon shifting the

temperature to 37 °C in a coordinated process, which

was blocked by drugs affecting the cytoskeleton. The

authors concluded that Ad binding redistributes and

alters mobile putative receptors in the plasma mem-

brane conducive to virus attachment and internaliza-

tion. Clustering was also observed upon AdC2 binding

to HeLa cells using specific antibodies against fibro-

nectin and vibronectin, two integrin substrates [125].

Integrins avb3 and avb5 were identified as AdC2

receptors that promote internalization through con-

served RGD peptide motives in the penton base [126]

followed by the identification of CAR, which is

responsible for the fiber-mediated initial cell binding

[127].

Atto-dye-tagged AdC2 was tracked by TIRF micro-

scopy to investigate mobility upon cell attachment and

uptake [33]. Automatic single-particle tracking and

trajectory segmentation [128] distinguished diffusion,

drift, and confined motions as possible particle move-

ments. A virus internalization assay (based on dyna-

min-GFP intensity peaks upon Ad endocytosis)

revealed that most Ads were in diffusive motion dur-

ing the first 15 s of infection, and then, diffusion rates

decreased whereas drifting and confined movement

increased. Diffusion and drifting motions were linked

to CAR binding, while integrin affinity promoted con-

fined movement, suggestive of a model in which inte-

grin and CAR undergo different membrane dynamics.

Adenovirus binding to both receptors may impose

opposing mechanical forces, which prime capsid alter-

ations required for uptake. Capsid alterations or ‘un-

coating’ is essential for Ad entry [6]. Shedding of fiber

molecules from attached Ads prior to endocytosis [37]

is likely the earliest uncoating event [33]. FRET experi-

ments provided support for rapid and stepwise capsid

uncoating during entry [8]. FRET signals were gener-

ated by random labeling of surface-exposed capsid

proteins with limiting amounts of Alexa488 (donor)

and Alexa594 (acceptor) fluorophores. The FRET sig-

nal was monitored during uptake, and an increase in

fluorescence lifetime (spatial separation between donor

and acceptor) was observed at ~ 3 min and at

~ 60 min after temperature shift to 37 °C, coinciding

with biochemically estimated early fiber release and

late capsid disassembly [6].

Partial capsid disassembly is linked to Ad uptake

into cells. Initial studies of EM time-course analysis

suggested an endo- or phagocytic uptake [4] or direct

membrane penetration [129,130]. These studies con-

cluded that Ad enters into the cytosol as an intact

particle through structural alterations of the capsid.

Co-uptake of cell-impermeable fluorescent dextran

showed that Ads trigger endocytosis and endosome

rupture resulting in cytosolic fluorescence of the co-ad-

ministered dextran [5]. In a later study, fluorescent Ads

and fluorescein isothiocyanate-labeled bovine serum

albumin (FITC-BSA) coupled to a nuclear localization

signal (used as a fluid phase marker) showed that co-

internalization of macromolecules is caused by induc-

tion of macropinocytosis and lysis of the fluid phase

marker-containing vacuoles. Macropinocytosis was

suggested as an alternative entry pathway but is not

the major route of Ad entry [131]. The endosome com-

partment penetrated by Ads was also studied using

FM. Endocytosed fluorescent Atto565-labeled AdC2

was costained in IF with a marker for early and late

endosomes. Quantification of the costain showed that

Ad passes through early endosomes (positive for

EEA1, GFP-tagged Rab5, and Pi3P-targeting GFP

probes), but not through late endosomes (positive for

Lamp1), showing that AdC2 escapes to the cytosol

from an early endosomal compartment [132]. Impor-

tantly, this study used the temperature-sensitive Ad

mutant AdC2ts1 as direct experimental control.

AdC2ts1 has a hyperstable capsid and cannot penetrate

the endosome [114,133] and was shown to share the

early endosomal passage with the wild-type, but later

colocalized with Lamp1 and was degraded by lyso-

somes [132].

Most Ad studies use subgroup C viruses, AdC2 or

AdC5. The example of AdC2ts1 mutant trafficking to
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lysosomes demonstrates the importance of capsid

alterations for the viral fate postuptake. AdB3 and

AdB7, two subgroup B viruses, use different cell sur-

face receptors [134] and, unlike AdC2 or AdC5, traf-

fic to lysosomes as revealed by colabeling fluorescent

virus particles with endocytic and lysosome markers.

The investigated subgroup B viruses also do not shed

fibers, do not support fluid phase uptake, and do not

escape from early endosomes. Instead, they accumu-

late in acidic lysosomes and escape from there to the

cytosol, delivering genomes to the nucleus with sev-

eral hours of delay compared to subgroup C viruses,

but without a reduction in efficiency as shown by

time-resolved FISH analysis [114,135,136]. Quantita-

tive IF was used to show that AdD37, a subgroup

D virus, uses caveolin-1-associated and cholesterol-

facilitated entry in primary fibroblasts from cornea

donors. Although membrane penetration was not

determined, this is yet another example for the influ-

ence of cell and genotype [137]. Taken together, FM

helped reveal that Ad entry into cells is a dynamic

process influenced by the fiber molecule and capsid

stability.

Endosomal membrane penetration and escape

Adenovirus-induced membrane rupture during entry

was suggested many years ago based on co-internaliza-

tion of otherwise non-cell-permeable toxins [138,139].

Fluorescence microscopy was used to address the role

of pH in this process, but delivered controversial

results. Endosome acidification inhibitors (such as

chloroquine and ammonium chloride) reduced FITC–
dextran cytosolic localization upon Ad entry [5], and

similarly, bafilomycin A-treated cells showed extended

colocalization of endocytosed fluorescent dextran with

co-endocytosed Cy3-labeled AdC5 over control cells,

suggesting endosomal pH contributes to Ad membrane

rupture [59]. Adenoviruses tagged with pH-sensitive flu-

orescein indicated passage through acidic environment

~ 10 min postinfection, while reaching a neutral envi-

ronment at ~ 1 h postinternalization [8]. In contrast, a

fluorescent assay for direct detection and distinction of

cytosolic and endosomal viruses gave different results

[36]. Alexa488-tagged Ad was used to infect cells, and

limited permeabilization of the plasma membrane with

streptolysin O allowed the detection of cytosolic, but

not endosomal, viruses with anti-Alexa488 antibodies.

Using bafilomycin A, niclosamide, and ammonium

chloride, this assay revealed marginal effects on cytoso-

lic delivery of viruses (including AdB3), suggesting lit-

tle, if any, role for acidification [36]. It is possible that

endosome acidification occurs upon Ad entry, but it

has a limited impact on the capsids ability to penetrate

the endosome.

Initially, the Ad membrane lytic activity was

assigned to integrin binding via penton [140,141]. A

fluorescence-based liposome rupture in vitro assay

identified the internal capsid protein VI as Ad mem-

brane lytic factor, acting through an N-terminal

amphipathic helix [142,143]. Subsequent studies

showed that protein VI becomes exposed to antibody

detection upon entry (see also Fig. 2A) providing a

quantifiable IF readout for capsid uncoating concomi-

tant to membrane rupture [36,40,144]. Producing

AdC2, and the AdC2ts1 mutant, in the presence of

BrdU is an alternative detection method. Similar to

protein VI, genome-incorporated BrdU can be stained

in IF upon entry in an uncoating-dependent manner

[90].

Membrane rupture exposes luminal glycans to the

cytosol, which can be visualized using internal glycan

sensors, such as galectins, accumulating at the site

of membrane damage. Fluorescence detection of galec-

tins Gal3 and Gal8, initially developed for membrane

lysing bacteria [145], was exploited to visualize

Ad-induced membrane rupture under FM

[64,110,111,146,147]. Live-cell imaging of Alexa488-la-

beled AdC5 showed Gal3 punctum formation ~ 15–
30 min postinfection (see also Fig. 2B), whereas no

puncta were found with the uncoating-defective

AdC5ts1 control. Gal3 puncta were also positive for

protein VI and EEA1, suggesting endosome penetra-

tion occurs from early endosomes. Alexa488-labeled

AdC5 infecting U2OS cells stably expressing Gal3

fused to mCherry revealed rapid Gal3 recruitment

upon membrane lysis in living cells at or near the cell

periphery, but not for AdC5ts1 viruses [64,110,146].

Using a protein VI mutant virus (L40Q) with reduced

membrane lytic activity showed reduced and delayed

Gal3 recruitment [146,148]. Live-cell imaging demon-

strated that capsid egress from Gal3-positive vesicles is

a rapid, directional movement, suggesting a motor-dri-

ven process [110], and dynein inhibition prevented

endosomal escape, but not protein VI release and

membrane lysis [111], linking endosomal escape to

cytosolic transport.

Time-resolved FM imaging using calcium probes

and non-cell-permeable propidium iodide revealed that

AdC2 causes lesions in the plasma membrane through

protein VI; these changes precede endosome uptake

and trigger exocytosis of a membrane repair machinery

locally, such as increasing ceramide levels conducive to

Ad endocytosis, while increasing protein VI membrane

binding and lysis [144]. Live-cell imaging of membrane

penetration revealed that membrane fragmentation
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and endosome escape are separate mechanistic events

[64,110]. Cells respond to membrane damage in a

conserved way using autophagy [149]. Time-resolved

quantitative FM showed that protein VI-positive

virions associate with Gal8 (and Gal3)-positive frag-

mented endosomes, which also stained for the autop-

hagy marker LC3 [111,147]. Adenoviruses rapidly

escaped the Gal/LC3-positive compartment, leaving

protein VI behind for autophagic degradation

[111,147]. Studying AdC5ts1 in these assays confirmed

that membrane damage is required for autophagy acti-

vation [111]. A second mutant, AdC5-M1, harboring a

mutation in a conserved PPxY motif in protein VI,

had no protein VI release or lysis defect, but was

unable to escape to the cytosol and accumulated in

LC3-GFP-positive autophagosomal structures, reveal-

ing that AdC5 actively suppresses the cellular autop-

hagy response [40,111].

Adenovirus endosomal membrane penetration and

escape is a prime example of how FM can visualize

the profound effects of slight capsid alterations during

Ad endocytic uptake. Combining quantitative FM,

live-cell imaging, and mutant viruses was instrumental

to separate protein VI exposure, membrane rupture,

and endosomal escape of Ads at the cellular level.

Cytosolic trafficking

Rapid intracytosolic cargo transport often occurs

along microtubules (MTs) using dynein motor com-

plexes on minus-end MTs toward the nucleus or kine-

sin motor complexes on plus-end MTs to the cell

periphery [150]. AdC2 or AdC5 was shown under EM

to bind MTs in the cytosol as membrane-free particles

[151,152]. Tracking Cy3-labeled Ads in live-cell imag-

ing showed that nuclear arrival time is ~ 1 h postinfec-

tion and the maximal average velocity for AdC5

movement is ~ 0.58 µm�s�1, suggesting a motor-based

transport [59]. Fluorescent AdC2 infection in combina-

tion with MT-perturbing drugs and time-lapse micro-

scopy showed that a functional MT network is

necessary for rapid Ad transport [153]. Microinjection

of anti-dynein antibodies confirmed a role for dynein

motor complexes in minus-end movement by reducing

the velocity of AdC5-Cy3 capsid [60], and dynein stim-

ulated Ad in vitro binding to MT [154]. Hexon was

Fig. 2. Adenovirus endosome penetration:

(A) Ad protein VI release. U2OS cells were

infected with Alexa594-labeled AdC5 (red

signal). At 20 min postinfection, cells were

fixed and stained with antibodies against

capsid protein VI (green signal) and

galectin-8 (Gal8, gray signal). The image

shows an enlarged part of the cytosol

imaged by confocal microscopy (a, LSCM),

super-resolution microscopy (b, STED), or

following deconvolution as overview (c) or

as high magnification of the particle

indicated by the red arrow (d). The scale

bar is 2 µm. (B) Ad endosomal membrane

lysis. Gal3-mCherry-expressing U2OS cells

were infected with Alexa488-labeled AdC5

and imaged by spinning disk confocal

microscopy. Left: three frames of

Alexa488-labeled virus particles

penetrating the endosomal membrane.

Arrows point at viruses inducing

membrane damage visualized by Gal3

acquisition (green virus turning yellow).

Right: kymograph representing the

dynamic changes during endosomal

membrane penetration as fluorescence

intensity over time from the entire movie.

The membrane lysis event is shown by

appearance of Gal3 stain at 82 s (frame

rate is 1 frame�s�1).
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suggested to mediate the capsid interaction with MTs

[155]. Nuclear or microtubule-organizing center

(MTOC) arrival of fluorescent capsids is a convenient

readout for Ad trafficking and was used to confirm a

role for hexon as MT transport mediator [156,157].

The association of fluorescent capsids with dynein

heavy chain after endosomal escape and until capsids

reached the nucleus, but not for dynactin, confirmed

that hexon serves as direct dynein receptor, supporting

complementing in vitro studies [157]. In contrast,

microinjection of anti-kinesin antibodies did not affect

nuclear arrival of labeled capsids [60], while segmenta-

tion of fluorescent Ad trajectories [128] in cells overex-

pressing dynactin showed alteration for both plus-end

and minus-end motions linking Ad to dynein- and

kinesin-mediated transport [41].

Studies using fluorescent Ads showed that minus-

end-directed MT movement accumulates Ads in many

cells at the MTOC, suggesting that this might be an

obligatory step prior to transfer toward and docking

at the NPC [60,158]. Enucleated cells, where fluores-

cent capsids concentrate at the MTOC because the

route to the nucleus is blocked, support such a model

[30]. This implies that Ads at one point need to reverse

directionality by either targeting plus-end MTs or dif-

ferent transport means. This requirement was subse-

quently exploited to deplete a collection of kinesins

(assuming increased viral MTOC association). Indeed,

depletion of kinesin-1 family member Kif5B promoted

Ad MTOC accumulation, identifying a direct involve-

ment of this kinesin in Ad transport [32]. Strong Ad

MTOC accumulation also occurs when cells are trea-

ted with leptomycin B (LMB), a highly specific inhibi-

tor of the nuclear export receptor chromosome

maintenance 1 (CRM1) suggesting a role in translocat-

ing the virus to the nucleus [159]. Live-cell imaging

and tracking of capsid movements showed enhanced

MT association in LMB-treated cells; STED micro-

scopy was used to plot distances between particles and

MTs in the nuclear periphery and confirmed that

LMB prevented virus unloading from MT [43]. How-

ever, using GFP label of the viral core (AdLite),

instead of fluorescent capsids, showed no effect of

MT-severing agents on intracellular mobility of the

GFP signal, nucleus association, or transgene expres-

sion [29]. Also, MTOC accumulation of fluorescently

labeled-AdC5 in 293 cells was shown to be MT-depen-

dent, but subsequent genome delivery was not affected

when cells were treated with MT-depolymerizing

agents [160]. It remains unknown how viruses switch

between plus-end and minus-end motions or whether

passing through the MTOC to reach the nucleus is

essential.

Docking at the NPC

Early EM images suggested Ad association with the

NPC, and fluorescently labeled Ads associate with

nuclei within ~ 1 h postinfection [4,59,129,151,161].

In contrast, microinjection of wheat germ agglutinin,

which sterically blocks access to the NPC, or

microinjection of the NPC-specific antibody RL1 pre-

vented nuclear binding of FITC-AdC2, suggesting

that NPC access is conditional for Ad nuclear

attachment [6,7]. Cy3-AdC5 bound to purified nuclei

from rat liver could be removed by an excess of

unlabeled AdC5 and AdB7, and antibody pretreat-

ment significantly reduced Cy3-AdC5, suggesting a

direct, saturable, and specific nuclear binding [28].

AdC5 bound to the NPC in digitonin-permeabilized

cells, and binding was reduced with wheat germ

agglutinin or an excess of an artificial nuclear local-

ization signal (NLS)-bearing nuclear import substrate,

suggesting a functional link to nuclear import [162].

NPC docking by fluorescent AdC2 was not blocked

by neither inactivation of AVP nor depletion of

intraluminal calcium storage, which both affected

nuclear genome import [7,133] showing functional

separation of docking and genome release/import.

Capsid disassembly upon NPC docking was deduced

from reduced FRET signals of dually fluorescently

labeled capsids observed at ~ 1 h postinfection [8]

and GFP-tagged protein V-labeled AdC2 capsids los-

ing the fluorescent signal at the NPC [76]. Aden-

ovirus disassembly at the NPC was also shown using

an anti-hexon antibody (R70) [163], recognizing an

epitope hidden in intact capsids, which remained

inaccessible in LMB-treated cells [159]. R70 epitope

accessibility was further used to identify roles for

Nup214 and histone H1 in docking and disassembly

using microinjection of specific antibodies and

Nup214 depletion [164,165]. Antibody detection of

purified hexon binding to the nuclear rim in digi-

tonin-permeabilized cells revealed that a small N-ter-

minal Nup214-domain blocked both hexon binding

to the nuclear envelope and Ad genome import [166].

In contrast, depletion of Nup358, another major

cytosolic nucleoporin, did not prevent Ad docking or

hexon binding [165,166], but was shown to limit R70

epitope accessibility, suggesting a role in capsid disas-

sembly [165]. Disassembled AdC2 capsids (positive

for R70) colocalized with several nucleoporins

(Nup358, Nup214, and Nup62) at the cell periphery

at ~ 3 h postinfection, indicating viral extraction of

nucleoporins from the NPC, which resulted in

increased permeability of the nuclear envelope for

microinjected fluorescent dextrans [165]. Live-cell
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imaging using photoconvertible Kaede-Nup214 con-

firmed that Nup214 in the cell periphery originated

from the nuclear envelope and that transport

required plus-end-directed partially disassembled cap-

sid movement in association with GFP-tagged kinesin

light chain 1, suggesting a role of MT linked kinesin-

1 motors in capsid disassembly and genome release

at the NPC [165].

From genome import to particle
egress

Ad genome release and import into the nucleus

Fluorescence microscopy and EM show that Ads reach

the NPC as partially disassembled, but morphologi-

cally intact particles. Although docking increases

nuclear envelope permeability (shown by influx of

large fluorophores [46,165]), Ad capsids do not venture

beyond this point because they exceed the size limit of

~ 40 nm for nuclear import substrates [167]. Aden-

oviruses rather disassemble and release their highly

compacted genome for nuclear import. To study gen-

ome import by FM requires capsid-independent gen-

ome detection methods (examples for Ad genome

detection using FM are shown in Fig. 3). The first

visualization of genomes in the nucleus used radioac-

tively labeled AdA12 genomes in HEK cells, and

discrete nuclear puncta [168,169] accumulating within

1–2 h postinfection were observed [161,169]. Develop-

ing FISH to replace radioactive methods was done to

detect AdC5 genomes in infected cells [170] or biotiny-

lated probes detectable by IF [87]. Adenovirus genome

detection through FISH was used to confirm genome

import through the NPC [7], to compare genome

nuclear import efficiencies between Ad and artificial

liposomes [171] and to identify a region in Nup214 for

capsid docking [166]. FISH was also used to function-

ally investigate AdC5 genome import in digitonin-per-

meabilized cells, showing that genome import depends

on energy, cellular factors, and the NPC [162] and

could be outcompeted by an excess of the importin a/
b substrate BSA-NLS [162], or the transportin sub-

strate GST-M9 [172]. The exact genome import mech-

anism remains unclear, but may involve importing

genome-associated core proteins [172–174].

Immunofluorescence detection of genome-associated

protein VII is a robust alternative to detect imported

genomes. Protein VII is the most abundant genome-as-

sociated protein, and protein VII epitopes are only

revealed when the genome is imported into the nucleus

[7]. The high local protein VII concentration on the

genome provides a strong and distinguishable dot-like

signal each corresponding to one viral genome, allow-

ing quantitative assays [175]. Several protein VII anti-

bodies have been used in IF [42,176,177].

Metabolically labeling DNA with ‘clickable’ nucle-

oside analogs was recently used to visualize incoming

viral genomes with high spatial precision using STED

microscopy. Unlike FISH, this method can be com-

bined with IF. AdC5 with EdA/EdC-labeled genome

showed that ~ 30 min postinfection, genomes are

accessible to Alexa594-azide click detection, but are

still in capsids as revealed by anti-hexon stain.

Remarkably, at ~ 150 min postinfection only < 50%

of genomes were imported while a significant propor-

tion was found capsid- and protein VII-free in the

cytosol, which had not been observed previously [49].

Click chemistry also showed that most (but not all)

nuclear protein VII dots contain viral genomes [49].

Quantifying protein VII dots over time to determine

postnuclear import is controversial. Most studies show

protein VII dots for at least 10 h with progressive and

transcription-dependent removal [92,93], while others

suggested that protein VII is lost progressively after

nuclear arrival [178] (reviewed in Ref. [179]). Thus,

visualization of protein VII is a convenient surrogate

marker for imported viral genomes, but should be

carefully evaluated. SET1/TAF-Ib is involved in chro-

matin reorganization and binds directly to protein VII

[42,92,176,180]. This feature of SET1/TAF-Ib was

exploited for live-cell imaging of single incoming viral

genomes and their movement in the nucleus of living

cells. Stable overexpression of fluorescently labeled

SET1/TAF-Ib accumulates on incoming AdC5 gen-

omes detectable as individual fluorescent spots. Spot

tracking revealed a confined mobility upon nuclear

import [42] reminiscent of anchoring to an unspecified

nuclear matrix [181].

More recently, AnchOR3, a novel in vivo DNA tag-

ging system [95], was transferred to AdC5 genomes

[46]. AnchOR3 spots appear ~ 1 to 3 h postinfection

inside the nuclei and can be traced with excellent

spatial and temporal resolution and high signal-to-

noise ratio. The approach was used to show associa-

tion of individual AdC5 genomes with condensed

chromosomes marked with fluorescently labeled his-

tones during cell division providing a rational for

genome cell-to-cell transfer in dividing cells [46].

AdV genome transcription and RNA export

Adenovirus gene expression is initiated at ~ 1–2 h

postinfection from early transcription units E1-E4 and

following replication at ~ 6–8 h postinfection from

late transcription units L1-L5 [182–188]. Despite
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progress in visualizing incoming genomes, few

attempts have been made to visualize the transcription

process that follows by using FM. Most studies con-

cern transcription and RNA processing of late gene

expression and use indirect readouts. Autoradiogra-

phy detecting newly synthesized RNAs and in situ

hybridization with sequence-specific probes were used

in EM to detect viral late RNAs [189,190] and PolIII

Fig. 3. Examples for adenovirus genome labeling. (A) Detection of incoming Ad genomes. Top row: U2OS cells were infected with AdC5

using 3000 particles per cell. At 3 h postinfection, cells were fixed, extracted, and stained with antibodies against endogenous Taf1b (a,

green signal) and protein VII (b, red signal) colocalizing in the merge (c, DAPI stain indicates the nucleus). Middle row: HeLa cells were

infected with AdC5 using 3000 particles per cell. At 3 h postinfection, cells were fixed and hybridized with a probe against the whole AdC5

genome (a, green signal). The sample was subsequently stained with antibodies against the nucleoporin Nup358 to show the nuclear

boundaries (b, red signal), and both signals were combined (c). Bottom row: Or3-GFP (a, green signal) was used to transfect stable Taf1b-

mCherry-expressing U2OS cells and infected with AnchOR3-AdC5 using 5000 particles per cell. The images are individual frames from

spinning disk confocal live-cell imaging (merge in c). (B) Detection of replicated Ad genomes. Top row: U2OS cells were infected with AdC5

using 3000 particles per cell for 3 h followed by inoculum removal. At 24 h postinfection, cells were fixed and stained with antibodies

against preterminal protein (pTP) (a, green signal) and DBP (b, red signal), and both signals were combined (c). Middle row: U2OS cells

were infected with AdC5 as above. At 15 h postinfection, cells were labeled for 1 h with EdU and genome-incorporated EdU was detected

with Alexa-azide (a, green signal) and stained with antibodies against DBP (b, red signal), and both signals were combined (c). Bottom row:

Stable USP7-mCherry-expressing U2OS cells were infected with a mixture of 5000 particles per cell of AnchOR3-AdC5 and 500 particles of

replication-competent AdC5 for 3 h followed by inoculum removal. The images are individual frames from spinning disk confocal live-cell

imaging taken at ~ 16 h postinfection (merge in c). Scale bars in all images are 5 µm.
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transcribed virus-associated RNAs [191]. Late viral

RNAs located with early RCs suggesting a link

between replication and transcription. An RNA-FISH

approach with a whole-genomic AdC2 probe under

nondenaturing conditions showed discrete, individual,

dot-like localization of transcripts from ~ 7 to 10 h

postinfection, which enlarged to ringlike structures,

eventually occupying the nucleoplasm, and later at

24 h postinfection, viral RNAs were also found in the

cytoplasm [192]. Specific probes overlapping the first

splice junction of the tripartite leader RNA, derived

from the major late promoter, detected spliced and

unspliced viral mRNAs with RC suggesting cotran-

scriptional mRNA processing [193]. Selective DNase

and RNase digestion and pulse-chase labeling of repli-

cating genomes with BrdU followed by FISH and

antibody detection revealed that freshly synthesized

viral genomes spread from RCs to the surrounding

nucleoplasm. Here, they serve as transcription tem-

plates providing evidence for a spatial and functional

separation of replication and transcription [88].

Immunofluorescence studies complemented FISH

analysis to detect the redistribution of splice and

RNA processing factors confirming spatial and tem-

poral coordination of transcription and RNA process-

ing in the vicinity of RCs [192,194–197]. Padlock

probes hybridizing with 50 and 30 target sequences

were recently introduced to detect simultaneously

AdC5 RNA and DNA at the single-cell level [198].

Padlock probes circularize upon target hybridization,

and rolling circle amplification ensures strong and

highly specific signals. To distinguish between RNA

and DNA, exon–exon junctions have been targeted.

This approach is also capable of distinguishing, for

example, E1A splice variants 13S and 12S [199,200].

A priori, this technique permits single RNA and

DNA molecule detection, but E1A transcripts were

not detected before 13h postinfection, suggesting some

limits to the system [198].

Interestingly, no method has been reported that

accurately detects single and specific Ad RNA mole-

cules to show their spatial and temporal organization,

for example, during early transcription or RNA

export, although such single mRNA detection methods

for fixed and living cells exist [201–207]. Early reports

showed that late in infection, export of most cellular

mRNAs is inhibited in favor of viral mRNA export

[208–210]. This selective viral mRNA export is medi-

ated by a complex between the E1B-55kDa protein

(E1B-55k) and E4-34kDa (E4-ORF6) localized at the

periphery of RCs [211–213]. Exploiting the potential

for spatial detection between nucleus and cytosol, a

combination of mutational approaches, heterokaryon

assays, and microinjection of purified recombinant

proteins showed that the E1B-55k–E4orf6 complex

constantly shuttles between the nucleus and the cytosol

through nuclear export signals (NES) encoded in both

proteins [214,215]. NES have been implicated in the

export of some mRNAs via CRM1, but late viral gene

expression was not sensitive to LMB, a specific inhibi-

tor of the NES-mediated export pathway [216,217].

Instead, siRNA depletion or dominant negative

mutants of the mRNA export receptor Nfx1/Tap,

which colocalizes with the E1B-55k–E4orf6 complex at

the RCs, were shown to reduce late viral gene expres-

sion independent of CRM1 [218]. In contrast, LMB

reduced early gene expression, suggesting CRM1 sup-

ported early mRNA export [219]. Today, it remains

elusive how Ads manage to specifically export their

RNAs. All current studies on Ad RNA export use

viral gene expression or indirect quantification meth-

ods. Direct imaging of viral mRNAs may provide

great potential to solve this open question.

Ad genome replication

A serum (termed P-antigen) generated by injection of

a rabbit with clarified lysates from Ad-infected cells

detected nuclear dots as early as 6–7 h postinfection in

HEK cells, and these dots developed into ringlike

structures accurately depicting the formation of RCs

during Ad replication [22,52]. The P-antigen was later

shown to detect the single-strand DBP [53,54], which

binds viral ssDNA during genome replication

[220,221]. FISH detection of Ad genomes with rho-

damine-marked RNA probes was developed to com-

plement radioactive hybridization probes [170,222,223].

The FISH signal identified nuclear RCs with distinct

morphologies that costained for DBP formally linking

both markers [224]. Several studies have described how

the DBP IF stain changes during Ad replication

reflecting morphological changes in the nucleus. In

most cells, the DBP signal is detectable at ~ 6–7 h

postinfection as faint cytosolic stain translocating into

the nucleoplasm by ~ 10–12 h postinfection where it

eventually forms dots that fuse and grow into ringlike

or globular structures morphing into larger, irregular-

shaped intranuclear domains [54,224,225]. Currently,

DBP is frequently used as reference stain to describe

spatial and temporal events in the nucleus of Ad-in-

fected cells [88,195–197]. In addition, DBP was used to

characterize Ad replication itself [46,89,226–228] to

identify cellular and viral proteins that are sequestered

into viral RCs [94,229–232] or used as spatial or tim-

ing reference to study non-RC-linked events [233–236].

Recent super-resolution microscopy performed on
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isolated replication compartments from infected HeLa

cells suggests a dynamic RC subcompartmentalization

of DBP [237]. Ubiquitin specific protease 7 (USP7/

HAUSP) is a cellular protein that is functionally

required for AdC5 replication [231] and phenocopies

the distribution of DBP, serving as a robust alternative

marker for Ad replication [89,231]. Pulse-chase experi-

ments with BrdU incorporating genomes were used to

label replication dynamics, showing the spatial separa-

tion of replication and transcription [88]. Pulse-chase

labeling with EdU and click chemistry confirmed the

intranuclear transport of freshly replicated genomes

toward the periphery of RCs at ~ 16–20 h postinfec-

tion. In contrast, at ~ 20–24 h postinfection replicated

genomes accumulated in a novel nuclear structure,

which the authors termed ViPR bodies for virus-in-

duced postreplication bodies [89], which resemble

nuclear domains containing viral genomes identified by

radioactive hybridization [222,223]. Virus-induced

postreplication bodies were shown to be delineated by

USP7 [89] and DBP [236] concomitantly with their

appearance suggesting a change in replication mode.

Immunofluorescence staining showed that ViPR bodies

accumulate several nucleolar proteins such as Myb-

binding protein 1A (Mybbp1A) [89], nucleophosmin

(NPM1/B23), nucleolin (NCL), and nucleolar tran-

scription factor 1 (UBF1) [236], previously shown to

be involved in genome processing [238–242]. Because

ViPR bodies contain viral chromatin and chromatin

modulators, but are devoid of histones, it was sug-

gested that they are sites of late viral chromatin assem-

bly [46,89,236]. AdC5-labeled with AnchOR3

technology were used to infect U2OS cells stably

expressing USP7-mCherry as RC marker allowing the

first dynamic description of viral replication [46].

Quantification of the USP7-mCherry signal (RC) and

the OR3-GFP signal (replicated double-stranded gen-

omes) at high temporal resolution (20 min per frame)

allowed the quantification of replication rates from the

GFP signal. Early RCs coincided with replication rates

of ~10 genomes per hour and genomes accumulating

in their periphery. With the appearance of late RCs,

replication rates suddenly increased to > 100 genomes

per hour and newly synthesized genomes progressively

accumulated in ViPR bodies [46]. This first dynamic

description of the genome replication cycle confirmed

many of the previous morphological observations

done with DBP (see above), putting them into a

dynamic context. The fact that genome replication has

two clearly distinguishable kinetic phases was previ-

ously unknown and showed the importance of generat-

ing imaging systems for Ad that capture dynamic

processes [46].

Ad assembly and egress

Adenovirus assembly generates initially immature non-

infectious particles. Maturation into infectious parti-

cles involves processing of several capsid proteins by

AVP [15,91,243]. Nuclear assembly was suspected fol-

lowing EM observation of arrays of viruses inside the

nucleus of infected HeLa cells [16,17,244]. Electron

microscopy also showed a paracrystalline nuclear

structure not containing virus particles, but reacting

with capsid specific or core specific antibodies, suggest-

ing they could be sites of virus assembly [245,246].

Adenovirus assembly and egress is still enigmatic, and

very few studies have used FM to visualize the process

at the cellular level. Based on biochemical data, the

use of temperature-sensitive Ad mutants, and EM

analysis of purified virus intermediates, virus assembly

was proposed to occur either sequentially (capsid

assembly precedes genome packaging) or concomi-

tantly (capsids and genomes assemble together) [247].

Virus assembly depends on functional viral scaffold

L1-52/55k protein present in assembly intermediates,

but absent from mature virions [248]. Immunofluores-

cence of L1-52/55k showed a nuclear distribution dis-

tinct from DBP-positive RCs suggesting spatial

separation of replication and assembly [248,249],

although biochemical analysis suggested that assembly

requires replication [250]. A combination of IF with

immuno-EM compared wild-type AdC5 with a pack-

aging delayed mutant. BrdU-labeled freshly replicated

genomes were shown to partially overlap with L1-52/

55k at the periphery of RCs. Using careful EM analy-

sis, the authors find capsids with partly inserted cores

in this zone in strong support of a concomitant assem-

bly model and propose that L1 present on assembled

cores as well as immature particles drives the coupled

encapsidation–assembly process [91]. Indeed, L1-52/

55k also associates with protein IVa2 [251] and forms

a complex with L4-22k protein that is involved in gen-

ome binding and packaging [252–254]. Alternatively,

genomes may be inserted into preassembled capsids by

virtue of a putative portal protein [255,256]. FM

showed that protein IVa2 and DBP partially overlap

in transfected cells with another assembly factor, the

L4-33k protein and E4-ORF6, and all four are found

by immune-EM at a single virus vertex of purified par-

ticles [256,257].

Nucleophosmin (NPM1/B23) is one of the few cellu-

lar factors for which FM suggests a role in capsid

assembly. Depletion of NPM1/B23 prevents capsid

assembly without affecting replication [241], and

NPM1/B23 relocalizes from nucleoli in infected cells to

colocalize with capsid protein IX and core protein V
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and associates with empty capsids [242]. In addition,

NPM1/B23 was found in ViPR bodies colocalizing

with protein IVa2, suggesting a potential role in core

assembly [236]. Interestingly, AdC5 lacking protein

VII had no assembly default, ruling out that the major

core protein drives assembly [258]. Adenovirus assem-

bly seems to rely on cellular and viral nonstructural

and structural proteins. Structural proteins have to be

imported into the nucleus in large quantities using

NLSs [174,259,260]. Cytoplasmic microinjection of flu-

orescently labeled purified hexon from AdC5 and tran-

sient expression of hexon showed that hexon nuclear

import required binding to capsid protein VI. Muta-

tional analysis and heterokaryon assays revealed

import and export signals at the C terminus of protein

VI providing shuttling capacity as selective hexon

import adapter. C-terminal processing of protein VI

by AVP late in infection removes the transport signal

and increases hexon binding affinity, and the released

peptide stimulates AVP driving the equilibrium toward

assembly [15,62]. Nuclear import thus may be intri-

cately linked to assembly. Adenovirus egress from the

nucleus is also poorly characterized by FM. Instead,

indirect measures quantifying released particles and

plaque sizes are used. The E3-11.6k protein, also

known as adenovirus death protein, modulates Ad

egress. E3-11.6k is a glycoprotein expressed from the

E3 region of AdC2 and AdC5. Early in infection, IF

of infected cells shows ER/Golgi localization for E3-

11.6k, while late in infection, its production picks up,

and it is found predominantly at the nuclear envelope.

This redistribution is correlated with efficient cell lysis

resembling apoptosis [261]. Autophagy is an inducible

cellular degradation pathway, and autophagy induc-

tion via LC3 punctum formation was observed late in

AdC5-infected LC3-GFP-transfected A549 cells. In

contrast, pharmacological autophagy suppression

reduced particle release and late gene expression so

that the precise role for autophagy in Ad release

remains unresolved [262,263]. A limitation for imaging

Ad egress is the lack of tools that can clearly discrimi-

nate or track newly assembled particles.

Imaging anti-adenoviral immunity

Adenoviruses that enter cells are faced almost immedi-

ately with cell intrinsic immunity mechanisms trying to

sense and initiate danger signals ultimately eliminating

the invader through direct degradation and by initiat-

ing a signaling cascade that activates other branches of

the immune system. Those particles that manage to

reach the nucleus and deliver their genomes are faced

with a second wave of nuclear defense mechanisms

aimed at suppressing viral gene expression and replica-

tion. Most studies on Ad-induced immunity use indi-

rect readouts such as interferon (IFN) or NF-jB
signaling, caspase activation or IL-1b secretion, or the

quantification of replication, gene expression, or parti-

cle production. Increasingly, though, FM is used to

support findings by providing spatiotemporal context

in immune and nonimmune cells as shown by the

nonexhaustive examples listed in this section.

Cytosolic antiviral immunity

Adenovirus genomes are a major pathogen pattern

that can be recognized during the cytosolic passage

upon entry. One of the many sensors recognizing non-

methylated (i.e., viral) DNA is Toll-like receptor 9

(TLR9), located in the endosomal compartment, trig-

gering IFN signaling via MyD88 [264]. Costaining with

TLR9 in breast cancer stem cells infected with a condi-

tional replicating oncolytic AdC5/3-D24 showed that

incoming particles rapidly associate with TLR9-posi-

tive vesicles [265]. Toll-like receptor 9-independent Ad

genome sensing was proposed in nonimmune cells

based on IRF3-mediated IFN signaling in response to

cytosolic Ad genome sensing via cGAS/STING/TBK1

[266–268], a pathway also active in macrophages

[268,269]. How and when capsid-protected cytosolic

Ad genomes are sensed is less clear. FM detection of

metabolically labeled genomes revealed cytosolic mis-

delivery of a large proportion of viral genomes at the

nuclear pore potentially serving as substrate for cGAS/

STING sensing [49]. Antibody-opsonized (immune-

complexed) AdC5 (IC-AdC5) colocalized upon uptake

into HeLa cells with TRIM21, and this led to the

ubiquitination of the viral capsid. As a consequence,

viral capsids are degraded in a TRIM21-dependent

process reducing infection [270,271]. Genome labeling

with BrdU revealed cytosolic genome exposure upon

TRIM21-mediated degradation which colocalized with

cGAS, supporting a model for initial TRIM21-medi-

ated sensing and processing of IC-AdC5 to expose sec-

ondary epitopes, that is, viral genomes for downstream

sensors like cGAS and RIG-I [272]. Immune-com-

plexed AdC5 also induced DNA-sensing AIM2 inflam-

masome (absent in melanoma 2) activation in

monocyte-derived DC (MoDC). Fluorescently labeled

IC-AdC5 (but not AdC5 alone) contained in TLR9-

positive MoDC endosome was shown by IF to release

protein VI and to accumulate Gal3 and P62 indicating

membrane rupture, which activated the AIM2 inflam-

masome shown by colocalization of Ad capsid with

AIM-2 and ASC and functional assays [122]. Like for

the TRIM21 example above, IC-AdC5 triggers capsid
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disassembly provoking membrane rupture and cytoso-

lic activation of a genome sensor [122]. AdC5 infection

of differentiated THP-1 cells activates the NLRP3

inflammasome resulting in the release of large amounts

of cathepsin B into the cytosol in wild-type, but not in

membrane lysis-impaired AdC5ts1-infected cells, sup-

porting a direct link to membrane damage [273].

AdC5-induced membrane damage activates antiviral

autophagy in nonimmune cells. Immunofluorescence

and live-cell imaging showed that (protein VI-positive)

virions in the process of endosome penetration associ-

ate with Gal8 (and Gal3)-positive fragmented endo-

somes, which also accumulated ubiquitin and several

autophagy factors (e.g., LC3, NDP52, P62) resulting

in autophagy activation [111]. The data support a

model that rapid endosomal escape and suppression of

autophagy through capsid-mediated processes are key

elements of AdC5 entry to evade antiviral autophagy

in response to membrane damage [111]. Imaging

antiviral immunity also captured the absence of mem-

brane damage. Defensins [90,274] and complement fac-

tor C4 [275] are two soluble extracellular antimicrobial

molecules that bind and neutralize AdC5. Immunoflu-

orescence analysis showed that entering capsids opso-

nized with either molecule failed to release protein VI,

did not trigger Gal3 puncta nor exposed BrdU-labeled

genomes in support of a capsid stabilizing phenotype,

which prevents endosome penetration. Instead, capsids

remained endosomal and accumulated in lysosomes

[90,274,275]. Taken together, these studies provide sev-

eral FM examples of cytosolic antiviral immunity,

showing how detecting protein VI upon entry as mem-

brane penetration marker [40] helped define a spatial

and functional readout to characterize the cellular

response to Ad invasion.

Nuclear antiviral immunity

Having lost their protective capsid, imported Ad gen-

omes are particularly vulnerable to nuclear pathogen

sensor and effector molecules before viral gene expres-

sion. Still, live-cell imaging of incoming AdC5 gen-

omes suggests protection from early recognition by

several known antiviral sensors and effectors, including

promyelocytic leukemia (PML) nuclear bodies (PML-

NBs) which target several nuclear replicating viruses

[276–281]. DNA FISH to detect incoming AdC5

showed that most genomes localized adjacent to PML-

NB at 4 h postinfection, but not at 1.5 h postinfection

[282]. Detailed IF and live-cell imaging showed that

this early association with PML-NBs is not an intrinsic

property of the incoming genome, nor is it imposed by

PML-NBs or its constituents, but may depend on

DBP [280]. At ~ 6–8 h postinfection, AdC5 dramati-

cally alters the organization of PML-NBs and reorga-

nizes them into stable track-like structures, for

example, as shown for PML and SP100 in HeLa cells

[283,284]. BrdU labeling and detection of splice pro-

teins showed that early PML tracks are not replication

sites [283], although at ~ 12–16 h postinfection, SP100

accumulates in DBP-positive RCs [233]. Overexpres-

sion of PML in HeLa cells or treatment with IFN to

stimulate PML-NB protein expression delayed replica-

tion suggesting Ad counter regulation [233]. Reorgani-

zation of PML was attributed to Ad-encoded E4-

ORF3 and E1B-55k proteins. Experiments using IF

showed that E4-ORF3 colocalizes with PML, and

deletion of E4-ORF3 in AdC5 prevented PML track

formation [283]. Track formation is an intrinsic prop-

erty of E4-ORF3 linked to a C-terminal oligomeriza-

tion domain [285]. Moreover, E4-ORF3 forms a

complex with E1B-55k and both proteins localize to

PML tracks in AdC5-infected HeLa cells or when

overexpressed individually [286]. The biological signifi-

cance of PML track formation is not completely clear,

but the ability of E4-ORF3 to induce tracks correlates

with its ability to overcome replication restriction by

IFN shown with DBP stain in fibroblast and Vero

cells and is conserved between different serotypes

[287]. Independent reports show that protein IX and

protein VI also reorganize PML-NBs, although the

biological significance is not yet clear [288,289].

The DDR mediated by the MRN (Mre11, Rad50,

Nbs1) complex also targets invading and replicating

Ad genomes [290]. In AdC5-infected HeLa cells,

Mre11 and Nbs1 were found in foci close to RCs and

Mre11 levels were reduced compared to uninfected

cells. When an E4-deleted AdC5 was used, MRN colo-

calized with RCs and BrdU-labeled genomes and repli-

cated genomes formed concatamers demonstrating

cellular repair of ‘damaged’ genomes. Viral deletion

mutants and individually expressed proteins further

showed that E4-ORF6/E1B-55k is important for

MRN complex degradation, while E4-ORF3 redis-

tributes MRN into PML tracks [290,291]. Mre11,

Rad50, and Nbs1 relocalization via AdC5 E4-ORF3

also promotes genome replication [291] and is required

to target the MRN complex into cytosolic aggresomes

[292]. In contrast, E4-ORF3 from AdE4 or AdA12 did

not displace Nbs1 from RCs indicating genotype dif-

ferences [292]. In infected cells, E4-ORF6/E1B-55k

associates with cullin5, elongins B and D, and Rbx to

form a E3 ubiquitin ligase [293,294] able to target the

MNR complex for proteasomal degradation [290]. The

E4-ORF6/E1B-55k ligase complex shuttles between the

nucleus and cytoplasm, and subcellular localization of
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substrates (i.e., p53 and Nbs1) was exploited to iden-

tify functional domains in E1B-55k for substrate

recognition and targeting [295]. These examples show

how differences in subcellular localization contributed

to characterize E4-ORF3 and the E4-ORF6/E1B-55k

ligase complex, identifying them as potent viral coun-

termeasures in the fight against PML-NB and DDR.

However, freshly imported Ad genomes do not possess

access to these proteins yet. The MRN complex recog-

nizes double-strand breaks and induces activation of

the cellular repair protein kinase ATM (ataxia telang-

iectasia and Rd3 related) by trans-autophosphoryla-

tion (pATM) and phosphorylation of histone variant

H2AX (cH2AX). Consequently, pATM and cH2AX

have been exploited as imaging markers for DDR acti-

vation. Using mutated and EdU-metabolically labeled

AdC5 (e.g., E4-ORF6/E4-ORF3 double mutant or

E4-deleted viruses) showed that incoming genomes

activate MRN and that this response is initially sup-

pressed by genome-associated protein VII [296]. The

authors used EdU and protein VII antibodies to detect

genomes and antibodies against pATM and cH2AX

to stain for activation of the MRN complex and were

able to show that in the absence of E4 proteins,

imported genomes progressively accumulate pATM/

cH2AX upon protein VII removal [296]. pATM/

cH2AX marks on viral genomes were later shown to

identify virus-specific DDR discriminating viral gen-

omes from cellular damage [297]. More recently, it

was shown that SET/TAF1-b recruitment to incoming

genomes via protein VII is crucial to suppress MRN

because SET/TAF1-b depletion promoted pATM and

cH2AX accumulation also on protein VII-positive

incoming genomes. This suggests a key role for SET/

TAF1-b in DDR suppression before viral gene expres-

sion gives Ad access to a wider repertoire of instru-

ments [298] and is a nice example how FM detection

of viral substrates (i.e., the incoming genome) provides

clues to understand the spatial and temporal organiza-

tion of cellular response and viral countermeasure.

Immunofluorescence and FRAP mobility analysis

showed that protein VII also mediates retention of

high mobility group B family proteins by associating

with compacted cellular chromatin late in infection to

counteract their release as alarmins [45]. Subcellular

sequestration/degradation of cellular factors, which

can easily be revealed by FM, seems to be a general

way for Ad to control cell responses. For example, to

control the IFN response, Ad modulates the distribu-

tion of signal transducer and activator of transcription

1 (STAT1), a major driver of the IFN response.

Immunofluorescence showed that HeLa cells express-

ing E1A do not translocate STAT1 to the nucleus

after IFN stimulation [299] and AdC5-infected cells

sequester phosphorylated STAT1 in DBP-positive RCs

[300].

Novel approaches

Both FM and EM have been used to investigate Ad

infection [301], but never in the same sample. Correla-

tive light and (cryo-)electron microscopy (CLEM)/

cryo-CLEM combines both technologies by using EM

on a fluorescent sample for high structural resolution

and precise identification of specific elements in the

cellular context. Correlative light and electron micro-

scopy has been successfully applied to other viruses in

entry [302], replication [303], and release [304] from

infected cells (for a review, see Ref. [305]). Correlative

light and electron microscopy was further used to visu-

alize the nuclear track network formed by E4-ORF3

in AdC5-infected U2OS cells using photo-oxidation of

diaminobenzidine (DAB) into a polymer that can be

stained by osmium tetroxide [306]. A major hurdle

that remains in CLEM is the correlation of FM and

EM signals. During cryo-CLEM, the biological sample

is fixed by rapid vitrification. Alexa488-labeled AdC5

infecting U2OS cells was used as readout to measure

automatic FM–EM alignment showing a correlation

of ~ 100 nm between FM and EM images. The result-

ing high-resolution image identified by the fluorescent

signal showed an Ad particle in an endosome in its

native state describing the first experimental cryo-

CLEM pipeline for Ads inside cells [307]. Cryo-fixa-

tion and subsequent cryo-CLEM or even cryo-tomog-

raphy were applied to other viruses [308,309],

highlighting the enormous potential for Ad imaging as

it allows the correlation of dynamic processes with

ultrastructure in a native context.

Labeling strategies and bio-dyes visualize dynamic

processes that can be captured by FM. However,

labeling strategies remain invasive and modify the

specimen. Light microscopy using phase contrast and

differential interference contrast is a label-free imaging

method, although with limited resolution. Digital holo-

graphic microscopy (DHM) improves acquisition of

samples in phase contrast by combining a laser beam

passing through the sample with a reference beam to

generate a digital interference image (hologram). Using

a specific algorithm, the hologram is used to digitally

compute an image of the sample allowing nanoscale

resolution and long-term acquisitions without focal or

bleach concerns. DHM was first used to visualize cell

modification, motility, and proliferation [310] and

more recently applied to study cytopathic effects dur-

ing viral infections [311].
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Atomic force microscopy (AFM) provides nanoscale

information of the surface topography of a sample,

that is, an Ad particle. AFM uses a microcantilever

with a tip scanning the sample surface thereby deflect-

ing a laser beam. The modified laser beam is converted

into a topological map of the scanned object. AFM

can also be used for mechanistic measures such as elas-

ticity, pressure, or compaction by applying force on

the sample resulting in changes in topology. Such

nano-indentation assays were used on AdC5 with the

fiber of AdB35 to measure capsid stability in the pres-

ence of integrin or defensins (showing increased sus-

ceptibility or resistance to disassembly [312]) or

compare stability between wild-type and AdC2ts1

viruses (revealing different energy requirements in

disassembly) [313]. Using a combination of AFM

(to measure capsid stability) and TIRF (to visualize

exposed viral genomes with a DNA intercalating fluo-

rescent dye) revealed rapid genome decondensation

upon capsid release [34], while AdC2ts1 genomes are

more compacted, suggesting that maturation induces

viral chromatin relaxation inside the capsid and primes

them for entry and disassembly [314], showing how

AFM complements other Ad imaging approaches by

providing biophysical information.

Light sheet fluorescence microscopy (LSFM) is a con-

ceptually novel imaging approach based on the use of

two objectives, one for illumination and one for detec-

tion positioned at a 90° angle. Compared to confocal

microscopy using scanning point illumination, LSFM

illuminates a complete focal plan visualizing the sam-

ple at once. This minimizes exposure time and photo-

toxicity and enables high frame rates for a prolonged

time. The perpendicular illumination also allows the

acquisition of depth in samples for adaptation to more

complex, physiologically relevant models such as

organs, tissue, and other 3D cultures. LSFM has not

been used for Ads, but several LSFM approaches are

in development and will provide revolutionary insight

into dynamic processes [315,316].

Automatization, machine learning, and artificial

intelligence are rapidly evolving novel concepts in

imaging. The underlying principle is to use a large

dataset of paired images (noisy input–high-quality out-

put) in supervised training of an algorithm (also called

neuronal networks) to recognize pattern and to extract

features for classification. Importantly by correlating

features (e.g., two correlating events in a cell) and

applying a hierarchy, the algorithm ‘learns’ to extrapo-

late and predict cell (or subcellular) organizations,

which allows cell identification, classification, and

accurate image reconstitution in large populations.

Input images can be derived from different sources

including transmission light, fluorescence and live-cell

microscopy and EM images, or combinations thereof

[26,317–319]. Training such a network accurately iden-

tified rare events in which Ad-infected cells engage in

lytic virus release. To train the algorithm, the authors

stained nuclei in high-content live-cell imaging and

used additional marker to train the network in dis-

criminating infected cells. The resulting pattern of

nuclear stain over time provided sufficient features to

predict with > 95% accuracy Ad cell lysis [320].

Conclusions and perspectives

Imaging techniques have tremendously contributed to

our spatial and temporal understanding of the Ad

infection cycle. FM has made it possible to directly

visualize and differentiate kinetic aspects in relation to

the spatial organization of the virus during all phases

of the Ad cycle. Labeling strategies for almost all viral

and cellular components are applicable in a modular

way to study the infection system, therefore allowing

us to pinpoint specific events at a single-cell resolution

and complementing biochemical and other assays that

suffer from bulk measurement. FM of Ads has identi-

fied specific epitopes that can be used as optical detec-

tion marks to detect deterministic steps during the

viral infection cycle such as endosomal escape (protein

VI detection), capsid disassembly (exposure of hexon

epitope), trafficking (MTOC accumulation), nuclear

genome delivery (detection of protein VII or metaboli-

cally labeled genomes), and replication (detection of

DBP). These marks enable a better description of

interaction between Ad and its host, mostly in the con-

text of antiviral immunity such as linking membrane

damage to autophagy and genome sensing or the sup-

pression of the DDR upon nuclear entry and during

replication. Some imaging tools are still missing from

the Ad imaging repertoire. Assembly and egress is one

example awaiting the development of better labeling

strategies and imaging tools to decipher the processes

involved. Imaging of viral RNAs and gene expression

is another example where existing tools have only

provided limited information.

Developing FM for live-cell imaging of Ad-infected

cells using labeling of viral and cellular structures

allows tracking of viral capsids upon entry and gen-

ome delivery. This made it possible to extract kinetic

information and generate tracking models and algo-

rithms to describe the dynamic behavior of Ads in

cells. It permits the detection and dissection of fast

and transient events such as endocytosis and endoso-

mal membrane penetration in real time, which was not

possible in fixed cells or bulk analysis. The recent
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development of labeling strategies for replication com-

partments and replicating, as well as incoming, viral

genomes in living cells allowed the first complete

dynamic description of the viral replication cycle.

Novel labeling strategies for capsid assembly and

egress should close the gap with the last step of the

infection cycle. This may lead to experimental systems

in which every step of the viral infection cycle is acces-

sible to live-cell imaging, potentially identifying novel

concepts or providing a spatiotemporal context to old

observations, which will serve as future framework.

One aspect that has to be taken into consideration

is that most FM imaging of Ads was done with AdC2/

5 in easy-to-use cell culture models. In reality, both

cell system and Ad genotype are important determi-

nants for what can and will be observed. One example,

described in this review, highlights how the viral geno-

type defines from which endosome the capsid escapes

with consequences for immune activation. Thus, one

should consider transferring the existing repertoire of

FM imaging techniques presented in this review to

alternative Ad species and more specialized and

sophisticated cell models. In parallel, the development

of new imaging techniques providing faster and higher

resolution with the prospect to generate structural and

mechanistic information gives us opportunities that

make Ad imaging as exciting for future generations as

it has been in the past.

The authors would like to apologize to colleagues

whose work has not been mentioned in this review. The

overwhelming amount of FM data for adenoviruses

made it necessary to select limited examples to show

principles for the application of FM in Ad imaging.
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