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Abstract

INTRODUCTION: Alzheimer’s disease is associated with sleep disturbances and

accumulation of cerebral amyloid beta. The objective was to examine whether

actigraphy-detected sleep parameters might be biomarkers for early amyloid burden.

METHODS: Participants underwent a week of actigraphy and an amyloid positron

emission tomography (PET) scan. Sleep duration and continuity disruption (sleep

fragmentation and nocturnal awakenings) were extracted and compared between

amyloid-positive and amyloid-negative participants. Then multiple linear regressions

were used between mean or night-to-night intra-individual variability (standard

deviation) of sleep parameters and brain amyloid burden in a voxel-wise analysis.

RESULTS: Eighty-six subjects were included (80.3 ± 5.4 years; 48.8% of women).

Amyloid-positive participants hadahigher variability of sleep fragmentation compared

to amyloid-negative participants. This parameterwas associatedwith a higher amyloid

burden in the frontal and parietal regions, and in the precuneus, in the whole sample.

DISCUSSION: This study highlights the relevance of using variability in sleep continu-

ity as a potential biomarker of early amyloid pathogenesis.
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1 INTRODUCTION

An age-related change shared by a majority of older adults is the mod-

ification of sleep characteristics, which includes a decrease in sleep

duration and continuity.1 Sleep disruption is also observed in the symp-

tomatology of Alzheimer’s disease (AD),2 and is associated with an

increased risk of AD dementia,3,4 supporting sleep disruption as a

potential modifiable risk factor for AD.
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Brain amyloid beta (Aβ) plaques and tau neurofibrillary tangles con-
stitute the main hallmarks of AD pathology but are also observed

in healthy older adults without any cognitive symptoms.5 Different

mechanisms have been proposed to explain the gradual accumula-

tion of amyloid in the brain, and one of them is the amyloid cascade

hypothesis.6 More recent studies have linked the clearance of brain

metabolites to the sleep/wake efficacy of the glymphatic system.7–9

More precisely, it has been shown that the cerebrospinal fluid (CSF)
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flow increases during slow-wave sleep (SWS) in rodents10 and in

humans.11 Hence, deterioration of SWS could lead to a dysfunction of

the glymphatic system and an accumulation of brain metabolites. In

accordance, studies using polysomnography showed that reduced and

fragmented SWS is correlatedwith decreasedCSFAβ levels12 and that
a decrease in slow-wave activity (SWA)was specifically related to brain

Aβ burden13 measured by positron emission tomography (PET).

Although studies based on sleep questionnaires also revealed a rela-

tionship between sleep and Aβ burden, conflicting results exist regard-
ing which sleep parameters are involved. Indeed, either self-reported

poor sleep quality,14,15 short sleep duration,14,16 sleep latency,15,17

or daytime sleepiness16,18,19 have been separately associated with Aβ
burden. These different results could be partially due to the subjec-

tive feature of sleep questionnaires.20 Although polysomnography is

still the gold standard for objective sleep assessment, it is most of the

time limited to one or two nights of sleep in a clinical environment. An

alternative for objective sleepmeasurement is actigraphy,which allows

recording of sleep over several days with its night-to-night variability

in large samples and in a daily-life setting.21 Two studies using actig-

raphy compared brain Aβ-positive (Aβ+) and Aβ-negative (Aβ–) older
individuals and found that sleep latency, wake after sleep onset, and

sleep efficiencywere affected inAβ+ cases.22,23 One study24 observed

that actigraphy-derived sleep fragmentation variability in the first half

of the sleep period, rich in SWS,25 was associated with Aβ burden in a
small area of the ventromedial prefrontal cortex. These differences in

actigraphy results need to be readdressed in a population-based study

in order to define which actigraphic parameters could be used as a

biomarker for brain amyloid burden. Moreover, it has been shown that

night-to-night intra-individual variability (IIV) of actigraphic data26

should be an important factor to consider in sleep studies, and to this

day it has not been clearly investigated in amyloid-burden analyses.

The aim of the present study was to compare actigraphy-derived

sleep characteristics of conventionally defined Aβ+ and Aβ– individu-

als based on PET imaging and to investigate the association between

sleep characteristics and Aβ burden in a population-based cohort of

86 healthy older adults presenting a large spectrum of Aβ burden. We

included the mean and the night-to-night IIV of actigraphy-derived

sleep characteristics in our analyses.

2 MATERIALS AND METHODS

2.1 Participants

This study is based on a cross-sectional research protocol called

EDUMA (Éducation et Maladie d’Alzheimer), including older individ-

uals 65 years of age or older from two epidemiological prospective

studies: the AgingMultidisciplinary Investigation (AMI)27 and the Bor-

deaux site of the Three-City study (3C).28 These study procedures

were approved by a regional human research review board (University

Hospital of Bordeaux for AMI and University Hospital of Kremlin-

Bicêtre and Sud-Mediterranée III for 3C) and all participants provided

written informed consent. All participants were right-handed and had

RESEARCH INCONTEXT

1. Systematic Review: Cerebral amyloid beta (Aβ) accu-
mulation is a hallmark of Alzheimer’s disease (AD) but

evidence indicates that healthy older individuals can have

a pathological level of Aβ accumulation without any cog-

nitive symptoms. Recent studies propose a link between

sleep and the clearance of metabolites such as Aβ. An
aspect of sleep has been neglected, its night-to-night

intra-individual variability (IIV). Therefore, assessment of

amyloid–positron emission tomography (PET) levels and

objective sleep parameters including IIV, could help in

determining a possible link between age-related sleep

deterioration and amyloidopathy in cognitively healthy

individuals.

2. Interpretations: Our findings indicate that night-to-night

IIV of sleep fragmentation is positively associated with

frontal and parietal brain Aβ accumulation in healthy

elderly.

3. Future Directions: Findings support the inclusion of

night-to-night IIV in sleep and AD research. Future stud-

ies should investigate the longitudinal aspect of this

association and the utility of sleep fragmentation IIV in

predicting Aβ accumulation.

no neurological or psychiatric disorders or any contraindications for

magnetic resonance imaging (MRI) and PET scans.

A PET scan examination was proposed to 120 subjects in addition

to MRI between 2012 and 2015. Among them, 92 also agreed to wear

an actigraphy device. We excluded two subjects with significant brain

abnormalities (frontal trauma, cavernoma), one with frontotemporal

dementia and three with aMini-Mental Status Examination (MMSE)29

score below the standards established by age, sex, and education

level,30 leaving 86 subjects for the present analysis (Figure 1). The

final sample is composed of cognitively unimpaired elderlywithout any

neurological or psychological disorders.

2.2 Sleep assessment

Sleep was measured with two models of wrist-worn actigraphs

(Cambridge Neurotechnology, Cambridge, UK), ActiWatch 7 and

MotionWatch 8, both validated against polysomnography.31,32 The

devices were placed on the nondominant wrist and were kept con-

tinuously for a week in the home environment. A minimum of four

nights was required to be included (range: 4–9 nights; mean ± SD:

7.86 ± 0.59). MotionWare, v1.2.26 (Cambridge Neurotechnology,

Cambridge, UK) with a sensitivity threshold of 20 counts was used.

A sleep diary informing about bedtime and rise time was completed

by each participant during the protocol. Information about sleep
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F IGURE 1 Flow chart of the study participants. MMSE,
Mini-Mental State Examination; PET, positron emission tomography.

disturbances such as possible sleep apnea or sleep partners with

dementia was collected during a pre-scan interview.

Sleep onset and offset were first estimated by MotionWare based

on activity levels and then verified by an examinator using the sleep

diary and the light sensor data. In short, an abrupted disappearance of

light and a lack of activity for more than 5 minutes determined sleep

onset. An important movement after rest and continuity of activity

after determined sleep offset. Total Sleep Time (TST) represents the

sum in minutes of all epochs classified as sleep (<20 counts) between

sleep onset and offset. Sleep continuity was estimated during the first

half of the sleep period, calculated as half of the period between sleep

onset and offset. Two sleep continuity parameters were investigated:

sleep fragmentation index (SF) and the duration of wake after sleep

onset (WASO). SF is a direct estimationof thepercentageof sleepdura-

tion disturbed by fine movements (>0 counts) during the estimated

sleep period and is calculated as the sum of the “Mobile time (%)” and

the “Immobile bouts ≤1 min (%).” WASO is the duration of all epochs

classified as wake (>20 counts) during the estimated sleep period and

reflects an indirect estimation of nocturnal awakenings duration. The

mean and SD of these parameters were calculated over the week

(IIV-TST; IIV-SF; IIV-WASO).

2.3 MRI

MRI scans were obtained with an ACHIEVA 3T scanner (Philips Med-

ical System, The Netherlands) with a SENSE 8-channel head coil.

Anatomic high-resolution MRI volumes were acquired in a trans-

verse plan using a three-dimensional (3D) magnetization-prepared

rapid acquisition gradient echo (MPRAGE) T1-weighted sequencewith

the following parameters: repetition time (TR) = 8.2 ms, echo time

(TE) = 3.5 ms, 7-degree flip angle, field of view (FOV) 256 × 256 mm2,

180 slices, no gap and voxel size of 1 × 1 × 1 mm3. Gray matter (GM),

white matter, and CSF volumes were estimated for each subject using

the Computational Analysis Toolbox v12 (https://neuro-jena.github.

io/cat/) implemented in Statistical Parametric Mapping software v12

(SPM12, www.fil.ion.ucl.ac.uk/spm).

2.4 Amyloid beta PET scan

ADiscovery RX (General Electric) PET/computerized tomography (CT)

system was used to acquire PET images 90 minutes after an intra-

venous bolus injection of 185 MBq ± 5% of 18F-flutemetamol ligand,

following a standardized acquisition protocol described elsewhere.33

A 30 minute dynamic acquisition was performed after a CT scan used

to provide an attenuation correction map. These images were recon-

structed with the ordered subset expectation maximization method

and corrected for the following: attenuation of annihilation radia-

tion, scatter normalization, random events, decay, and deadtime. The

PMOD software v3.5 (PMOD Technologies Ltd, Adliswil, Switzerland)

was used to post-process PET images. A mean image for each sub-

ject was created and co-registered to the corresponding T1-weighted

MR image. Partial volume effects were corrected with the Geometric

TransferMatrix method34 using probability tissuemaps obtained from

the segmentation of the T1-weighted image by FreeSurfer v5.3 (http://

surfer.nmr.mgh.harvard.edu). PET images were expressed in standard-

ized uptake value (SUV) and converted in SUV ratio (SUVr) PET images,

by dividing the SUV of each voxel by the mean SUV of the reference

region, the cerebellar GM.

PET images were then warped to the Montreal Neurological Insti-

tute (MNI) space and masked to constrain voxel-based analysis to GM

only.

A cortical mean value above 1.5 SUVr is considered as the 18F-

flutemetamol-positive threshold35 (Aβ+) and a cortical mean value

under 1.35 SUVr is considered as the 18F-flutemetamol-negative

threshold (Aβ–). Participants with a cortical mean value between 1.35

and 1.5 were considered as undetermined.

2.5 Other variables

Educational level was categorized in five levels (primary school or less;

primary school diploma; middle school; high school; and university).

The MMSE was used to evaluate global cognitive status. Consump-

tion of psycholeptic drugs was assessed, such as anxiolytics, hypnotics

and/or sedatives, and antipsychotics for anxiety. The presence of at

least one ε4alleleof theapolipoproteinE (APOE) genewasderived from
blood samples available for 72 participants.

2.6 Statistical analyses

All statistical analyses were performed using R Studio v4.0.4 and

SPM12. Demographics and sleep parameters were first compared

between Aβ– and Aβ+ participants using Mann-Whitney U test
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for non-normally distributed variables, Student’s t-test for normally

distributed variables, and chi-square test for qualitative variables.

Statistical significance was set at p< 0.05.

In order to better understand the importance of IIV of sleep param-

eters and how they interact with each other, a correlation matrix using

Spearman rho was created between all sleep parameters mean and

variability. Statistical significance was set for p < 0.05 with a multiple

comparison correction (false discovery rate).

A first analysis using multiple linear regressions with SPM12 was

conducted with Aβ burden maps being the dependent variables and

age as the independent variable in order to determine the statistical

threshold adapted to our PET data. Expected age effect on brain amy-

loid distribution was obtained for p < 0.001, uncorrected for multiple

comparisons with no association in the reverse contrast; no age effect

was observed using a correction for multiple comparisons.

Whole-brain exploratory analyses were then performed with Aβ
burden maps being the dependent variables and TST, SF, and WASO

being the independent variables in three separate models including

age, sex, and education level as covariates. In another set of analy-

ses, IIV-TST, IIV-SF, and IIV-WASO were the independent variables

in three separate models including age, sex, education level, and the

correspondingmean sleepparameter as a covariate. In the caseof a sig-

nificant association, additional statistical models were performed and

included first total GM volume, expressed as a percentage of the total

intracranial volume, and then APOE ε4 status (N = 72) as covariates.

A statistical threshold of p < 0.001, uncorrected for multiple compar-

isons, and a significant threshold cluster of 100 voxels were used for all

voxel-wise analyses in the whole sample of 86 subjects.

Sensitivity analysis was conducted by excluding internally or exter-

nally disturbed sleepers from our sample. Two participants declared

sleep apnea, two had sleep partners with dementia, and 13 took psy-

choleptic drugs, which left a group of 69 subjects. We verified the

specificity of the first part of the sleep period by analyzing sleep con-

tinuity in the second part of the sleep period in a supplementary

analysis.

3 RESULTS

3.1 Participants’ characteristics

Demographic, clinical, and sleep parameters are presented in Table 1.

The mean age in our sample was 80.3 years old (±5.4), with 48.8%

women, and ameanMMSE score of 27.7 (±1.9); 15.1% took psycholep-

tic medication and 18.1% were APOE ε4 carriers. In total, 682 nights

were analyzed with an average of 7.8 ± 0.59 nights per participant.

Mean sleep duration was 7h01 with 43 min of night-to-night varia-

tion (IIV-TST). Regarding sleep continuity, mean SF was 29.4 and mean

WASOwas 30minutes, with a night-to-night variation of 12.7 (IIV-SF),

and 12minutes (IIV-WASO), respectively.

Our population had an average cortical Aβ burden of 1.5 ± 0.4,

with 23.3% of participants being Aβ+ and 59.3% Aβ–, whereas the

remaining participants are undetermined.

TABLE 1 Subjects characteristics.

Variable N= 86

Demographics

Age, mean (SD), years 80.3 (5.4)

Sex, no. (%), women 42 (49)

Education level, no. (%)

Primary school or less 16 (19)

Primary school diploma 22 (26)

Middle school 19 (22)

High school 15 (17)

University 14 (16)

Aβ burden, mean (SD), SUVr 1.5 (0.4)

APOE ε4 statusb, no. (%) 13 (18.1)

MMSEa, mean (SD), score 27.7 (1.9)

Declared sleep apnea, no. (%) 2 (2)

Psycholeptic intake, no. (%) 13 (15)

Sleep parameters

Whole sleep period

Total sleep time, mean (SD), hour 7h01 (1h04)

Total sleep time—IIV, mean (SD), hour 0h43 (0h21)

First part of the sleep period

WASO, mean (SD), hour 0h30 (0h16)

WASO—IIV, mean (SD), hour 0h12 (0h07)

Sleep fragmentation, mean (SD), % 29.4 (12.9)

Sleep fragmentation—IIV, mean (SD), % 12.7 (5.2)

Abbreviations: Aß, cortical amyloid beta; IIV, intra-individual variability;

MMSE, Mini-Mental State Examination; SUVr, standard uptake value ratio;

WASO, wake after sleep onset.
aMissing data for two subjects.
bAt least one ε4 allele, missing data for 14 subjects.

3.2 IIV of sleep parameters

The correlation matrix is shown in Figure 2. Considering each param-

eter mean and variability, WASO and IIV-WASO are highly correlated

(r= 0.62; p< 0.001); SF and IIV-SF aremoderately correlated (r= 0.39;

p< 0.001); but TST and IIV-TST are not (r=−0.13; p= 0.257).

IIV-WASO is negatively correlated to TST (r=−0.46; p< 0.001) and

positively correlated to SF (r = 0.50; p < 0.001). IIV-SF is negatively

correlated to TST (r=−0.28; p= 0.012).

3.3 Aβ± versus Aβ– participants

Demographic, clinical, and sleep parameters for Aβ+ and Aβ– partici-

pants are presented in Table 2. There was no difference in sex, level of

education, MMSE, reported sleep apnea, medication intake, TST, IIV-

TST,WASO, IIV-WASO, and SF. As expected, the Aβ+ group displayed a

significantly higher mean cortical amyloid SUVr (2.2 ± 0.4 vs 1.3 ± 0.1;

p<0.001) and included a higher proportion ofAPOE ε4 carriers (40%vs
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F IGURE 2 Correlationmatrix between sleep parameters.
Spearman rho is indicated for each significant correlation with a
color-coded scale. Results are presented at p< 0.05 corrected for
false discovery rate. IIV, intra-individual variability; SF, sleep
fragmentation; TST, total sleep time;WASO, wake after sleep onset.

7.8%; p = 0.004). Participants included in the Aβ+ group were signifi-

cantly older (83.1±5.3 vs 79.0±5.3; p=0.003) andhad ahigher IIV-SF

(15.7± 6.6 vs 11.5± 4.0; p= 0.016) than those in the Aβ– group.

3.4 Associations between sleep parameters and
Aβ burden

In regression models including either TST, SF, or WASO, no significant

association with amyloid burdenwas observed.

High IIV-SF of the first half of the night was related significantly

to an elevated Aβ burden, controlled for age, sex, level of education,

and SF (p < 0.001 uncorrected, cluster size of 100 voxels, Figure 3A).

This association was observed mostly in the frontal regions (left [L]

and right [R] orbital gyrus, L/R inferior gyrus, R middle gyrus, and L/R

precentral gyrus), as well as in the insular gyrus (L/R), cingulate gyrus

(R),medioventral occipital cortex(R), superior temporal gyrus (L/R), and

in parietal regions (L/R postcentral gyrus, L/R inferior lobule, and L/R

precuneus; Figure 2). Adding GM volume or APOE ε4 status in the sta-

tistical model did not change the results but the concerned regions

were less spatially extended.

High IIV-WASO was also associated significantly with Aβ burden in
frontal lobes (Figure 3B), including the orbital gyrus (L/R), the inferior

frontal gyrus (L) and the precentral gyrus (L), as well as in parietal lobes

including the postcentral gyrus (L/R) and the inferior parietal lobule

(L/R; p< 0.001 uncorrected, cluster size of 100 voxels).

In the sensitivity analysis considering only self-reported undis-

turbed sleepers, we observed the same association between IIV-SF

and Aβ burden (p < 0.001 uncorrected, cluster size of 100 voxels),

albeit less spatially extended (Supplementary Figure). However, the

association between IIV-WASO and Aβ burden was only observed at

a subthreshold level (p< 0.005, uncorrected, 100 voxels).

Sleep parameters of the second part of the sleep period were not

associated with Aβ burden.

4 DISCUSSION

In this study, we observed that 23.3% of cognitively unimpaired older

adults had a pathological level of Aβ accumulation, a hallmark of AD

pathogenesis in the brain. This is in line with a recent meta-analysis

including1849healthyolder individuals (68 years old on average)with-

out cognitive impairment. Ossenkoppele et al.36 reported that 24.2%

of these individuals are considered as being Aβ+. Previous studies

have tried to investigate whether actigraphy-derived sleep parame-

ters differ between Aβ+ and Aβ– groups, with some data indicating

no difference (PET imaging),37,38 whereas other reported worse sleep

quality in Aβ+ participants (PET imaging,23 and CSF measures of amy-

loid burden22). Our analyses did not reveal any difference in sleep

duration,WASO, or sleep fragmentation betweenAβ+ andAβ– partici-
pants.However,weobservedahigher night-to-night variability in sleep

fragmentation in the Aβ+ group compared to the Aβ– group. To the

best of our knowledge, no other study compared night-to-night vari-

ability of actigraphy-derived sleep parameters between Aβ+ and Aβ–
groups. Aβ+ individuals are more at risk of developing AD, and stud-

ies have shown that high sleep fragmentation is a risk factor for AD.3

Thus night-to-night variability of sleep fragmentation could be another

aspect of a lack of sleep continuity linked to ADpathogenesis and look-

ing only at the mean of this parameter could omit an important part of

it.

Accordingly, voxel-wise analyses revealed that a high IIV-SF in the

first half of the sleep period was positively related to a high Aβ burden
in several cortical brain regions, mostly located over the frontal and

parietal lobes. Additional analyses indicated that these results were

not affected by GM volume, APOE status, or sleep medication. This

voxel-wise analysis allowed us to precisely describe the brain regions

affected by amyloid in relation to a high IIV-SF in the first half of the

sleep period. The observation in this relatively cognitively preserved

population of an association between night-to-night IIV-SF and brain

Aβ burden adds to the results of a previous study.24 This study rein-

forces the hypothesis associating sleep characteristics and brain Aβ
burden not only in AD39 or other dementia40 but also in cognitively

healthy older individuals. These results considering sleep character-

istics of the first half of the sleep period, rich in SWS, are consistent

with previous studies linking Aβ burden and specific sleep parameters

derived frompolysomnography.12,13,41,42 It has been found that frontal

Aβ burden in older adults was linked to a diminished amplitude and

a lower proportion of <1 Hz SWA.41,42 This is particularly interest-

ing because certain brain regions we observed to be linked to IIV-SF

(i.e., frontal lobes, insular gyrus, and cingulate gyrus) are implicated in

slow-wave generation during sleep.43
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TABLE 2 Groups comparison.

Variable Aβ– (n= 51) Aβ+ (n= 20) p value

Demographics

Age, mean (SD), years 79.0 (5.3) 83.1 (5.3) 0.003

Sex, no. (%), women 37 (52) 34 (48) NS

Education level, no. (%) NS

Primary school or less 13 (25) 1 (5)

Primary school diploma 12 (24) 4 (20)

Middle school 13 (25) 3 (15)

High school 6 (12) 6 (30)

University 7 (14) 6 (30)

Aβ burden, mean (SD), SUVr 1.3 (0.1) 2.2 (0.4) < .001

APOE ε4 statusa, no. (%) 4 (7.8) 8 (40) 0.004

MMSEb, mean (SD), score 27.6 (1.8) 27.7 (1.9) NS

Declared sleep apnea, no. (%) 1 (2) 0 (0) NS

Psycholeptic intake, no. (%) 9 (21) 4 (9) NS

Sleep parameters

Whole sleep period

Total sleep time, mean (SD), hour 7h10 (1h05) 6h50 (1h11) NS

Total sleep time—IIV, mean (SD), hour 0h44 (0h22) 0h42 (0h25) NS

First part of the sleep period

WASO,mean (SD), hour 0h31 (0h20) 0h28 (0h12) NS

WASO—IIV, mean (SD), hour 0h11 (0h06) 0h14 (0h10) NS

Sleep fragmentation, mean (SD), % 29.3 (14.5) 30.7 (10.1) NS

Sleep fragmentation—IIV, mean (SD), % 11.5 (4.0) 15.7 (6.6) 0.016

Abbreviations: Aß, cortical amyloid beta; IIV, intra-individual variability; MMSE, Mini-Mental State Examination; SUVr, standard uptake value ratio; WASO,

wake after sleep onset.
aAt least one ε4 allele, missing data for 14 subjects.
bMissing data for two subjects.

This can contribute to the bidirectional effect of the sleep–amyloid

relationship described previously.9,44 Aβ aggregation and sleep dis-

turbances occur early during the preclinical phase of AD.3,22 Thus,

during this phase, older people with not only a bad sleep continuity

as suggested in the literature but also a lack of stability in this sleep

continuity could have an ineffective glymphatic system, leading to a

greater risk of heavy accumulation of amyloid. As of today, IIV is not

widely used in sleep clinics and in research even though it could be

easily integrated.26 We observed that IIV of sleep continuity (SF and

WASO) is correlated negatively with sleep duration and positively

correlated with mean sleep discontinuity, suggesting that a high

variability of sleep continuity reflects poor sleep quality. A study by

Westerberg et al.45 found that higher night-to-night IIV of actigraphic

sleep was associated to lower story recall in the healthy elderly and

individuals with amnestic mild cognitive impairment. They proposed

that inconsistent sleep across nights could impair neural systems

involved in memory processes. Another study from Mezick et al.46

found that actigraphic IIV-SF was related to a higher number of stress-

ful life events and higher norepinephrine levels in healthy middle-aged

and elderly. Hence, an inability to maintain a proper sleep state in

the elderly could impact the brain’s ability to maintain appropriate

homeostasis.

We did not find a difference in WASO between our groups

unlike Ju et al.22 and Ettore et al.23 This could be due to a method-

ological difference—Ju et al.22 used a CSF measure of amyloid

burden—or due to a higher proportion of women in the case of

Ettore et al.23 (70.6%), with women being at higher risk of developing

AD and presenting different age-related sleep characteristics.47 In

addition, Ettore et al.23 did not control for external sleep distur-

bances or for sleep medication. We also found a positive association

between IIV-WASO and Aβ burden but it did not remain signifi-

cant when we excluded disturbed sleepers and sleep medication

intake.

The strength of this study resides in the use of actigraphy and PET

scan in healthy older adults. Actigraphy is a more reliable tool to mea-

sure sleep in real life compared to subjective sleep assessment.20,48

Amyloid PET scan allows a direct in vivo measure of the spatial brain

localization of Aβ burden, compared to CSF measures, for exam-

ple. Limitations should also be considered in our study. First, the

cross-sectional design precludes any causal interpretation. Another
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F IGURE 3 Multiple regressions between
sleep parameters of the first part of the sleep
period and amyloid burden in the whole sample
(n= 86). IIV—sleep fragmentation (A) and
IIV—wake after sleep onset (B) are positively
associated with amyloid burden. Results are
presented at p< 0.001 (uncorrected), cluster
size> 100 voxels and shown on coronal slices
inMNI152 space. Analyses are adjusted by age,
sex, education, and the correspondingmean
parameter. IIV, intra-individual variability; PET,
positron emission tomography.

limitation lies in our statistical method, as an uncorrected statis-

tical threshold was used in whole-brain voxel-wise analyses. How-

ever, at this threshold, no significant association was observed in

the reverse contrast (i.e. there was no negative correlation) which

strengthens our findings and expected age effect on brain amyloid

distribution was obtained. We did not assess tau deposition within

the brain, considering that tau metabolism is also sleep related42 and

more directly related to cognitive disturbances in older individuals.49

Finally, although sex difference has been described previously in sleep

literature50 and in pathophysiology of AD,47 in the actigraphy/amyloid

literature, possible sex interactions have not been clearly investigated

yet. Thus there is a need for additional studies on this field directly

addressing the sex difference.

In conclusion, we reported a positive association between the night-

to-night IIV-SF in the first half of the sleep period and higher Aβ
burden mainly in the frontal lobes in cognitively normal older adults.

These results can help with the early detection of individuals at risk

for AD and to implement preventive strategies based on sleep health

promotion.
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