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Abstract

The sum of the longest diameter (SLD) of the target lesions is a longitudinal bio-

marker used to assess tumor response in cancer clinical trials, which can inform

about early treatment effect. This biomarker is semicontinuous, often character-

ized by an excess of zeros and right skewness. Conditional two-part joint models

were introduced to account for the excess of zeros in the longitudinal biomarker

distribution and link it to a time-to-event outcome. A limitation of the conditional

two-part model is that it only provides an effect of covariates, such as treatment,

on the conditional mean of positive biomarker values, and not an overall effect on

the biomarker, which is often of clinical relevance. As an alternative, we propose

in this article, a marginalized two-part joint model (M-TPJM) for the repeated

measurements of the SLD and a terminal event, where the covariates affect the

overall mean of the biomarker. Our simulation studies assessed the good perfor-

mance of the marginalized model in terms of estimation and coverage rates. Our

application of the M-TPJM to a randomized clinical trial of advanced head and

neck cancer shows that the combination of panitumumab in addition with che-

motherapy increases the odds of observing a disappearance of all target lesions

compared to chemotherapy alone, leading to a possible indirect effect of the com-

bined treatment on time to death.

KEYWORD S

conditional two-part, joint model, left-censoring, marginalized two-part, randomized
clinical trial, semicontinuous, solid tumors

1 | INTRODUCTION

In solid tumor cancer clinical trials, there is an increased interest in the joint analysis of the time to death and the sum
of the longest diameter (SLD) of the target lesions, defined according to the Response Evaluation Criteria in Solid
Tumours (RECIST). This biomarker reflects the tumor burden and its evolution over time. It is important to account
for the association between the longitudinal outcome and the risk of terminal event because the former is censored by
the terminal event, and the latter is highly affected by the value and the evolution of the biomarker over time. The SLD
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distribution is often characterized by an excess of zeros and right skewness. Patients whose treatment removes all visi-
ble signs of the disease generates zero values for the SLD. This excess of zeros is therefore highly informative of treat-
ment efficiency.

In previous work, including ours, a conditional two-part joint model (C-TPJM) has been introduced to fit a longitu-
dinal biomarker jointly with the risk of terminal event, while taking into account the semicontinuous distribution of
the biomarker.1,2 When an excess of true zeros is observed, the model was shown superior to standard approaches such
as left-censoring the biomarker's distribution (i.e., assuming zero values are censored values, too small to be observed)
to compare clinical treatment strategies. Indeed, the left-censoring one-part joint model (OPJM) fails to explain some
informative variability in the biomarker evolution over time because true zeros (i.e., not censored) are observed,
resulting in a reduced discrimination of the risk of death between treatment arms. The conditional two-part model3

decomposes the distribution of the outcome into a binary part corresponding to zero versus positive values and a con-
tinuous part with positive values only, both outcomes being modeled by a mixed effects regression model. The binary
and continuous parts are linked through correlated random effects. The model yields covariate effects, such as treat-
ment effect, on the probability of observing a positive versus zero SLD in the binary part and on the expected value of
the biomarker conditional on observing a positive value (i.e., zeros excluded) in the continuous part. On the other hand,
this model cannot provide treatment effect on the marginal mean of the biomarker, which is often of clinical interest.
For the terminal event, the hazard function can be expressed conditionally on observing a zero SLD value (which is
indicative of a complete response to treatment) and on the expected value of the biomarker among positive values
(which is indicative of a partial response to treatment). This type of association structure could help in the evaluation of
treatment effect on survival through its indirect effect on the biomarker.

Outside the framework of joint modeling, a marginalized two-part model4,5 has been proposed as an alternative to
the conditional two-part model, useful when the interest lies in the population-average effects of covariates, such as
treatment effect, on the biomarker. This model accounts for the zero values in the continuous part of the model and
provides covariates effects on the marginal mean of the biomarker. In addition, a binary part, similar to the conditional
two-part model, accounts for the excess of zeros and can assess covariate effects on the probability of observing a posi-
tive biomarker value vs. a zero value. The conditional and marginalized two-part models can address different clinical
questions. When the interest is in the expectation of the biomarker among positive values, the conditional model is
more appropriate while the marginalized two-part model may lead to arbitrary heterogeneity and provides less inter-
pretable estimates on the conditional mean of the biomarker among positive values.5 However, in many clinical appli-
cations such as cancer clinical trials, the interest is often to assess covariates effect on the marginal mean of a
biomarker (i.e., the effect on the whole population of interest), in particular to obtain FDA approvals, rather than on
the mean conditional on a positive value (i.e., a subpopulation not necessarily representative of the whole population).
The left-censoring one-part model provides similar covariates effects on the marginal mean of the biomarker as the
marginalized two-part model, but does not account for the excess of zero values. The left-censoring OPJM rather con-
siders an excess of values under a certain threshold or limit of detection. The marginalized two-part model combines
the advantages of the conditional two-part model and the left-censoring one-part model by allowing a direct interpreta-
tion of covariate effect on the population mean value of the biomarker while also accounting for the excess of zeros.
Shahrokhabadi et al.6 recently proposed a marginalized two-part joint model for the joint analysis of medical costs and
death, however the approach is limited in complexity (only random intercepts, constant baseline risk, NLMIXED estima-
tion procedure) and it is not properly contrasted with the existing literature (i.e., one-part joint and conditional two-part
joint models). The model has indeed a structure similar to that of the conditional two-part joint model proposed by Liu,1

where the two components of the two-part model (binary and continuous) are linked through a shared subject-specific
random intercept while another subject-specific random intercept captures the residual individual variability in the con-
tinuous part. Both random effects are shared with a Cox proportional hazards model for a terminal event. The interpreta-
tion of the random intercept in the binary part of the GLMM is complicated since it captures both the correlation among
the repeated measures over time and the correlation among the two components of the semicontinuous model.

In this article, we introduce an alternative and more flexible formulation of the M-TPJM. It accounts for the rela-
tionship between the binary and continuous parts through correlated random effects. Moreover, the estimation is per-
formed through a penalized likelihood approach (allowing for a smooth and flexible non-parametric baseline hazard
curve) and includes a Monte-Carlo numerical approximation for the integration over the multivariate Gaussian random
effects, leading to better scaling properties than the Gauss-Hermite strategy of Shahrokhabadi et al.6 Indeed, it avoids
the curse of dimensionality issue and thus allows more complex models to be fitted (e.g., including random slopes). We
also contrast the marginalized formulation of the two-part joint model with both the conditional formulation and the
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one part joint model, showing how this marginalized model combines the properties of the two latter models for better
clinical decision making.7 Finally, we introduce two different association structures between the semicontinuous bio-
marker and the risk of event, namely the “shared random effects” and the “current value” parameterizations.

In the application section of this article, we illustrate the differences between the three modeling strategies
for a semicontinuous biomarker and a terminal event (i.e., left-censoring OPJM, C-TPJM, and M-TPJM).
Besides, we illustrate how the M-TPJM facilitates the decision-making for clinicians by providing the effect of
covariates such as treatment on the marginal mean of the biomarker and its subsequent effect on the risk of
death.

In this article, we propose a marginalized two-part joint model (M-TPJM) for a longitudinal semicontinuous out-
come and a terminal event. We compare the M-TPJM with the C-TPJM and the left-censoring OPJM through simula-
tion studies and provide a detailed interpretation of these models. The remainder of the article is structured as follows:
in Section 2, we describe the M-TPJM and its estimation method. In Section 3, we present a simulation study to assess
the performance of the model and compare it to competing approaches that treat the excess of zeros differently. An
application to a randomized clinical trial comparing a combination of chemotherapy and panitumumab (anti-EGFR
monoclonal antibody) to chemotherapy alone, in patients with metastatic and/or recurrent squamous-cell carcinoma of
the head and neck, is proposed in Section 4 and we conclude with a discussion in Section 5.

2 | MODEL

2.1 | Left-censoring one-part model for the biomarker

Let Yij denote the biomarker value for subject i (i¼ 1,…,n), at visit j (j¼ 1,…,ni). The model assumes the biomarker can
be subject to left-censoring when it decreases below a limit of detection c.

Y �
ij ¼

Yij if Yij > c

0 otherwise

�

The Y �
ij has the same distribution as the Yij when Yij > c. For the observations Yij ¼ 0, all we know is

P Y �
ij ¼ 0

� �
¼ P Yij < c
� �

, see Tobin.8 The density function is used for the non-censored biomarker values while the
cumulative distribution function is used for the censored observations (the censoring threshold is chosen as the smallest
positive value observed in the data when not provided by the investigators). Below we assume a log-normal distribution
for the biomarker.

2.2 | Conditional two-part model for the biomarker

The biomarker distribution is decomposed into a binary outcome I Y ij >0
� �

and a positive-continuous outcome
Yij jYij >0. A GLMM with a logit link is assumed for the binary outcome and a log-normal mixed effects regression
model for the continuous outcome. The logarithm link in the continuous part is used to linearize the biomarker evolu-
tion over time and correct for right-skewness. The two components are linked through correlated random effects. The
two-part model for the biomarker is defined as follows:

logit Prob Yij >0jai
C

� �� �¼XΤ
Aijα

CþZΤ
Aijai

C Binary partð Þ,
log E YijjYij >0,bi

C� �� �¼XΤ
Bijβ

CþZΤ
Bijbi

C Continuous partð Þ,

(

where XAij and ZAij are vectors of covariates associated with the fixed effect parameters αC and the random effects ai
C

for the binary part. Similarly, XBij and ZBij are vectors of covariates associated with the fixed effect parameters βC and
the random effects bi

C. We assume a log-normal distribution for Yij jYij >0 in the continuous part with location param-
eter given in Section 2.7 (Equation 4) and error εij �N 0,σCε

� �
. The two vectors of random effects follow a multivariate

normal distribution:
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ai
C

bi
C

	 

�MVN

0

0

	 

,

Σ2
a Σab

Σba Σ2
b

" # !
,wherea and b can bemultidimensional:

The vectors of correlated subject-specific random effects ai
C and bi

C account for the correlation between
repeated measurements within an individual and the correlation between the two components of the model. The logis-
tic regression model includes covariates that represent the effect of an individual's characteristics on the probability of
observing a positive versus zero biomarker value. The continuous part represents the log of the expected value of the
biomarker given a positive biomarker value. This model differs from the conditional two-part model proposed in
Rustand et al.2 for which the continuous part represented the expected value of the log-transformed longitudinal out-
come, resulting in an additive effect of covariates on the transformed scale of the biomarker. Using now a logarithm
link facilitates the interpretation of a covariate k, where exp βkð Þ represents the multiplicative effect on the (original
scale) biomarker value at a given time point, conditional on a positive value at that time point, associated with a one-
unit increase in the covariate Xk.

9 To illustrate, let us consider our application to tumor size. The formulation presented
in Rustand et al.2 could indicate that treatment X reduces tumor size by Y units on the logarithmic scale per unit of
time. In contrast, our newly proposed formulation suggests that the treatment reduces tumor size by Z% on the original
scale per unit of time, which is clinically more appealing. Additionally, we can measure uncertainty and significance of
covariate effects directly on this scale unlike our previous approach. It should also be noted that in Rustand et al.,2 the
exponential of the covariate effects can be interpreted in terms of change in the median of the response variable, which
can also be of scientific interest. We assume the risk of terminal event depends on the repeated measurements of the
biomarker, with two different association structures: shared random effects and current level of the biomarker (See
Section 2.5).

2.3 | Marginalized two-part model for the biomarker

In the context of two-part models, the term “marginalized” refers to the biomarker distribution including both zeros
and positive values. It will be compared with the “conditional form” which includes a positive-continuous outcome
(i.e., constraint model upon positive values of the outcome) in addition to the binary outcome. The conditional form
does not refer here to the “subject-specific” usage, that is, conditional on random effects. In this article, we will use the
terminology “population average/subject-specific” to avoid some confusion with the “marginalized/conditional”
concept.

In the M-TPJM, the binary part is similar to the one used in the conditional model, but the continuous part models
the covariate effects on the marginal mean of the biomarker. The model is defined as follows:

logit Prob Yij >0jai
M

� �� �¼X >
Aijα

MþZ >
Aijai

M Binary partð Þ,
log E YijjbiM

� �� �¼X >
Bijβ

MþZ >
Bijbi

M Continuous partð Þ,

(
ð1Þ

The marginalized two-part model gives the effect of covariates on the marginal mean of the biomarker instead of
the mean conditional on observing a positive value of the biomarker by including both the zeros and positive values in
the continuous part. We assume a log-normal distribution for Yij in the continuous part with location parameter given
in Section 2.7 (Equation 3) and error εij �N 0,σMε

� �
. The random effects ai

M and bi
M follow a multivariate normal dis-

tribution. They capture some correlation due to potentially unobserved process driving the probability of positive value
and the marginal mean value, that is, lower values of the biomarker are more likely correlated with the probability of
observing a zero. Another induced correlation is that the expression of the overall mean also depends on the probability
of observing a positive value (see Equation 3). With the conditional two-part model, the association between the binary
and continuous part is only captured through the correlation structure of the random effects.

2.4 | Survival component of the joint model

A Cox proportional hazards model is used for the terminal event.

4 RUSTAND ET AL.
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λi tj �ð Þ ¼ λ0 tð Þ exp X >
Si γþh �ð Þ > φ

� �
The effect of covariates XSi on the risk of death is given by the vector of regression coefficients γ. The function h �ð Þ

corresponds to the association function between the biomarker and the risk of event, and φ the corresponding vector of
association parameters (i.e., fixed effects that scale the association term). The association function corresponds to the
elements that are shared to define the association between the biomarker and the survival, it is a function of the fixed
and random effects from the biomarkers' mixed effects models.

2.5 | Association structures

We propose two possible association structures. In the “shared random effects” (SRE) association structure between the
M-TPJM and the survival model, we have

λi tjai
M,bi

M� �¼ λ0 tð Þexp X >
Si γMþaM >

i φM
a þbM >

i φM
b

� �
,

and in the “current level” (CL) association (also referred to as “current value”) we have

λi tjbiM
� �¼ λ0 tð Þexp X >

Si γMþE Yi tð ÞjbiM
� �

φM
� �

,

where Yi tð Þ is the expected value of the longitudinal marker for individual i at time t, given by the two-part submodel.
The SRE association is useful to explore the association between an individual's deviation from the population mean
evolution of the biomarker and the risk of terminal event but does not take into account the covariance between
the two vectors of random effects in the survival model. The difference in the SRE association structure between the
M-TPJM and the C-TPJM is that the individual heterogeneity captured in the continuous part by the random effects is
conditional on observing a positive value of the biomarker with the C-TPJM, while for the marginalized model it corre-
sponds to the entire population. The biomarker model takes into account informative censoring by the terminal event
through the shared random effects while the survival part gives the hazard ratio of the covariates conditional on the
random effects, assuming proportional hazards.

In the CL association, φ is a scalar parameter that quantifies the strength of the association between the true
unobserved value of the longitudinal biomarker (that is the error-free value of the biomarker) and the risk of event.
With a C-TPJM, the “current value” association with the biomarker is defined as:

λi tjai
C,bi

C� �¼ λ0 tð Þexp X >
Si γCþE Yi tð Þjai

C,bi
C� �
φC

� �
,

withE Yi tð Þjai
C,bi

C� �¼ Prob Yi tð Þ>0jai
C

� �
E Yi tð ÞjYi tð Þ>0,bi

C� �
,

ð2Þ

that is a combination of two non-linear processes, imposing a specific functional form for the association of the bio-
marker current value with the risk of event. The M-TPJM directly models the mean value of the biomarker
E Yi tð ÞjbiM
� �

, which facilitates the interpretation of covariates effect on the biomarker mean value. Because
E Yi tð ÞjbiM
� �

is directly obtained from the M-TPJM, the variance of the estimated value of the biomarker is reduced
under the M-TPJM compared to the C-TPJM, as illustrated in Figure 2. In terms of covariate effects, under the CL asso-
ciation, a covariate can be associated with the risk of event through its own association with the biomarker or indepen-
dently of the biomarker when it is also included in the survival model.

2.6 | Interpretation of treatment effect

It is simple to estimate both subject-specific and population average means of the biomarker under the M-TPJM (and of
the biomarker conditional on a positive value under the C-TPJM), particularly for covariates not included as random
effects as the regression coefficients takes both subject-specific and population average interpretations (see appendix B
of Smith10).
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For the M-TPJM, the population average mean of the biomarker is expressed as

E Yij
� �¼EbMi

E YijjbMi
� �� �¼ exp X >

Bijβ
Mþ1

2
Z >
BijΣ

M
bbZBij

� �

While for the C-TPJM, the population average mean of the biomarker conditional on a positive value is
expressed as:

E YijjYij >0
� �¼EbCi

E YijjYij >0,bCi
� �� �¼ exp X >

Bijβ
Cþ1

2
Z >
BijΣ

C
bbZBij

� �
,

where ΣM
bb and ΣC

bb corresponds to the variance–covariance of random effects from the continuous part with the
M-TPJM and the C-TPJM, respectively.

From these expressions, it is clear that exp βMtrt
� �

with the M-TPJM (respectively exp βCtrt
� �

for the C-TPJM), where
βtrt is the treatment effect in the continuous part of the model, corresponds to the multiplicative effect on both the
subject-specific and the population average value of the biomarker (respectively the value of the biomarker conditional
on observing a positive value with the C-TPJM), when treatment is not included as a random effect. We can get an
approximation of the population average effect of treatment on the biomarker with the C-TPJM, but this effect is condi-
tional on the random effects and the value of other covariates included in the model. Moreover, the delta method or
resampling techniques must be employed to get a confidence interval and a Wald test on this population average effect
of treatment.

A diagram giving an interpretation of the treatment effect under the C-TPJM and the M-TPJM is displayed in
Figure 1. With the SRE association, the survival model gives the hazard ratio of treated vs. untreated patients and the

Mul�plica�ve effect on the 
marginal mean biomarker value

Hazard ra�o of risk of terminal event
independent of the biomarker

Mul�plica�ve effect on the 
condi�onal mean of posi�ve 

biomarker values

Odds ra�o of the probability of 
posi�ve biomarker value

Odds ra�o of the probability of 
posi�ve biomarker value

Mul�plica�ve effect on the 
condi�onal mean of posi�ve 

biomarker values

Hazard ra�o of risk of terminal event
captured by the biomarker

Odds ra�o of the probability of 
posi�ve biomarker value

Mul�plica�ve effect on the 
marginal mean biomarker value

Odds ra�o of the probability of 
posi�ve biomarker value

Hazard ra�o of risk of 
terminal event

Condi�onal two-part joint model 
(associa�on: current level)

Treatment

Treatment

Condi�onal two-part joint model 
(associa�on: shared random effects)

Treatment

Marginalized two-part joint model 
(associa�on: current level)

Treatment

Marginalized two-part joint model 
(associa�on: shared random effects)

Hazard ra�o of risk of 
terminal event

+

(A) (B)

(C) (D)

Hazard ra�o of risk of terminal event
independent of the biomarker

Hazard ra�o of risk of terminal event
captured by the biomarker

+

FIGURE 1 Diagrams describing the interpretation of the treatment effect with the C-TPJM (left) and the M-TPJM (right) for the shared

random effects (up) and the current level (down) association structures. The marginalized model includes zero values to give the effect of

treatment on the marginal mean biomarker value. The shared random effects association provides a hazard ratio for treatment effect on the

risk of event adjusted for unmeasured confounders captured by the random effects. The current level association structure accounts for a

treatment effect on the risk of event independent on the biomarker as well as a possible treatment effect captured by the time-dependent

association with the biomarker on the risk of event.
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biomarker model gives the effect of treatment on the probability of observing a positive value of the biomarker in
the binary part.

With the CL association, the treatment effect in the biomarker model affects also the survival part through the asso-
ciation between the biomarker and the risk of event. This results in the treatment effect to vary over time in the bio-
marker model and in a non-proportional effect on the survival model (i.e., the hazards are proportional conditional on
the time-dependent current level of the biomarker). We recommend to use graphical representations to get a clear idea
of the time-dependent effect of treatment on survival time with the CL association structure as illustrated in Figure S1
of the supplementary material for the models from the application Section.

We can compute the subject-specific (i.e., conditional on the random effects) time-dependent overall treatment
effect with the CL association. It corresponds to the treatment effect for the average patient, with random effects equal
to zero. Moreover, it is possible to compute the average treatment effect in the population from the subject-specific one
using Monte-Carlo simulations, as discussed in van Oudenhoven et al.11

2.7 | Estimation procedure

The full likelihood of the M-TPJM is given by

Li �ð Þ¼
Z
aMi

Z
bMi

Yni
j¼1

Prob Yij >0jai
M

� �Uij 1�Prob Yij >0jai
M

� �� � 1�Uijð Þ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσMε

2
q� �Y�1

ij exp �
log Yij
� ��μMij

� �2
2σMε

2

0B@
1CA

8>><>>:
9>>=>>;

Uij

�λi TijΘð Þδi exp �
Z Ti

0
λi tjΘð Þdt

� �
p aM

i ,b
M
i

� �
dbMi da

M
i

With Uij ¼ I Y ij >0
� �

, Θ¼ αM,βM,aM
i ,b

M
i ,γ

M,φM
� �

and μMij the location parameter of the log-normal distribution

logN μMij

�
, σMε ) for the contribution of positive biomarker values to the likelihood. Details on the construction of the

log-likelihood is given in the supplementary material.

With a M-TPJM, the marginal mean of Yij is:

E YijjbiM
� �¼ Prob Yij >0jai

M
� �

exp μMij þ
σMε

2

2

 !

Using the parameterization from Equation (1), we can derive the corresponding location parameter of the log-
normal distribution as:

μMij ¼X >
Bijβ

MþZ >
Bijb

M
i � log Prob Yij >0jai

M
� �� ��σMε

2

2
ð3Þ

With a C-TPJM, the likelihood contributions from the binary part and the continuous part are only linked through
the random effects correlation structure. The location parameter of the log-normal distribution for the positive values is
therefore,

μCij ¼X >
Bijβ

CþZ >
Bijb

C
i �

σCε
2

2
, ð4Þ

The baseline hazard in the survival part of the model is approximated with m cubic M-splines with Q knots.
A penalization term ensure that the baseline hazard is smooth,

RUSTAND ET AL. 7
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pl Θð Þ¼ l Θð Þ� κ

Z ∞

0
λ000 tð Þ2dt,

where l Θð Þ¼Pn
i¼1 log Li Θð Þð Þ and κ a smoothing parameter chosen using an approximate cross-validation criterion

from a separate Cox model.
We use the Levenberg–Marquardt algorithm12 to maximize the log-likelihood. The integration over the random

effects has no analytical solution, therefore we approximate their value with a Monte-Carlo method. The number of
points for the Monte-Carlo integration methods defines the tradeoff between the precision of the approximation of the
random effects distribution and the computation time.

The approximated likelihood cross-validation (LCV) criterion13 for evaluation of the goodness-of-fit of the models
can be used as a model choice criterion. It corresponds to the Akaike information criterion (AIC) in the case of the
penalized maximum likelihood estimation. The LCV requires the outcome to be the same and while the overall mean
is the same between the left-censoring OPJM and the M-TPJM, the latter does include the contribution of the binary
component into the likelihood, making them not comparable according to this criterion. However, the LCV can com-
pare the goodness-of-fit between the C-TPJM and the M-TPJM as well as the SRE and CL association structures for each
type of joint model. The left-censoring OPJM, the C-TPJM and the M-TPJM are estimated with the function longiPenal
of the R package frailtypack, available on the comprehensive R archive network (CRAN).

3 | SIMULATION STUDY

3.1 | Simulation study design

We conducted simulation studies to compare the left-censoring OPJM, the conditional TPJM and the marginalized
TPJM in terms of bias and coverage probabilities. We propose three scenarios where the true model for data generation
is either the M-TPJM (scenario 1), the C-TPJM (scenario 2) or the left-censoring OPJM (scenario 3). The parameters
used for the data generation are based on the results from the real data application, resulting in about 10% zero values
in the biomarker distribution. An additional set of simulations is presented in the supplementary material with an
increased zero rate (20%). For each scenario, 300 datasets are generated with 400 individuals each. The number of
datasets was chosen to obtain a minimal Monte Carlo standard error of the parameter estimates under a reasonable
computation time (about 4 days per scenario with MPI parallelization over 80 CPUs). We focus on the CL association
structure for these simulations since it is a more challenging joint model to estimate (the survival model requires an
additional integration step in the optimization procedure). Moreover, the CL association structure provides a slightly
better fit compared to the SRE association structure in our application. For the data generation assuming the M-TPJM
as the true model, we first generate the zero values from a Bernoulli distribution, then the longitudinal biomarker mea-
surements assuming a log-normal distribution for the positive biomarker values, using the location parameter of
Equation (3). The longitudinal measurements are generated for the entire follow-up and then we use the R package Per-
mAlgo to generate random death times that depends on the time-dependent biomarker value and random censoring
times.14 The data generation for the C-TPJM is similar, except that the location parameter does not include the linear
predictor from the binary part (Equation 4). The observed value of the biomarker with the C-TPJM is therefore defined
by Equation (2), which is non-linear on the log scale. For the one-part model, we generate the longitudinal measure-
ments and then the zero excess with a censoring threshold chosen as the first (or second) decile of the distribution. The
number of repeated measurements of the biomarker per individual varies between 1 and 16, with a median of 2. The
percentage of patients who die during the 4 years follow-up is 80% following the real data death rate. Therefore, most of
the biomarker observations are in the early follow-up (the sample size decreases over time as censoring and death
occurs). A binary covariate generated from a Bernoulli distribution with p¼ 0:5 corresponding to the treatment effect is
included in each submodel of the joint model, with a time-interaction for each submodel of the two-part models.

We use the same parameters as in the application to choose the number of knots for the splines baseline hazard
approximation (5 knots). The penalization term was chosen by cross-validation from an univariate survival model. We
use 1000 Monte-Carlo integration points for the numerical approximation of the integral over the random effects distri-
bution. A replication script is available at github.com/DenisRustand/TPJM_sim; it includes the code “MTPJM_sim.R”
for the generation and estimation of a M-TPJM and the code “TPJM_sim.R” for the generation and estimation of a
C-TPJM and a OPJM.

8 RUSTAND ET AL.
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The parameters of the binary part can be compared between the C-TPJM and the M-TPJM as they both give the
effect of covariates on the probability to observe a positive value. The parameters of the continuous part can be com-
pared between the left-censoring OPJM and the M-TPJM as they both give the effect of covariates on the marginal
mean of the biomarker. The continuous part of the C-TPJM cannot be directly compared to the continuous part of the
other two models. The direct effect of treatment on the risk of death and the association between the biomarker and
the risk of death in the survival part can be compared between the three models.

3.2 | Results

Results from the simulation study are presented in Tables 1–3 and Tables S1–S3 of the supporting information.

3.2.1 | Scenario 1 – True model: M-TPJM

The M-TPJM recovers the true parameters value with good accuracy, coverage probabilities are close to 95% (Table 1).
Fixed effects parameters for the continuous part of the left-censoring OPJM are biased, with an intercept value bβ0 ¼
TABLE 1 Summary of the results of simulations scenario 1 (true model: marginalized TPJM), 300 datasets with 400 individuals each

and 1000 integration points, 10.17% zeros on average (SD = 1.33). The true value of the parameters estimated in the continuous part of the

C-TPJM are unknown, therefore coverage probabilities are not provided for these parameters.

Variable

Left-censoring OPJM C-TPJM M-TPJM

Est.a (SDb) [CPc] Est. (SD) [CP] Est. (SD) [CP]

Binary part

Intercept α0 ¼ 6 6.09 (0.64) [96%] 6.11 (0.57) [94%]

Time α1 ¼�3 �3.04 (0.44) [96%] �3.04 (0.35) [93%]

Treatment α2 ¼ 1 0.93 (0.75) [96%] 0.94 (0.68) [96%]

Time: treatment α3 ¼�2 �1.93 (0.65) [94%] �1.95 (0.53) [94%]

Continuous part

Intercept β0 ¼ 1:5 1.69 (0.06) [06%] 1.52 (0.05) 1.53 (0.05) [90%]

Time β1 ¼�0:5 �0.58 (0.10) [93%] �0.35 (0.03) �0.50 (0.06) [93%]

Treatment β2 ¼ 0:3 0.38 (0.08) [77%] 0.28 (0.07) 0.30 (0.07) [93%]

Time: treatment β3 ¼ 0:3 �0.13 (0.17) [22%] 0.42 (0.09) 0.30 (0.08) [95%]

Residual S.E. σε ¼ 0:3 0.64 (0.07) [00%] 0.32 (0.01) 0.30 (0.01) [92%]

Survival part

Treatment γ¼�0:2 �0.16 (0.13) [92%] �0.16 (0.12) [91%] �0.18 (0.12) [92%]

Association φ¼ 0:08 0.09 (0.02) [94%] 0.08 (0.02) [95%] 0.08 (0.02) [95%]

Random effects

Intercept (binary part) σa ¼ 1:4 1.33 (0.28) 1.37 (0.28)

Intercept (continuous part) σb0 ¼ 0:6 0.45 (0.06) 0.62 (0.03) 0.61 (0.03)

Slope (continuous part) σb1 ¼ 0:3 0.69 (0.12) 0.33 (0.07) 0.28 (0.08)

corab0 ¼ 0:5 0.51 (0.17) 0.56 (0.16)

corab1 ¼ 0:5 0.07 (0.30) 0.45 (0.30)

corb0b1 ¼ 0:2 0.20 (0.23) �0.20 (0.17) 0.27 (0.24)

Convergence rate 100% 100% 100%

aMean of parameter estimates.
bStandard deviation from the mean.
cCoverage probability.

RUSTAND ET AL. 9
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1:69 (SD¼ 0:06, CP¼ 6%) where the true value is β0 ¼ 1:5. The model is not able to handle properly the excess of zero
values. We illustrate this systematic bias with a plot of the estimated mean trajectory of the biomarker compared to the
true trajectory under the three scenarios (Figure 2). The time by treatment interaction effect under the left-censoring
OPJM is negative (bβ3 ¼�0:13, SD¼ 0:17, CP¼ 22%) where the true value is positive (β3 ¼ 0:3). The binary part of the
C-TPJM gives unbiased results. For the survival part, both the left-censoring OPJM and the C-TPJM are able to capture
the treatment effect on the risk of death independent of the biomarker (bγ¼�0:16, SD¼ 0:13, CP¼ 92% for the left-
censoring OPJM and bγ¼�0:16, SD¼ 0:12, CP¼ 91% for the C-TPJM), with a mean value slightly lower than the true
value (γ¼�0:2) compared to the M-TPJM (bγ¼�0:18, SD¼ 0:12, CP¼ 92%). The association between the biomarker
and the survival is also unbiased for the left-censoring OPJM (bφ¼ 0:09, SD¼ 0:02, CP¼ 94%) and the C-TPJM
(bφ¼ 0:08, SD¼ 0:02, CP¼ 95%) where the true value is φ¼ 0:08. The standard deviations of the random effects are
properly estimated with the two TPJMs but not with the left-censoring OPJM, the random intercept (σb0 ¼ 0:6) is biased
downwards (bσb0 ¼ 0:45, SD¼ 0:06) and the random slope (σb1 ¼ 0:3) is biased upwards (bσb1 ¼ 0:69, SD¼ 0:12). The cor-
relation between the random intercept and slope in the continuous part (corrb0b1 ¼ 0:2) is biased with the C-TPJM
(bcorrb0b1 ¼�0:20, SD¼ 0:17) as well as the correlation between the intercept from the binary part and the slope in the
continuous part (corrab1 ¼ 0:5), finding no correlation (bcorrab1 ¼ 0:07, SD¼ 0:30).

3.2.2 | Scenario 2 – True model: C-TPJM

The parameter estimates in the binary part (α0 ¼ 6,α1 ¼�3,α2 ¼ 1,α3 ¼�2) are biased with the M-TPJM (bα0 ¼ 5:46,
SD¼ 0:57, CP¼ 69%; bα1 ¼�2:34, SD¼ 0:38, CP¼ 39%; bα2 ¼ 0:66, SD¼ 0:74, CP¼ 89%; bα3 ¼�1:45, SD¼ 0:62,
CP¼ 69%) while the C-TPJM is unbiased with similar variability (Table 2). This could be due to the correlation between
the binary part and the continuous part in the M-TPJM (Equation 3), while they are simulated independent conditional
on the random effects. As displayed in Figure 2, the mean behavior of the biomarker is not linear on the log scale with
the C-TPJM as opposed to the left-censoring OPJM and the M-TPJM. In particular, the mean value of the biomarker
converges towards zero at the end of the follow-up because the probability of positive value decreases over time in the
binary part. The M-TPJM is not able to capture this trend in the late follow-up (i.e., where there are less observations
because some patients got censored or died during follow-up). Although the biomarker average trajectory specified as
log-linear for the M-TPJM does not fit well, it can be improved by including more general functions of time in the linear
predictor of the continuous part. This is illustrated by including splines in the linear predictor of the continuous part of
the M-TPJM to capture a non-linear trend of the population average biomarker trajectory, see Figure S2 of the supple-
mentary material for an illustration. The left-censoring OPJM seems severely biased for this simulation scenario,
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FIGURE 2 Mean biomarker trajectory captured in the simulation studies (Tables 1–3) for the M-TPJM, the C-TPJM and the left-

censoring OPJM compared to the true trajectory. The C-TPJM always assume a non-linear population average biomarker trend as it is

defined by the combination of the binary and continuous parts while the OPJM and M-TPJM can define the population average biomarker

trajectory as log-linear (although the trajectory can be more flexible when including functions of time in the linear predictor of the

continuous part).
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especially for the time by treatment interaction effect on the marginal mean of the biomarker (bβ3 ¼�0:24, SD¼ 0:16).
As observed in the first scenario, the effect of treatment on the risk of event independent of the biomarker and the asso-
ciation parameter are properly recovered for the three models except the left-censoring OPJM with a slightly higher
estimate and standard error for the association (bφ¼ 0:10, SD¼ 0:03)) than the true value recovered by the M-TPJM and
the C-TPJM (bφ¼ 0:08, SD¼ 0:02) while coverage probabilities are close to 95% with the three models. The standard
deviations of the random effects and their correlation is properly captured with the C-TPJM and similarly with the
M-TPJM while the left-censoring OPJM exhibits a similar bias as in scenario 1.

3.2.3 | Scenario 3 – True model: Left-censoring OPJM

The convergence rate of the C-TPJM (73%) is low, this is due to the data generating mechanism that gives unstable
parameter estimates in the binary part (the probability of positive value at baseline is close to 1, corresponding to a
linear predictor that converges towards þ∞ with the logit link function). Fixing the intercept to a reasonable value of
6.0 solves this issue while not changing the parameters estimates. As expected, the M-TPJM gives unbiased values for
the continuous part (Table 3), although we notice slightly lower coverage probabilities for the fixed slope effect
(bβ1 ¼�0:55, SD¼ 0:06, CP¼ 83%), the interaction of the slope and treatment (bβ3 ¼ 0:35, SD¼ 0:08, CP¼ 86%) and the

TABLE 2 Summary of the results of simulations scenario 2 (true model: conditional TPJM), 300 datasets with 400 individuals each and

1000 integration points, 10.53% zeros on average (SD = 1.36). The true value of the parameters estimated in the continuous part of the left-

censoring OPJM and the M-TPJM are unknown, therefore coverage probabilities are not provided for these parameters.

Variable

Left-censoring OPJM C-TPJM M-TPJM

Est.a (SDb) [CPc] Est. (SD) [CP] Est. (SD) [CP]

Binary part

Intercept α0 ¼ 6 6.13 (0.64) [96%] 5.46 (0.57) [69%]

Time α1 ¼�3 �3.07 (0.45) [95%] �2.34 (0.38) [39%]

Treatment α2 ¼ 1 1.03 (0.85) [96%] 0.66 (0.74) [89%]

Time: treatment α3 ¼�2 �2.04 (0.72) [95%] �1.45 (0.62) [69%]

Continuous part

Intercept β0 ¼ 1:5 1.68 (0.07) 1.53 (0.05) [90%] 1.53 (0.05)

Time β1 ¼�0:5 �0.68 (0.10) �0.50 (0.06) [90%] �0.60 (0.06)

Treatment β2 ¼ 0:3 0.41 (0.08) 0.30 (0.07) [91%] 0.32 (0.07)

Time: treatment β3 ¼ 0:3 �0.24 (0.16) 0.30 (0.08) [94%] 0.23 (0.09)

Residual S.E. σε ¼ 0:3 0.63 (0.08) 0.30 (0.01) [94%] 0.30 (0.01)

Survival part

Treatment γ¼�0:2 �0.21 (0.13) [95%] �0.20 (0.12) [95%] �0.21 (0.12) [95%]

Association φ¼ 0:08 0.10 (0.03) [92%] 0.08 (0.02) [94%] 0.08 (0.02) [93%]

Random effects

Intercept (binary part) σa ¼ 1:4 1.35 (0.29) 1.25 (0.28)

Intercept (continuous part) σb0 ¼ 0:6 0.47 (0.07) 0.61 (0.03) 0.61 (0.03)

Slope (continuous part) σb1 ¼ 0:3 0.80 (0.16) 0.29 (0.05) 0.37 (0.06)

corab0 ¼ 0:5 0.53 (0.16) 0.54 (0.17)

corab1 ¼ 0:5 0.51 (0.25) 0.62 (0.20)

corb0b1 ¼ 0:2 0.18 (0.19) 0.20 (0.19) 0.34 (0.18)

Convergence rate 100% 100% 100%

aMean of parameter estimates.
bStandard deviation from the mean.
cCoverage probability.
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error term (bσε ¼ 0:30, SD¼ 0:01, CP¼ 75%). In the survival part, all the models are again unbiased, with similar preci-
sion and coverage. The random intercept and slope are properly estimated but their correlation is slightly biased
upwards with the M-TPJM (bcorrb0b1 ¼ 0:44, SD¼ 0:18, true value is corrb0b1 ¼ 0:2) while the C-TPJM finds no correlation
between the intercept and slope (bcorrb0b1 ¼�0:01, SD¼ 0:21Þ. We also notice a strong correlation between the random
intercept from the binary and continuous parts for both the C-TPJM (bcorrab0 ¼ 0:93, SD¼ 0:04) and the M-TPJM
(bcorrab0 ¼ 0:94, SD¼ 0:04), this is due to the data generating mechanism where censored values are the 10% smallest
observed values, thus inducing a strong correlation between the mean value of the biomarker and the probability of
positive value.

3.2.4 | Scenario 4, 5, and 6 – increased zero rate

We investigated three similar simulation scenarios with an increased rate of zeros (20%). The conclusions are similar
to our first set of simulations (scenarios 1–3), exhibiting strong bias for the left-censoring OPJM and moderate bias
for the C-TPJM and M-TPJM when they are mis-specified (see Tables S1–S3). However, these biases increased com-
pared to the three firsts simulations scenarios, indicating that the excess of zeros impacts substantially parameter
estimates.

TABLE 3 Summary of the results of simulations scenario 3 (true model: Left-censoring OPJM), 300 datasets with 400 individuals each

and 1000 integration points, 10.04% zeros on average (SD = 0.02). The true value of the parameters estimated in the continuous part of the

C-TPJM are unknown, therefore coverage probabilities are not provided for these parameters.

Variable

Left-censoring OPJM C-TPJM C-TPJM M-TPJM

Est.a (SDb) [CPc] Est. (SD) [CP] Est. (SD) [CP] Est. (SD) [CP]

Binary part

Intercept α0 7.89 (0.78) 6.00 (fixed) 5.95 (0.81)

Time α1 �3.50 (0.55) �2.73 (0.34) �2.47 (0.47)

Treatment α2 2.52 (0.90) 2.96 (0.83) 1.60 (0.62)

Time: treatment α3 1.18 (0.76) 0.63 (0.63) 0.72 (0.49)

Continuous part

Intercept β0 ¼ 1:5 1.52 (0.05) [93%] 1.54 (0.04) 1.50 (0.05) 1.51 (0.05) [96%]

Time β1 ¼�0:5 �0.51 (0.05) [94%] �0.42 (0.05) �0.44 (0.05) �0.55 (0.06) [83%]

Treatment β2 ¼ 0:3 0.30 (0.06) [94%] 0.29 (0.06) 0.34 (0.06) 0.32 (0.07) [93%]

Time: treatment β3 ¼ 0:3 0.31 (0.08) [92%] 0.23 (0.07) 0.24 (0.07) 0.35 (0.08) [86%]

Residual S.E. σε ¼ 0:3 0.30 (0.01) [93%] 0.29 (0.01) 0.29 (0.01) 0.30 (0.01) [75%]

Survival part

Treatment γ¼�0:2 �0.21 (0.13) [95%] �0.21 (0.13) [95%] �0.20 (0.13) [94%] �0.21 (0.13) [95%]

Association φ¼ 0:08 0.08 (0.02) [92%] 0.08 (0.02) [93%] 0.08 (0.02) [93%] 0.08 (0.02) [93%]

Random effects

Intercept (binary part) σa 4.53 (0.44) 3.62 (0.27) 2.82 (0.42)

Intercept (continuous part) σb0 ¼ 0:6 0.60 (0.03) 0.59 (0.03) 0.59 (0.03) 0.62 (0.03)

Slope (continuous part) σb1 ¼ 0:3 0.30 (0.05) 0.21 (0.05) 0.22 (0.05) 0.29 (0.06)

corab0 0.93 (0.04) 0.93 (0.04) 0.94 (0.04)

corab1 0.33 (0.21) 0.33 (0.21) 0.69 (0.13)

corb0b1 ¼ 0:2 0.22 (0.18) �0.01 (0.21) �0.02 (0.21) 0.44 (0.18)

Convergence rate 100% 73% 100% 100%

aMean of parameter estimates.
bStandard deviation from the mean.
cCoverage probability.
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3.2.5 | Conclusion

To conclude, the left-censoring OPJM gives biased estimates of the mean biomarker value and evolution over
time when the true model is either the C-TPJM or the M-TPJM. The M-TPJM provides an accurate estimate of
the biomarker trajectory under scenarios 1 and 3 but not under scenario 2, as expected (see Figure 2). In
our scenarios, the association between the biomarker and the survival was driven largely by early follow-up
(where censorship rate is low), thus the parameter quantifying this association was not affected by the bias of
the mean biomarker value observed in the late follow-up (see Figure 2). The assumption of independence
between the binary and continuous parts conditionally on the random effects with the C-TPJM can result in
unstable parameter estimations and convergence issues when this assumption does not hold, as observed in
scenario 3. Finally, the C-TPJM is not able to recover the correlation between the random effects when it is
not the true model while the M-TPJM gives a good approximation of this correlation structure in all the
scenarios.

4 | APPLICATION TO METASTATIC HEAD AND NECK CANCER DATA

4.1 | Data

The SPECTRUM study (Study of Panitumumab Efficacy in Patients With Recurrent and/or Metastatic Head and Neck
Cancer) consists of a phase 3 randomized clinical trial (RCT) of chemotherapy with or without panitumumab in
patients with metastatic and/or recurrent squamous cell carcinoma of the head and neck (SCCHN). The objective of
the study is to compare the treatment effect of panitumumab in combination with chemotherapy versus chemotherapy
alone as first line therapy for metastatic and/or recurrent SCCHN. This dataset is freely available on ProjectDataSphere.
org (Project Data Sphere is an initiative to provide access to individual patient data from RCTs across numerous cancer
types from industry and academia).

Between May 15, 2007 and March 10, 2009, 657 patients were randomly assigned (327 to the panitumumab
group and 330 to the control group). The inclusion of the patients started at the date of randomization. The data
for analysis includes a subset of 449 patients (i.e., 137 patients excluded from the publicly available dataset and
out of them, 71 had no biomarker measurements). The median overall survival (OS) is 0.61 years for the control
group (arm A) and 0.81 for the panitumumab group (arm B), 370 patients (82%) died during follow-up. There are
1913 repeated measurements of the SLD, 161 of which are zero values (8%). The number of individual repeated
measurements for this biomarker varies between 1 and 29 with a median of 4. The main conclusion of the trial
was that the addition of panitumumab to chemotherapy did not improve the OS but it improved the progression-
free survival (PFS) and had an acceptable toxicity.15 However a better PFS does not always lead to
improved OS.16

We chose 5 knots for the splines approximating the baseline hazard function based on an univariate survival model.
The penalization term, found with cross-validation, is κ¼ 0:02. We use 2000 Monte-Carlo integration points for the
numerical approximation of the integral over the random effects.

4.2 | Results from the M-TPJM

In this RCT, there is no zero value at baseline as all patients have at least one measurable lesion at inclusion. For that
reason, the estimation of the intercept in the binary part of the conditional two-part model is unstable and led to con-
vergence issues. We therefore decided to fix the intercept value at 8:0 for both the conditional and marginalized models,
which corresponds to a baseline mean probability of zero value of 3�10�4. This value was chosen by running the
M-TPJM without fixing this intercept while the C-TPJM had convergence issue, other values (e.g., 6.0 or 10.0) also led
to convergence issues with the C-TPJM. The results of the M-TPJM with the CL and the SRE association are presented
in Table 4. We accounted for a treatment effect at baseline and an interaction between treatment and time in both the
binary and continuous parts of the two-part model. The baseline effect was included to account for a possible bias in
randomization since the publicly available dataset used in our analysis is just a subset of the full original randomized
clinical trial.
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4.2.1 | Binary part

The treatment difference in the linear predictor at baseline is negative and slightly significantly different from zero
(i.e., p-value barely under 0.05) with the CL association (bαtrt ¼�1:00, SE¼ 0:44Þ and the SRE association (bαtrt ¼�0:94,
SE¼ 0:51Þ. In a RCT, a significant difference between treatments arms at baseline could result from a bias in randomi-
zation (i.e., since we only used a subset of individuals), a lack of flexibility in the function describing the evolution of
the outcome over time or simply by chance, as we'd expect to see this 5% of the time. The slope effect of time is negative
and highly significant with the CL (bαtime ¼�3:67, SE¼ 0:37Þ and the SRE associations (bαtime ¼�3:38, SE¼ 0:47Þ. This
means that the probability of observing a zero value (i.e., complete remission of the measured tumors) increases over
time for the reference treatment (arm A). The time by treatment interaction effect on the probability of observing a pos-
itive value is significantly negative for both the CL (bαtime � trt ¼�2:02, SE¼ 0:49) and SRE associations (bαtime � trt ¼�1:54,
SE¼ 0:57), meaning that the patients receiving treatment arm B are associated with higher odds of zero value over time
compared to patients receiving treatment arm A.

4.2.2 | Continuous part

The marginal mean value of the SLD at baseline is found similar between the two treatment arms (β0 ’ 1:4). The slope
effect of time is negative and significant (CL: bβtime ¼�0:68, SE¼ 0:08 and SRE: bβtime ¼�0:61, SE¼ 0:07). This effect can
be interpreted as a multiplicative time effect on the marginal mean of the biomarker given by exp �0:68ð Þ¼ 0:51 for the
CL association (respectively exp �0:61ð Þ¼ 0:54 for the SRE association). This corresponds to a reduction of 49% of
the SLD value per year among patients receiving the reference treatment (arm A) with the CL association model
(respectively a reduction of 46% per year with the SRE association model). The two M-TPJMs do not find a significant
treatment effect at baseline nor time by treatment interaction, therefore patients receiving treatment arm B have a simi-
lar decreasing trend of SLD over time than those in arm A.

4.2.3 | Survival part

The interpretation of the covariate effects in the survival part depends on the association structure specified for the
TPJM. With the SRE association, the parameters are interpreted in terms of effect on the risk of death accounting for
some individual heterogeneity of the population (as specified by the random effects). The effect of treatment on the risk
of death, independent of the biomarker, is not significantly different from zero neither with the SRE association struc-
ture (bγ¼�0:07, SE¼ 0:11) nor with the CL association (bγ¼�0:05, SE¼ 0:11). Regarding a possible effect of treatment
through its association with the biomarker, the treatment and treatment by time interaction are not significantly associ-
ated with the mean of the biomarker under either the CL or SRE association even though the probability of a positive
SLD value is decreasing with time and at a higher rate for treatment arm B vs. A. For the SRE association, the associa-
tion between the individual heterogeneity at baseline (random intercept from the continuous part) and the risk of death
is positive and slightly significant (bφb0 ¼ 0:42, SE¼ 0:19), indicating that the baseline value of the SLD is predictive of
the risk of death. However, for the CL association, the current value of the biomarker is positively and very significantly
associated with the terminal event (bφ¼ 0:08, SE¼ 0:01), indicating that the risk of death increases with the value of the
SLD. As illustrated in Figure S1, the model shows no difference in the survival curves according to treatment arm.
The other advantage of the M-TPJM with the CL association, is that it allows to quantify the effect of one unit increase
in the biomarker on the risk of terminal event. For instance, the hazard ratio of a patient with a 1 cm increase in the
SLD value is associated with an increased risk of death of 8% (exp 0:08ð Þ¼ 1:08). The M-TPJM with the SRE association
can be helpful to characterize how individuals who deviate by a certain amount from the mean SLD trajectory (e.g., 1
standard deviation of the baseline biomarker value) have an increased risk of terminal event compared to a patient with
an average SLD profile. For instance, let us assume a clinician is interested in the top 15% patients who had the largest
SLD value at baseline compared to the average patient. Their random effect b0i should be higher than 1 standard
deviation, that is from Table 4, b0i >0:42. Conditional on b0i >0:42, the mean values of the random effects can
be derived by sampling from a conditional multivariate normal distribution with correlation matrix given in Table 4.
These conditional means are 3:66, 0:90 and 0:48 for a, b0 and b1, respectively. Therefore, these top 15%
individuals increase their chance to have the terminal event (i.e., to die) measured by an hazard ratio of
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HR¼ exp 0:00�3:66þ0:42�0:90þ0:30�0:48ð Þ¼ exp 0:52ð Þ¼ 1:69,95%CI¼ 1:39�2:02, compared to a patient who has an
average longitudinal SLD profile. The confidence intervals were obtained by sampling parameters from the Hessian
matrix.

4.3 | Comparison of the M-TPJM with the left-censoring OPJM

The difference in the treatment of the zero values leads to a steeper decrease of the mean biomarker value over time for
the left-censoring OPJM (CL: bβtime ¼�0:87, SE¼ 0:10, SRE: bβtime ¼�0:86, SE¼ 0:10) compared to the M-TPJM (CL:bβtime ¼�0:68, SE¼ 0:08, SRE: bβtime ¼�0:61, SE¼ 0:07). The residual error is higher with the left-censoring OPJM
(bσε ¼ 0:41, SE¼ 0:01) than with the M-TPJM (bσε ¼ 0:30, SE¼ 0:01), indicating a better fit of the latter. Our results are
therefore in line with our simulations when OPJM is not the true model. Overall, the standard errors of the parameter
estimates in the biomarker model are lower under the M-TPJM than the OPJM. Nonetheless, the SRE association
shows a similar but more significant relationship between the random intercept and slope of the mean biomarker value
and the risk of death with the left-censoring OPJM (bφb0 ¼ 0:48, SE¼ 0:11, bφb1 ¼ 0:16, SE¼ 0:06) compared to the
M-TPJM (bφa ¼ 0:00, SE¼ 0:07,bφb0 ¼ 0:42, SE¼ 0:19, bφb1 ¼ 0:30, SE¼ 0:23), likely due to the better fit of the latter model.
In particular, the random slope standard deviation is found higher with the left-censoring OPJM (CL: bσb1 ¼ 1:51,
SRE¼bσb1 ¼ 1:44) compared to the M-TPJM (CL: bσb1 ¼ 0:99, SRE: bσb1 ¼ 1:01).

4.4 | Comparison of the M-TPJM with the C-TPJM

The LCV criterion indicates that the M-TPJM fits the data better than the C-TPJM for each association structure. As
proposed in Commenges et al.,13 the comparison of the LCV value can be classified according to the order of the differ-
ence. A difference of order 10�1, 10�2, 10�3, and 10�4 may be qualified as ‘large’, ‘moderate’, ‘small’ and ‘negligible’,
respectively. The difference in the LCV value between the M-TPJM (CL: LCV¼ 1:0072, SRE: LCV¼ 1:0082) and the
C-TPJM (CL: LCV¼ 1:0525, SRE: LCV¼ 1:0524) is moderate in favor of the M-TPJM and the difference between
the CL and the SRE association structures is small in favor of the CL with the left-censoring OPJM (CL: LCV¼ 1:9790,
SRE: LCV¼ 1:9803) and the M-TPJM where it is negligible with the C-TPJM. We plotted the mean biomarker trajectory
estimated by the left-censoring OPJM, the C-TPJM and the M-TPJM in Figure S3. As observed in the simulations when
the M-TPJM is the true model, the C-TPJM tends to over-estimate the probability of zeros over time.

In line with the simulation results when M-TPJM is the true model, the variability of the parameter estimates in the
binary part is lower under the M-TPJM than the C-TPJM. Treatment arm B (chemotherapy + panitumumab) vs. arm A
(chemotherapy alone) is associated with a more significant reduction in the probability of positive value over time with
the M-TPJM (CL: bαtime � trt ¼�2:02, SE¼ 0:49, SRE: bαtime � trt ¼�1:54, SE¼ 0:57) compared to the C-TPJM with the CL
association structure (bαtime � trt ¼�1:84, SE¼ 0:71) and the SRE association (bαtime � trt ¼�1:83, SE¼ 1:31). In the continu-
ous part, the effect of treatment is not found significantly different from zero under either the C-TPJM or the M-TPJM
but its interpretation is different under these 2 models, as illustrated in Figure 1. The M-TPJM finds no treatment effect
on the overall mean biomarker value (CL: bβtime � trt ¼�0:12, SE¼ 0:12, SRE: bβtime � trt ¼�0:13, SE¼ 0:11) where the
C-TPJM finds no treatment effect on the biomarker value conditional on a positive value (CL: bβtime � trt ¼�0:10,
SE¼ 0:09, SRE: bβtime � trt ¼ 0:07, SE¼ 0:09). As found in our simulation results, the effect of treatment independent of
the biomarker and the association parameters are very similar between the M-TPJM and C-TPJM.

To conclude, as observed in our simulation results, the C-TPJM can lead to biased estimates and incorrect statistical
inference when it is not the true model (the M-TPJM is the best model in the application).

An advantage of the M-TPJM is that it is straightforward to evaluate the hazard ratio of treatment at a given time
point with the current value association structure compared to the C-TPJM (note that with the shared random effects,
this hazard ratio is directly given by exponentiating the treatment effect in the survival submodel for both the M-TPJM
and the C-TPJM). For example, from Table 4, we can calculate that the hazard ratio of treatment for the reference indi-
vidual (i.e., for a woman 65 years old or less), 1 year after randomization, is 0:93,95%CI¼ 0:75�1:16. The decrease in
the SLD due to treatment effect is reflected in the hazard, leading to a slightly improved survival over time, although
not statistically significant. This hazard ratio can also be obtained from the C-TPJM but this requires combining the
effect of treatment on the binary and on the continuous parts of the biomarker model to obtain its effect on the mar-
ginal mean of the biomarker while it is directly given by the M-TPJM. For instance, the hazard ratio of treatment, 1 year
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after randomization with the C-TPJM is 0:93,95%CI¼ 0:75�1:17. The details of these computations are given in the
supplementary material. The computation time of the M-TPJM (CL: 3870 s, SRE: 908 s) is reduced compared to
the C-TPJM (CL: 5271 s, SRE: 2019 s) while it is higher than the left-censoring OPJM (CL: 1417 s, SRE: 160 s) because of
the additional parameters included for the binary part.

5 | DISCUSSION

We proposed a marginalized two-part joint model for a longitudinal semicontinuous biomarker and a terminal event
that allows to obtain directly the effect of covariates, such as treatment effect, on the marginal mean of the bio-
marker. This M-TPJM is as an alternative to the conditional two-part joint model. While the mean biomarker value
at baseline and over time is directly estimated from the M-TPJM, it is obtained from the mixing distributions of the
zero and non-zero components in the C-TPJM, which imposes a non-linear curve for the mean biomarker value
over time, not always justified. The effect of covariates on the marginal mean of the biomarker under the C-TPJM
is also not directly available. We also proposed for the M-TPJM two association structures to link the biomarker to
the risk of terminal event. The first one, the current value association, allows to explore time-dependent effect of
covariates on survival through the biomarker, as well as the effect of covariates on the terminal event independent
of the biomarker. The second one consists of sharing only the random effects from the two-part model, which evalu-
ates the relationship between the risk of terminal event and the individual deviation from the population mean of
the biomarker, including for example the baseline odds of a positive value, baseline value and slope for the whole
trajectory. An illustration of these 2 association structures in the SPECTRUM study is given at the end of 4.2 and
4.4. In the presence of true zeros, if the clinical interest is in the association between the marginal mean of the bio-
marker and a terminal event, the M-TPJM should be favored over the C-TPJM. In contrast, if the interest lies in the
positive values of the biomarker (i.e., zeros excluded) and the probability of positive values and their association
with a terminal event, the C-TPJM must be used. Indeed, the C-TPJM allows to link the binary and continuous
parts of the biomarker model to the risk of event separately (see Rustand et al.2), making it possible to have infor-
mation and make decisions for the subpopulation of patients with a zero value or for those with a positive value,
separately. Therefore these two formulations of the two-part joint model are complementary and can answer differ-
ent clinical questions of interest.

Our simulation studies shows marked differences across the three models applied: the left-censoring OPJM, the
C-TPJM and the M-TPJM. The left-censoring OPJM was severely biased in the estimation of treatment effect on the bio-
marker when true zero values (i.e., not censored) were present. The C-TPJM can account for excess of zeros but led to
biased estimates and wrong inference about treatment effect on the marginal mean value of the biomarker whenever it
was not the true model. In addition, the C-TPJM could have convergence issues due to the assumed independence
between the probability of zero and the expected value among positive conditional on the random effects. The M-TPJM
provided an accurate inference about the biomarker and covariate effects on the biomarker in most situations, unless
the distribution of the biomarker over time is not linear on the log scale. In this case, smooth functions of time should
be included in the longitudinal part.

The differences observed across models did impact the inference about the effect of treatment captured through the
biomarker on the terminal event and shared through the current value association but to a lesser extent, the association
of the treatment on the terminal event independent of the biomarker and the association between the biomarker and
the terminal event. This could be the consequence of the heavy censoring present in the simulated data (which mim-
icked the real data) and the fact that the estimated mean value of the biomarker during the early follow-up was rela-
tively close across models (see Figure 2). In other situations with lower censoring rate or higher proportion of zeros, it
is not excluded that the treatment effect on the risk of terminal event not captured by the biomarker and association
parameter(s) be also affected by the model assumptions.

Our application to a cancer clinical trial assessing two treatment arms for squamous cell carcinoma of the head and
neck illustrates the interest of the M-TPJM. Indeed, clinicians are often interested in population average estimates of
covariates, such as treatment, to make decision. We recall that the original trial concluded that the addition of pan-
itumumab to chemotherapy did not improve OS but led to better progression-free survival (Vermorken et al.15). Based
on LCV criterion, the M-TPJM fitted the data better than the C-TPJM. In line with our simulation results when the
M-TPJM was the true model, the C-TPJM is associated with higher uncertainty in the binary part compared to
the M-TPJM, which in turn yields higher uncertainty on the mean biomarker trajectory. Specifically, the C-TPJM found
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an attenuated treatment effect compared to the M-TPJM for the disappearance of all target lesions over time. Finally,
the M-TPJM did not conclude to a treatment effect on the overall mean of the biomarker either at baseline or during
the follow-up.

This work has several limitations. For instance, in the cancer clinical trial application, the SLD measures the
longest diameter of target lesions, which can be subject to important measurement error. It could be more appropri-
ate to use instead a more accurate measurement such as the total volume of the tumors, although it is usually
unavailable in clinical trials as it is not part of the RECIST criteria. In this work, the M-TPJM was not developed
specifically to capture a non-linear mean biomarker trajectory on the log scale. The inclusion of time-dependent
covariates and interactions as well as non-linear functions of time could account for such trajectories. Besides, an
extension of the marginalized two-part model has been proposed using a generalized Gamma distribution (that
includes the log-normal as a specific case) to link the outcome to the linear predictor in the continuous part and
allows more flexibility in the biomarker trajectory but has not yet been developed for joint models.17,18 The short
follow-up of patients and low proportion of zero values did not allow more flexible functions of time to be included
in either the binary or continuous part of the model, as it could lead to unstable parameters estimation and conver-
gence issues. However we were able to illustrate the differences between the C-TPJM and the M-TPJM in terms of
the mean biomarker trajectory and its association with the risk of death. In this work, we only evaluated multiplica-
tive effect of covariates on the conditional and marginal mean biomarker value, although we could have evaluated
the additive effect of covariates on the log scale by fitting a linear mixed effects model on log-transformed bio-
marker values as proposed in Rustand et al.2 This model formulation can also be interpreted in terms of change in
the median of the response variable by exponentiating the parameter estimates but it does not offer uncertainty
measure nor statistical significance on the original scale of the response variable. Alternative algorithms such as EM
of BFGS could be used to fit the TPJMs although they have not been found to improve the parameter estimation
compared to the Levenberg–Marquardt's algorithm.19 Moreover, a perspective to improve our approach could be to
use importance sampling to draw Monte Carlo samples when integrating out the density of random effects in the
likelihood instead of using the standard random samples. Finally, the random-effects joint models described in this
article rely on the assumption that the biomarker and the time-to-event are independent given the random effects
but when this assumption does not hold, the joint model can provide biased estimates. This will be the case under
MAR mechanisms of dropout.20 This could occur in our application if the time of dropout was a MAR missing
dropout mechanism, that is when death is only predictable by observed tumor volumes. In this context mixed
models are more robust than joint models.

The use of joint modeling is a powerful tool to answer questions of interest in medical studies when a longitudinal
marker and survival times are of interest as well as their relationship.7 The semicontinuous nature of the biomarker is
usually handled by either left-censoring that assumes an often unrealistic assumption of no true zeros observed or a
conditional two-part model that complicates the marginal interpretation of covariates effect. In this article, we intro-
duced the M-TPJM and contrasted it with alternative modeling strategies (i.e., OPJM, C-TPJM, each with different asso-
ciation structures) and described the strengths and limitations of each approach in terms of clinical decision-making.
Indeed, this family of methods offers various ways to assess the effectiveness of drugs, which might be all of clinical
interest. For instance, in the context of clinical trials, the M-TPJM can be used to compare the longitudinal semi-
continuous biomarker values and terminal event risk between the treatment and control groups as illustrated in our
application section. It allows a direct estimation of the effect of covariates, including treatment effect, on the marginal
mean of the biomarker, which is of major interest for clinicians and decision-makers. When the M-TPJM indicates a
significant improvement in the biomarker value or a reduction in the risk of the terminal event for the treatment group,
this suggests that the drug is effective in treating the disease in the whole group of patients studied. Treatment interac-
tions with covariates can be included in the model to evaluate the effectiveness of treatment for subgroups of patients
described by those covariates. The use of patients' data with appropriate models that might predict response to a partic-
ular medication is important as this information can help clinicians and healthcare providers make more personalized
treatment decisions for their patients, improving overall health outcomes. Moreover, we argue that the C-TPJM and the
M-TPJM complement each other as the former is able to assess subgroups that may respond differently to the treatment
by separating individuals with zero values for the biomarker from those with positive values in the hazard function
while the M-TPJM offers a population average overview. The M-TPJM is an useful tool to account for the excess of zeros
while keeping the interpretation on the entire population instead of subpopulations, therefore enhancing decision-
making for clinicians. Beyond the application to solid tumor cancer data, we propose a freely available software
(frailtypack, Kr�ol et al.21) that can be applied to several other situations that include a longitudinal semicontinuous
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biomarker and survival times (covariates measuring symptoms of a disease or quantifying exposure are often
semicontinuous).
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