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ABSTRACT 

Design space exploration refers to the systematic activity of discovery and evaluation of the elements 

in the design space in order to identify optimal solution by reducing the design space toward an area of 

performance. Designers sample thousand design points iteratively, explore the design space, gain 

knowledge about the problem and make design decision. According to the literature, Design Space 

Exploration results in a decision of quality called informed decision which is supported by information 

visualization. Indeed, the representation of design points is seen as primordial to gain understanding of 

the problem and make an informed decision. Thereby, in our work, we try to identify which graph is 

the most suited to the discovery phase and allows designers to make an informed decision. We 

designed a web platform with four design problem and carried out an experiment with 42 participants. 

It results one graph more suited to make a decision of quality and to gain the most understanding: the 

Scatter Plot Matrix. 
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1 INTRODUCTION 

There is a paradigm where designers shop for the best solution. It is called Design by Shopping and 

was coined by Balling (Balling, 1999). Indeed, Balling noted that the traditional optimization-based 

design process to “formulate the design problem, obtain analysis models and execute an optimization 

algorithm” leaves designers unsatisfied. Designers like consumers want to “shop” to gain an insight 

into trades, feasible and impractical solutions, and to learn about their alternatives before making 

decisions. Design by Shopping, firstly, allows designers to explore the design space, and, secondly, 

optimize and choose an optimal solution from a set of possible designs, and then develop realistic 

expectations with regard to what is possible. One embodiment of this paradigm is the Design Space 

Exploration (Simpson et al., 2008). With Design Space Exploration (DSE), designers sample thousand 

(and more) design points iteratively, explore the design space that is a multidimensional set of data, 

gain insights and knowledge about the problem and make design decision. In DSE the design decision 

is performed following the discovery and evaluation of the elements in the design space in order to 

identify optimal solution by reducing the design space toward an area of performance. Based on the 

work of (Miller et al., 2013) we identify that exploring the design space consists of three main phases: 

(1) Discovery: acquire knowledge and understanding of the problem, (2) Narrowing: active pursuit of 

a design by eliminating sets, exploring limits, highlighting preferences, etc. and (3) Selection: check 

satisfaction (see Figure 1). Considering the knowledge discovery in DSE, we find one point that 

challenges us. Indeed, some authors refer to informed decision making (Sulllivan et al., 2001), (Mavris 

et al., 2010), (Chandrasegaran et al., 2013). From our literature review dealing with this decision type 

(see section 2); we particularly identify a need in information visualization for decision-makers.  
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Figure 1. Design Space Exploration Process 

Graphs are useful for quickly visualizing the feasible solutions as opposed to impractical solutions, as 

well as those violating engineering constraints or client requirements. Three different situations can be 

represented with more or less data: representing the single vector of design parameters featuring the 

product solution, the single vector of solution performances for feasible solutions or two sets of design 

parameters and corresponding performances for feasible. There are already many works in visual 

design and it has already been shown that fast graphical design interfaces impact user performance in 

terms of design efficiency, design effectiveness and the design search process (Ligetti et al., 2003). 

We identify several tools for exploring the design space. For example, there are the ARL Trade Space 

Visualizer (Stump et al., 2004), the VIDEO tool (Kollat & Reed, 2007), the LIVE tool (Yan et al., 

2012) and the Rave tool (Daskilewicz & German, 2012). Thus we find in these tools, various graphs: 

Scatter Plot Matrix, 2D or 3D Scatter Plot, Parallel Coordinate Plot, Bars Chart and Treemap. In 

addition, it has already been shown in a simplified framework that Parallel Coordinate Plot is the most 

suitable graph to selection in Design by Shopping (Abi Akle et al., 2015, 2016). It therefore appears 

both that knowledge discovery phase for insights gain and understanding of the design problem is a 

key element of the Design by Shopping. On the other hand, we observe that information visualization 

is an indispensable element to the practice of DSE. Thereby, our research is motivated by a question: 

What graph allows designers to be effective in the discovery phase and results in an informed 

decision?  

We have thus identified three graphs useful for representing multidimensional sets of data (>3 

variables) and with an unlimited number of design points: Simple Scatter Plot (SSP), Scatter Plot 

Matrix (SPM) and Parallel Coordinate Plot (PCP). We carried out experiments with 42 participants 

and designed a web platform with four design problem to solve. The platform allows to generate an 

unlimited number of design points (random or Pareto sampling), to reduce the design space with a 

range constraints controller, to visualize preferences, etc. in order to mimic the design activity. We 

identified a graph more suited to the discovery phase and to an informed decision making in design 

space exploration: the Scatter Plot Matrix (SPM). 

2 INFORMED DECISION 

A notion used in several disciplines seems to be of importance to be in a situation to make a decision 

of quality, this is an informed decision. 

In monitoring & supervision field, Ireson states that "The management of this mass of information is 

crucial in aiding the decision-making process, ensuring, as far as possible, that the responders have full 

situational awareness to make informed decisions" (Ireson, 2009). With the same idea, Bass (2000) 

and Riveiro et al. (2008) indicate the need for "situational awareness" for the formulation of an 

informed decision. Bass adds the need to "fusing data into information and knowledge, so network 

operators can make informed decisions" (Bass, 2000). In business / marketing field, Lurie and Mason 

(2007) suggest managing a large data set and the use of visualization tools could lead toward an 

informed decision. Glaser and Tolman (2008) link the informed decision to the process of analysing 

large amounts of data, "tracking" of performance and detecting patterns and trends. Information 

systems field informs us that "the making of informed decisions requires the application of a variety of 

knowledge to information" (Wiederhold, 1992). In the building field, making informed design 
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decision needs to manage a large amount of information on the detailed design options and properties 

and to operate simulations of their performance. For them, the designer needs a large design space and 

an overview of parameter changes consequences to gain a deep understanding of the performance and 

so make an informed design decision (Petersen & Svendsen, 2010). Russell et al. (2009) consider that 

"Visual analytics, the science of analytical reasoning facilitated by interactive visual interfaces, has the 

potential to improve the construction management process through the enhanced understanding of 

project status and reasons for it, better informed decision making" (Russell et al., 2009). In 

information visualization field, Keim et al. (2006) indicate that for an informed decision, "it is 

indispensable to include humans in the data analysis process to combine flexibility, creativity, and 

background knowledge with the enormous storage capacity and the computational power of today’s 

computers". Later, Keim et al. (2008a, 2008b) state that "visual analytics" is the system to make an 

informed decision. It guarantees the full support of the user in navigating and analysing the data, 

memorizing insights and making informed decisions. Also, we find that "a tight coupling between 

cognition, interaction and visual analytics is necessary to enable the user to make informed decisions" 

(Meyer et al., 2010). 

Finally, we find the term informed decision in the design engineering field. Wood et al. (1992), in 

preliminary design, model and manipulate such uncertainties in a computer-assisted environment, 

under the hypothesis that doing so will allow the designer to make faster and more-informed decisions. 

Sullivan et al. (2001) show, in particular, to make informed decisions about the choice of design rules 

and clustering of design parameters, designers needed to know how changes in the environment would 

affect them. Chandrasegaran et al. (2013) indicate that "an effective computer support tool that helps 

the designer make better-informed decisions requires efficient knowledge representation schemes". 

Mavris et al. (2010) argue that the integration of "visual analytics" in the design process provides 

designers the ability to gain knowledge and insights needed with the justified means of making an 

informed decision. The visualization seems essential to facilitate the generation of hypotheses and the 

formulation of an informed decision. They point out the data, knowledge, and insight necessary for the 

formulation of informed decisions is generated throughout the design process (Mavris et al., 2010). 

From the literature, we identify eight themes that appear to contribute to the formulation of an 

informed decision (see Table 1). Furthermore, we identify four of these themes that are most widely 

used by the authors and seem essential in the definition of an informed decision: "Knowledge and 

insights gain", "Visualization", "Analysis and treatment" et "Manipulation and management".  

Table 1. Themes that appear to contribute to the formulation of an informed decision 

Themes Contributors 

Situational awareness (Ireson, 2009), (Bass, 2000) 

Knowledge and 

insights gain 

(Sullivan et al., 2001), (Keim et al., 2006, 2008a, 2008b), (Glaser & Tolman, 

2008), (Petersen & Svendsen, 2010), (Mavris et al., 2010) 

Visualization (Chandrasegaran et al., 2013), (Lurie & Mason, 2007), (Bass, 2000), (Mavris 

et al., 2010), (Keim et al., 2008b), (Russell et al., 2009), (Meyer et al., 2010), 

(Riveiro et al., 2008) 

Manipulation and 

management 

(Ireson, 2009), (Chandrasegaran et al., 2013), (Lurie & Mason, 2007), (Wood 

et al., 1992), (Petersen & Svendsen, 2010), (Mavris et al., 2010), (Riveiro et 

al., 2008), (Meyer et al., 2010) 

Analysis and 

treatment 

 (Keim et al., 2006, 2008a, 2008b), (Russell et al., 2009), (Meyer et al., 

2010), (Riveiro et al., 2008), (Mavris et al., 2010) 

Understanding (Petersen & Svendsen, 2010), (Russell et al., 2009), (Mavris et al., 2010) 

Human and cognition (Keim et al., 2006), (Wood et al., 1992), (Mavris et al., 2010), (Meyer et al., 

2010) 

Transformation (Chandrasegaran et al., 2013), (Bass, 2000), (Keim et al., 2008b) 

We know that, in engineering design, once the design has been formalized, a necessary design task is 

to make a selection from amongst candidate designs or parametric values (Otto & Antonsson, 1993). 

The main challenge lies in resolving the inherent trade-offs that exist between the overall system and 

subsystems, and between conflicting and competing objectives (Abi Akle et al., 2015, 2016). Thus we 

define an informed decision in Design by Shopping as the selection of a design point, among several 

others that will achieve optimal benefits and minimum inconvenience, following an iterative and 
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interactive treatment and analysis process in which designers are gaining understanding, knowledge 

and insights with visualization and manipulation of large sets and / or data model. 

3 GRAPHS ADAPTED 

In our context of design space exploration in order to make an informed decision several graphs 

(design space representations) are available to us. So, we are in a case-representation of 

multidimensional sets of data with an unlimited number of alternatives (design points). Based on the 

work of Miettinen (2014), Wegman (1990) and Keim (2000) amongst others about graph 

characteristics, we identify the Simple Scatter Plot (SSP), the Scatter Plot Matrix (SPM) and the 

Parallel Coordinate Plot (PCP) (see Figure 2). Thus, we propose comparing these tree graphs under the 

ability to make an informed decision in design space exploration. 

Scatterplot is a conventional method to visualize the relationship between two variables. As a visual 

structure, Scatterplot uses the position to encode the values of two variables and their relationships. 

This is a projection of the data (represented by the design points) in a 2D space. Siirtola (2007) 

considers the Scatterplot is useful for easily detect non-linear patterns and positive or negative 

correlations between variables. The Scatterplots are Cartesian representations and therefore have a 

long history with, for example, the learning of linear algebra at school. Due to this training, it results in 

a strong development of intuitions about the appearance of this type of representation (Wegman, 

1990). 

 

Figure 2. Illustration of the SPM, the SSP and the PCP 

The Scatterplot Matrix is a collection of Scatterplots Simples (x-y) ordered by pairs. This 

representation provides an overview of data. The size of the matrix depends on the number of 

visualized variables. The Scatterplots are duplicated in the matrix relative to the diagonal. It is possible 

to use colour glyphs, shape, or add a size marker to add a supplementary variable. Ware (2004) 

highlights that, although the colour used with Scatterplots allows the identification of clusters and 

patterns, interpretation could be difficult. 

Parallel Coordinates Plot is defined as a graph displaying multiple criteria without drastically 

increasing the complexity of the display (Inselberg, 2009). In PCP, variable values are displayed on 

separate axes laid out in parallel. The design points (or alternatives) are depicted as profile lines that 

connect points on the respective axes. According to Gettinger et al. (2013), this representation can be 

readily interpreted and provides a good overview. Furthermore, patterns such as positive, negative and 

non-trivial (multiple) correlations, may quickly be identified at a glance. 

4 EXPERIMENTAL DESIGN 

To answer our research question "What graph allows designers to be effective in the discovery phase 

and result in an informed decision?" we conducted a controlled experiment that adopted a between 

subject approach. Each participant performed the experiment on one graph and resolved 4 design 

optimization problems. They are classic problems of mechanical design from literature: two-member 

Truss design (Truss), gear train design (Gear), multiple-disk clutch brake design (Disk) and pressure 

vessel design (Vessel). The first three problems come from the work of Deb and Srinivasan (2006) and 

the fourth problem comes from (Canbaz, 2013). To realize the experimentation we have developed a 

web "platform" (http://these.aaa.alwaysdata.net/expe2/) where problems and the three graphs are 

available. This platform allows, among other the generation of design points (random or non-



Abi Akle A., Minel S., Yannou B., 2017. Design space visualization for efficiency in knowledge 

discovery leading to an informed decision, In 21st International Conference on Engineering Design 

(ICED), August 21-25, Vancouver, Canada. 

 

  ICED17 

dominated Pareto solutions sampling), glyph colouring according to the designer preferences and 

reducing the design space. 

4.1 Procedure 

The experiment is divided into two main phases: (1) training part and (2) test part. Moreover, we 

incorporate a type of milestone during the session: multiple choice forms. We use three forms, one at 

the beginning, another between the training part and the test part and one at the end of the session. 

The experimentation is sized to be limited to a two-hour session.  The training part (1) is used to 

upgrade the level of knowledge of participants. It is divided in three steps: a crash course, a "getting 

started" step with a tutorial to resolve the Truss problem and a practice phase with the platform guide 

where participants resolve the Gear problem. The test part (2) is the phase where the graphs are tested 

and we realize our measurements. The tests are performed on two design problems consecutively 

without help supports: the Vessel problem followed by the Disk problem. The instruction for both 

problems is to solve the bi-objective optimization problem using the method of Design Space 

Exploration to select an optimal solution with a justified means. The optimization problems are bi-

objectives that is to say there are two antagonistic performance variables to maximize or minimize. 

For each of the two problems, the participants have a 10-minute time limit and after each problem, a 

questionnaire is given to the participant to gather confidence and to know the information acquired 

during exploration, which enabled him to make his/her decision (selecting a solution). 

4.2 Design problems 

As already mentioned, we use four bi-objective design problems for our experiment. The first two are 

used during the training part and a description is available in (Deb and Srinivasan, 2006). The first 

problem for the test is the Vessel problem described as follow: It is a design problem of a cylindrical 

thin walled pressure vessel with hemispherical ends. There are three design variables (R, T, L) and two 

performances (W, V). The objectives are minimizing W and maximizing V with controlling R, T and 

L while satisfying constraints C1 to C7. Vessel problem nomenclature and constants are: W is Weight 

of the pressure vessel in lbs, V is Volume of the pressure vessel, R is Radius, T is Thickness of the 

pressure wall, L is Length of the cylinder, P is Pressure inside the cylinder, UTS is Ultimate tensile 

strength of the vessel material and equals 35 klb, d is density of the vessel material and equals 0.283 

and Circ is Circumferential stress (see Figure 3). 

The second problem for the test is the Disk problem described as follow: In this problem, a multiple 

clutch brake needs to be designed. Two conflicting objectives are considered: minimization of mass 

(M) of the brake system in kg and minimization of stopping time (S) in seconds. There are five 

decision variables Ri, Ro, t, F, and Z (see Figure 3), where Ri is the inner radius in mm, Ro is the outer 

radius in mm, t is the thickness of discs in mm, F is the actuating force in N and Z is the number of 

discs (or friction surfaces). All five variables are considered discrete and their allowable values are 

given below: 60 < Ri < 80; 90 < Ro < 110; 1 < t < 3; 600 < F < 1000; 2 < Z < 10. 

All performance formulas, constraints and bounds of the two problems are available on the web 

platform. 

 

Figure 3. Illustration of the Vessel problem (on the left) and the Disk problem (on the right) 



ICED17 

4.3 Measurements 

In our work, variables were either measured during the test with an eye-tracking system the Tobii X2 

or collected through the questionnaires. We use three types of measurements: those controlled during 

the test and those collected with questionnaires.  

The controlled measurements are used to verify that there are no differences between the three groups 

of participants (one group per graph) concerning: the knowledge level from the three Multiple-Choice-

Questionnaires (MCQs) and the "performance" of the final solution selected (is it a Pareto solution?). 

Then, we have three measurements realized during the test: 

 The number of discoveries / insights realized by the participant knowing that for each problem, 

there are seven discoveries in order to make a fully informed decision (see Erreur ! Source du 

renvoi introuvable.). The collect of the number of discoveries was performed by analysis of the 

video screen in conjunction with eye-tracking record.  

 We also measure the time passed before the participant realizes the first discovery (in seconds). 

This time is not dependent on elapsed time to understand the problem because the timer is 

triggered only when the participant has read the description of the problem and s/he makes the 

first design points sampling. This second measurement is for us a first clue to the speed of 

discovery with the three graphs. 

 The third measurement is the average time to complete a discovery (in seconds) i.e. the total time 

to perform all the discoveries divided by the number of discoveries realized. This measurement is 

for us a second clue to the speed of discovery with the three graphs. 

Table 2. List of the discoveries for the two problems of the test 

Problem Discoveries from a global point of view Discoveries from a local point of view 

(Pareto solutions) 

Vessel Positive correlation (trend) between R & V 

Positive correlation (trend) between R & T 

Positive correlation (trend) between T & V 

Positive correlation between W & L 

Positive correlation between V & L 

The solutions tend to T = 4 

The solutions tend to R = 36 

Disk Negative correlation (trend) between S & Z 

 

Positive correlation (trend) between Ri & Ro 

A transition point for Ro = 100 

A transition point for M = 1 

The solutions tend to t = 1 

The solutions tend to F = 1000 

Positive correlation between M & Z 

Finally we use a post-problem questionnaire to know if participants can "justify" their decision based 

on the information acquired during exploration (correlation, trend, transition point, etc.). Note that for 

the analysis of this indicator, we only check if the participants justify their decision or not (nominal 

qualitative variable). We cannot analyse the amount of information that participants use to justify their 

response because the amount depends on the participant. Similarly, the white forms are not considered 

(because lack of response does not mean that participants do not know how to justify their decision). 

5 RESULTS 

We have a sample of 42 subjects and it is a between approach (3 groups). So we have three samples of 

N = 14 subjects in each group / graph. For the analysis of data, we apply different statistical tests and 

we consider a significance level α=10%. 

5.1 Differences and similarities between the three groups of participants 

First of all, we analyse the data obtained with MCQs (Multiple-Choice-Questionnaires ) to verify if we 

can distinguish designer profiles within testers and / or if there is a difference between groups (i.e. 

three groups - three graphs). To detect designer profiles, we use the Friedman test (and the Wilcoxon 

Signed-Rank test if a post-hoc analysis is required) because MCQs answers give us qualitative ordinal 

variables and the groups are paired (i.e. within-approach). To detect difference between groups, we 

use Kruskal-Wallis test because in this case the analysis is a between-approach. 
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Table 3. Results of the Friedman and Wilcoxon tests for the intra-graphs analysis 

 SSP PCP SPM 

Friedman test csqr=23.89, df=2 

and p<0.0001 

csqr=26.14, df=2 

and p<0.0001 

csqr=21.09, df=2 

and p<0.0001 

Wilcoxon 

Signed-Rank 

Test 

MCQ1 vs. MCQ2 W=-105, Z=-3.28 

and p=0.0005. 

W=-105, Z=-3.28 

and p=0.0005. 

W=-107.5, Z=-3.36 

and p=0.0004 

MCQ2 vs. MCQ3 W=-76, Z=-2.64 

and p=0.0041. 

W=-103, Z=-3.22 

and p=0.0006 

W=-53, Z=-1.83 

and p=0.0336 

The results for the three graphs, presented in Table 3, allow us to conclude that all participants have a 

novice profile at the start of the test and they all gained knowledge (in design space exploration 

method): MCQ1<MCQ2<MCQ3. The average scores of MCQs are depicted in Figure 4. 

The results presented in Erreur ! Source du renvoi introuvable. show us that there is no significant 

difference between the three graphs for the three MCQs answers. Thus, there is no difference of 

knowledge between the groups. 

Table 4. Results of Kruskal-Wallis tests for the inter-graphs analysis 

 MCQ1 MCQ2 MCQ3 

Kruskal-Wallis Test H=0.61 p=0.7371 H=1.55 p=0.4607 H=4.2 p=0.12 

Rank SPM 23.1 22 16.8 

PCP 19.5 18.4 26.3 

SSP 21.9 24.1 21.5 

 

Figure 4. Average scores of MCQs and standard deviation 

Then, we analyse the solutions selected by participants. For this indicator we analyse the data from the 

two problems together. Thus, our study has two variables: the group (SPM, PCP and SSP) and the 

"Pareto" (yes or no). We obtain (from the descriptive statistics analysis) that over 20% of our results 

(half) had an expected frequency less than 5 (i.e. 95% for the non-dominated) that is why we realize 

the Chi2 test with Yates correction to address our statistical assumptions: Χ² = 1.647, df = 2 and p = 

0.44. We should infer that there is no difference between the three groups. 

The first part of the analysis allows us to conclude that there is no difference in knowledge between 

the three groups and they have almost all selected a Pareto solution. We can thus free ourselves to 

divide the groups for the following analyses. 

5.2 Measurements during test: discovery variables 

Unfortunately, we have different sample sizes because all subjects were unable to perform the tests in 

their entirety. This is due to bugs in the platform. All discovery variables measured are quantitative. 

Therefore we apply the ANOVA-between statistical test and pairwise t-tests post-hoc analysis if 

necessary (i.e. if ANOVA is significant). We considered the following statistical hypotheses: H0: there 

is no difference between the graphs for the discovery phase and H1: there is a difference. 

For the Vessel problem, we obtain for the SSP (n =12) an average of 2.66 discoveries, 209.6 seconds 

elapsed before the first discovery and 198.4 seconds mean time per discovery, for PCP (n =12) 3.25 

discoveries, 115.8 seconds elapsed before the first discovery and 131.1 seconds mean time per 

discovery and for SPM (n =13) 6.3 discoveries, 14.8 seconds elapsed before the first discovery and 

65.1 seconds mean time per discovery. ANOVAs give significant results: F(2,34)= 24.27 and 

p<0.0001 for the number of discoveries, F(2,33)= 8.65 and p= 0.000954 for the time before the first 

discovery and F(2,33)= 6.45 and p= 0.004321 for the meantime per discovery.  

0

2

4

6

8

10

MCQ1 MCQ2 MCQ3

SSP

PCP

SPM



ICED17 

Regarding the Disk problem, we obtain for the SSP (n =13) an average of 2.92 discoveries, 175.2 

seconds elapsed before the first discovery and 129.1 seconds mean time per discovery, for PCP (n 

=14) 3 discoveries, 107.2 seconds elapsed before the first discovery and 93.3 seconds mean time per 

discovery and for SPM (n =13) 5.4 discoveries, 52.4 seconds elapsed before the first discovery and 

75.3 seconds mean time per discovery. ANOVAs give significant results: F(2,37) = 17.01 and 

p<0.0001 for the number of discoveries, F(2,37)= 9.17 and p= 0.000583 for the time before the first 

discovery and F(2,37)= 5.71 and p= 0.006899 for the meantime per discovery.  

So we perform a post-hoc analysis for the two problems (see Table 5). The averages for each variable 

are depicted in Figure 5. 

Table 5. Results of the t-test for the three discovery variables for the 2 problems 

Problem T-test pairwise 

comparison  

Number of 

discoveries 

Time before the first 

discovery 

Mean time to 

complete a discovery 

Vessel SSP vs PCP  t(22)=-0.92 p=0.18 t(21)=-1.57 p= 0.066 t(21)= 1.44 p= 0.0823 

SSP vs SPM  t(23)=6.62 p<0.0001 t(22)= 3.69 p= 0.0006 t(22)= 3.19 p= 0.002 

PCP vs SPM t(22)=5.86 p<0.0001 t(23)= 4.55 p<0.0001 t(23)= 3.52 p= 0.0009 

Disk SSP vs PCP  t(25)=0.16 p= 0.437 t(25)= 2.39 p= 0.0123 t(25)= 1.94 p= 0.0319 

SSP vs SPM  t(24)= 4.99 p <.0001 t(24)= 4.44 p <.0001 t(24)= 3.24 p = 0.0017 

PCP vs SPM t(25)= 5.08 p <.0001 t(25)= 1.89 p = 0.0352 t(25)= 1.44 p = 0.081 

The results of the t-test pairwise comparison indicate that there is a significant difference between 

SPM and SSP; SPM and PCP for the number of discoveries and between SSP, PCP and SPM for the 

other two indicators. SPM is significantly different from the other two and gets the best scores. 

 

 

Figure 5. Average and standard deviation for the three discovery variables 

Statistical analysis performed on three discovery variables allows us to conclude that the Scatter Plot 

Matrix (SPM) is the most relevant graph for the discovery phase. We should also indicate that the 

Simple Scatter Plot (SSP) is the graph getting the worst results for the discovery phase. 

5.3 Justification of the decision 

For this indicator we analyse the data from the two problems together. Our study has two qualitative 

variables: the group (SPM, PCP and SSP) and the answer to question (decision justified or not). We 

apply a test of Chi2: Χ² = 4.747, df = 2 and p = 0.093. The result is significant. We then operate the 

Khi2 tests in pairs: 

 SSP vs PCP : Χ2=0.18, df=1 and p=0.671 

 SSP vs SPM : Χ2=2.99, df=1 and p=0.084 

 PCP vs SPM : Χ2=4.447, df=1 and p=0.035 

There is a significant difference between the SPM and SSP graphs; and SPM and PCP. Decisions are 

justified with SPM. We conclude that SPM is the graph with which the participants made the most 

informed decisions. 
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6 DISCUSSION AND CONCLUSION 

We have presented an optimization strategy to focus on informed decision as competiveness leverage. 

Hence, designers must iteratively build the design based on experimentation. They have to choose 

with a large, and often cumbersome, set of alternatives. Our research helps in better understanding the 

performance impacts of the data presentation on the system. We identify the Simple Scatter Plot 

(SSP), the Scatter Plot Matrix (SPM) and the Parallel Coordinate Plot (PCP) as graphical optimization. 

Thanks to our experiment we aimed to draw out clear recommendations regarding the choice of a 

graph for the discovery phase in Design Space Exploration to make an informed decision. We have 

shown how to select an optimal solution in a set of feasible solutions defined by their design and 

performance value vectors. From the results of our tests, design space exploration is improved while 

using SPM graph to present data. Designer seems to be more confident and made informed decisions 

depending on the graphical interface proposed. SPM is most appropriate for the discovery phase 

because this phase involves understanding the problem by observing interactions between the 

variables and SPM is the graph that most reveals these types of interactions (such as clusters, 

correlations, etc.) (Keim, 2000). Moreover, we believe that it inspires designers because it uses 

Cartesian representations (i.e. facilitates interpretation) and gives an overview of the dataset and 

therefore of the problem. Our results are consistent, however there is still a need to test our models and 

build on this work to improve the accuracy of our results, especially focusing with the impacts of 

graphical visualization depending on the designer's expertise. 
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