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Summary
Neurodegenerative diseases are characterized by numerous markers of progres-
sion and clinical endpoints. For instance, multiple system atrophy (MSA), a
rare neurodegenerative synucleinopathy, is characterized by various combina-
tions of progressive autonomic failure and motor dysfunction, and a very poor
prognosis. Describing the progression of such complex and multi-dimensional
diseases is particularly difficult. One has to simultaneously account for the
assessment of multivariate markers over time, the occurrence of clinical end-
points, and a highly suspected heterogeneity between patients. Yet, such descrip-
tion is crucial for understanding the natural history of the disease, staging
patients diagnosed with the disease, unravelling subphenotypes, and predict-
ing the prognosis. Through the example of MSA progression, we show how
a latent class approach modeling multiple repeated markers and clinical end-
points can help describe complex disease progression and identify subphe-
notypes for exploring new pathological hypotheses. The proposed joint latent
class model includes class-specific multivariate mixed models to handle mul-
tivariate repeated biomarkers possibly summarized into latent dimensions and
class-and-cause-specific proportional hazard models to handle time-to-event
data. Maximum likelihood estimation procedure, validated through simulations
is available in the lcmm R package. In the French MSA cohort comprising data
of 598 patients during up to 13 years, five subphenotypes of MSA were iden-
tified that differ by the sequence and shape of biomarkers degradation, and
the associated risk of death. In posterior analyses, the five subphenotypes were
used to explore the association between clinical progression and external imag-
ing and fluid biomarkers, while properly accounting for the uncertainty in the
subphenotypes membership.

K E Y W O R D S

class-membership, clustering, heterogeneity, joint modeling, multiple system atrophy, multivariate
longitudinal data, neurodegenerative diseases

Abbreviations: BP, blood pressure; MRI, magnetic resonance imaging; MSA, multi-system atrophy; UMSARS, unified MSA rating scale.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

3996 wileyonlinelibrary.com/journal/sim Statistics in Medicine. 2023;42:3996–4014.

https://orcid.org/0000-0002-9884-955X
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/SIM
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.9844&domain=pdf&date_stamp=2023-07-17


PROUST-LIMA et al. 3997

1 INTRODUCTION

Some diseases are characterized by numerous markers of progression. Although not specific to, this is particularly the
case in neurodegenerative diseases where pathological brain changes may induce multiple clinical signs on which the
progression of a patient is assessed. Alzheimer’s disease involves progressive impairment over decades of cerebral regions,
multiple cognitive functions, functional dependency, and even depressive symptomatology or anxiety.1,2 Parkinson’s
disease is a polymorph disease including progressive motor impairment, cognitive and behavioural disorders, and auto-
nomic failure.3,4 Multiple system atrophy (MSA), a rare neurodegenerative synucleinopathy with an annual incidence of
3/100,000 individuals,5 is also characterized by the combinations of multiple dimensions, including autonomic failure,
parkinsonism, and cerebellar ataxia.6

Describing the progression of such complex and multi-dimensional diseases is particularly difficult. One has to simul-
taneously account for the assessment of multivariate markers over time, the occurrence of clinical endpoints (eg, death,
extreme dependency), and the suspected heterogeneity between patients. Yet, such description is crucial for understand-
ing the natural history of the disease, staging patients diagnosed with the disease, unraveling subphenotypes, identifying
novel therapeutic targets, and predicting the prognosis.

When interested in the change over time of markers along with the occurrence of endpoints, the dedicated statis-
tical approach is the joint modeling methodology which simultaneously models the trajectory over time of a marker
and the risk of an event when those two are correlated.7-9 Traditionally based on the so-called “shared random effect”
paradigm, joint models usually focus on how longitudinal markers impact the risk of an event by including some pre-
dictor of the marker trajectory in the time-to-event model. This is particularly useful to quantify the association between
pre-determined characteristics of an endogenous marker and the clinical endpoints.8,10 However, it might not be the best
way to explore in a holistic way a complex disease progression that involves multiple markers along with clinical end-
points. In that perspective, joint latent class models (JLCMs),9,11-13 another family of joint models, constitute a relevant
alternative. JLCMs assume that the population of patients is heterogeneous, and that this heterogeneity explains why
patients experiment different marker profiles and different event risks. This paradigm is much more descriptive than
traditional joint models but apprehends the suspected heterogeneity present in many contexts and does not assume any
particular nature of association between the marker and the event.9 Over the years, several extensions of JLCM were pro-
posed regarding the nature of the survival data with competing events,14 recurrent events15 or event history,16 or regarding
the nature of the longitudinal data by considering several markers measuring the same underlying phenomenon,14,17

multiple Gaussian markers from high dimensional gene expression with a regularization step18 and multiple Gaussian
markers subject to limits of detection.19

In this work, we aimed to leverage the latent class approach to analyze multiple repeated progression markers over
time and clinical endpoints, with the final goal of retrieving the subphenotypes of MSA progression and linking them
with external biomarker information. Our contribution is fourfold. First, we developed a full methodology for the esti-
mation of joint latent class models for multidimensional longitudinal data and survival time (possibly with competing
causes). This model extends beyond the literature by handling multidimensional longitudinal data when Proust-Lima
et al14 considered multivariate longitudinal markers regrouped into a uni-dimensional latent process, and by considering
multivariate Gaussian and non-Gaussian continuous markers possibly regrouped into distinct latent dimensions along
with multi-cause (left-truncated) time-to-event when Sun et al18 and Li et al19 considered Gaussian markers possibly sub-
ject to detection limit, and classical survival data. Second, our methodology is made available to the community with a
dedicated function in the user-friendly lcmm R software for latent process and latent class models estimation20 along with
documentation. Third, one critical but often ignored aspect of latent class models is the interpretation of the final latent
classes, and their association with external information (covariates or outcomes). The uncertainty and miss-classification
of any posterior class assignment has to be carefully accounted for to avoid spurious associations.21-23 Following previ-
ous works in non-longitudinal mixture modeling,24 our method includes two-stage posterior regressions for linking the
latent class structure with external information while properly accounting for the uncertainty of the latent class struc-
ture. Fourth, we extensively describe a case study in MSA progression to show step-by-step how the JLCM methodology
can help describe complex disease progression, identify disease subphenotypes and explore new research hypotheses.

The next section introduces the motivating MSA data. Section 3 details the multivariate JLCM methodology including
the model, the maximum likelihood estimation procedure, and the strategy to associate the latent class structure with
external information. Section 4 assesses the finite sample performances through simulations. Section 5 is dedicated to the
MSA application. Finally, Section 6 concludes.
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2 THE FRENCH MULTI-SYSTEM ATROPHY COHORT

The French MSA cohort has been created in 2007 at the two sites (Toulouse and Bordeaux University hospitals) of the
French Reference Center for MSA. After inclusion, patients are usually seen at least once a year by a movement disorder
specialist with a clinical assessment that includes demographic information, medical history, neurological examination,
diagnostic certainty and subtype, and a standardized clinical evaluation using the Unified MSA Rating Scale (UMSARS).25

There is also a continuous search for death occurrence with a reporting of the exact date of death along with the cause of
death.

The first objective of our study was to describe the clinical progression of MSA, and to uncover potential heterogeneous
disease phenotypes using latent classes. We focused on the repeated measures of six UMSARS-derived markers regrouped
in three different dimensions:

- Motor and function dimension assessed by a subscore of Activities of Daily Living (UMSARS I) and a subscore of Motor
examination (UMSARS II);

- Supine blood pressure (BP) assessed by the systolic BP and the diastolic BP;
- The orthostatic change in BP assessed by the maximum change in systolic BP and in diastolic BP between supine

position and standing position during 10 min (UMSARS III).

We leveraged the data of the 598 patients enrolled between 2007 and 2019 who had at least one measure of each
marker during the follow-up and no missing information on the main known MSA characteristics: gender, age at inclu-
sion, duration since first symptoms, subtype of MSA (Cerebellar or Parkinson), level of diagnosis certainty (possible or
probable). See Table 1 for the sample description. Patients entered the study on average 4.5 years after the first symptoms
onset (min–max = 0–24 years). During follow-up, 309 patients died with a median survival since first symptoms of 6.65
years (95% confidence interval [6.18, 7.13] years).

To describe the natural history of MSA, we considered the time since the first symptoms as a proxy of the time since
disease onset. Figure 1 describes the individual observed trajectories for the six markers of progression under study of
four randomly selected patients according to the time since the first symptoms.

The second objective of this application was to explore to what extent these phenotypes were associated with biologi-
cal biomarkers which constitute potential therapeutic targets. Indeed, additional assessments were undertaken on small
subsamples of the cohort to explore new research hypotheses. A MRI-subsample of 86 patients underwent a T1-weighted
volumetric brain Magnetic Resonance Imaging (MRI) with a focus on the volumes of regions particularly involved in
the neurodegenerative process such as the cerebellum (gray and white matter), the putamen and the pons. These vol-
umes were measured using the FreeSurfer’s image analysis pipeline (version 6). Another subsample underwent further
cerebro-spinal fluid (CSF) and serum measurements of total 𝛼-synuclein concentration (for 23 patients) and neuro-
filament light chain (NfL) (for 52 patients). See Table S29 in supplementary materials for a description of the three
subsamples.

3 METHODOLOGY

3.1 The joint latent class model

3.1.1 Latent class structure

The latent class methodology relies on a latent class/group structure underlying the variables under study. Let us consider
a sample of N subjects (i = 1, ...,N), the latent class is defined by a latent discrete variable denoted ci with value g if subject i
belongs to latent class g (g = 1, ...,G). Its distribution is described by the latent class membership probability 𝜋ig as follows:

P(ci = g) = 𝜋ig =
e𝜉0g+XCi

⊤
𝜉1g

∑G
l=1e𝜉0l+XCi

⊤
𝜉1l

(1)

with constraints 𝜉0G = 0 and 𝛏1G = 0 for reference class G. The probability 𝜋ig can be either defined as a regression on
time-independent covariates XCi or considered marginal by removing XCi from the equation.
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T A B L E 1 Description at baseline and over follow-up of the 598 MSA patients under study in the French MSA cohort.

Characteristic N (%) Mean ± SD

At baseline

Sex

Male 297 (49.67%)

Female 301 (50.33%)

Hospital

Bordeaux 309 (51.67%)

Toulouse 289 (48.33%)

Type of diagnosis

MSA-C, with predominant cerebellar impairment 198 (33.11%)

MSA-P, with predominant parkinsonism 400 (66.89%)

Diagnosis certainty

Possible 144 (24.08%)

Probable 454 (75.92%)

Age at inclusion 65.05 ± 8.09

Years since first symptoms 4.54 ± 2.58

Clinical markers

Total UMSARS-I score 20.88 ± 7.35

Total UMSARS-II score 23.11 ± 8.25

Supine diastolic BP (in mmHg) 81.84 ± 13.37

Supine systolic BP (in mmHg) 140.8 ± 23.52

Maximum drop of diastolic BP (in mmHg) −17.37 ± 14.88

Maximum drop of systolic BP (in mmHg) −33.87 ± 25.16

During follow-up

Repeated visits per patient 2.98 ± 2.08

Length of follow-up (years) 6.96 ± 3.33

Death 309 (51.67%)

3.1.2 Class-specific repeated outcome distribution

The latent class approach assumes that the outcomes under study have a class-specific distribution. In this work, we
consider both quantitative repeated outcomes and time-to-event outcomes. Let Ykij denote the repeated value of outcome
k (k = 1, ...,K) for subject i at occasion j (j = 1, ...nki). The corresponding time of measurement is tkij. Let T∗i denote the time
to an event of interest with L possible causes (l = 1, ...,L). The time-to-event can be right-censored by censoring time Ci,
and left truncated (as in our motivating application) with delayed entry T0i. The observed time is denoted Ti = min(T∗i ,Ci)
with indicator di = l when the event of cause l occurs before censoring and di = 0 otherwise.

Quantitative repeated outcomes
The class-specific trajectories of the repeated outcomes Ykij over time is modelled using a mixed model. The most common
case is a continuous Gaussian outcome which trajectory over time is modeled by a linear mixed model specific to latent
class g:

{
Ykij = Y∗

ki(tkij) + 𝜖kij

Y∗
ki(tkij)|ci=g = Zki(tkij)Tbki|ci=g + XLki(tkij)⊤𝛽kg

(2)
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F I G U R E 1 Observed marker trajectories for four randomly selected deceased patients according to the time since first symptoms. Are
reported the time of inclusion in the cohort and the time of death. The six markers under study are the UMSARS I and II subscores both
measuring functional dependency, the systolic and diastolic supine blood pressure (BP), and the maximum decrease in systolic and diastolic
BP when standing up.

where Y∗
ki(tkij) is the underlying level of the outcome without measurement error 𝜖kij ∼

(
0, 𝜎2

𝜖k

)
; XLki(tkij) is the vector of

covariates associated with the fixed effects 𝛽kg, and Zki(tkij) is the vector of covariates (most of the time limited to functions
of time) associated with the individual random effects bki, with a class-specific distribution: bki|ci=g = bkig ∼

(
𝜇kg,Bkg

)
.

The mean trajectory over time t in each latent class is thus E(Y∗
ki(t)|ci=g) = Zki(t)T𝜇kg + XLki(t)⊤𝛽kg.

Quantitative repeated outcomes structured into latent dimensions
When some markers measure the same underlying construct as systolic and diastolic blood pressure for instance, the
markers can be structured into a reduced number D of dimensions (d = 1, ...D), and the class-specific distribution applies
to each dimension.
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PROUST-LIMA et al. 4001

Following previous works,26 we use a latent process approach to define the D latent processesΛd
i (t) from the repeated

measures of the K observed repeated outcomes. We consider that each outcome is a noisy measure of only one latent
dimension using the following equation of observation:

Hk(Ykij; 𝜼k) = Λ
d(k)
i (tkij) + 𝜖kij (3)

where Λd(k) is the latent dimension measured by outcome Yk, and Hk is a bijective link function parameterized by 𝜼k
which puts each outcome k into the scale of the shared dimension d(k).

Then, the class-specific trajectory of dimension d is defined at any time t (t ∈ R) by a class-specific linear mixed model
similar to the one given in Equation (2):

Λd
i (t)|ci=g = Zdi(t)Tbdi|ci=g + XLdi(t)⊤𝛽dg (4)

with Zdi(t), XLdi(t), bdi and 𝛽dg having the same definition as in Equation (2) except that they apply to the latent dimension
d instead of the outcome k.

Note that this more general formulation for the repeated outcomes modeling defined in Equations (3) and (4) includes
different special cases:

- one Gaussian continuous marker by dimension, that is Equation (2), when Hk is the identity and each marker has its
own underlying dimension (ie, d(k) = k and Λd(k)

i (t) = Y∗
ki(t)).

- one non-Gaussian continuous marker by dimension when each marker has its own underlying dimension (ie, d(k) = k)
but Hk is a nonlinear link function usually modelled using a basis of M I-splines functions (Im)m=1,...,M , that is:

Hk(x; 𝜼k) = 𝜂0k +
M∑

m=1
𝜂mkIm(x) with x ∈ range(Yk) (5)

In that case, some constraints need to be added so that Λk has a determined dimension; this is usually done with a 0
mean in the reference category (for the location constraint), and either 𝜎2

𝜖k
= 1 or first diagonal element of B1k = 1 (for

the dispersion constraint).
- multiple Gaussian and/or non-Gaussian continuous markers by dimension by appropriately define Hk either as

Hk(x; 𝜼k) = 𝜂0k + 𝜂1kx (with x ∈ R) for a Gaussian marker or according to Equation (5) for a non-Gaussian marker. As
above, in this multivariate case, each Λd needs to have a determined dimension with one constraint on the location,
and one constraint on the dispersion.

3.1.3 Class-specific times-to-event distribution

The time-to-event distribution in each latent class can be classically modelled within the cause-specific proportional
hazard model framework where the class-specific instantaneous risk of event of cause l is defined as follows:

𝛼il(t)|ci=g = 𝛼0lg(t; 𝜻g) exp
(

XTi
⊤

𝜹lg
)

(6)

where 𝛼0lg(t) is the instantaneous baseline hazard of cause l in latent class g and XTi is a vector of covariates associated
with fixed effects 𝜹lg (such fixed effects can also be considered as common over classes). Although any type of parametric
hazards could be considered, we focus on Weibull hazards or approximate the baseline hazards by a small number of
cubic M-splines. In addition, the baseline hazards can be either specific to each latent class or considered proportional
across classes (ie, 𝛼0lg(t; 𝜻g) = 𝛼0(t; 𝜻0)e𝜁g with 𝜁G = 0).

3.2 Inference

3.2.1 Maximum likelihood estimation

The joint latent class model defined in Section 3.1 can be estimated in the maximum likelihood framework for a given
number of latent classes G. Let 𝜽G denote the total vector of parameters for a G-class model. It includes all the parameters
(subscripts k, g, d are not reported here for readability) for:

 10970258, 2023, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9844 by U
niversite D

e B
ordeaux, W

iley O
nline L

ibrary on [10/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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- the latent class structure 𝝃;
- the class-specific repeated outcomes distributions with fixed effects noted 𝜷 and 𝝁, variance-covariance of the

random-effects vec(B) (parameterized using the Cholesky transformation), standard deviations of the errors 𝝈𝝐 and
parameters of the link functions when necessary 𝜼;

- the time-to-event outcomes distribution 𝜻 and 𝜹.

Thanks to the conditional independence between dimensions and time-to-event, the individual contribution li to the
likelihood based on the joint distribution of the repeated outcomes Yi = {Ykij with k = 1, ...,K, j = 1, ...,nik} and the time
to event (Ti, di) can be split as follows:

li(𝜽G) = f (Yi, (Ti, di);𝜽G)
=
∑G

g=1 P(ci = g;𝜽G) × f (Yi|ci = g;𝜽G) × f ((Ti, di)|ci = g;𝜽G)
=
∑G

g=1 𝜋ig ×
∏D

d=1f (Yd
i |ci = g;𝜽G) × Si(Ti|ci = g,𝜽G)

∏L
l=1𝛼il(Ti|ci = g;𝜽G)1di=l

with f the generic notation of a density function, and P a probability function.
The class-membership probability 𝜋ig is given in (1), the instantaneous hazard 𝛼i(Ti|ci = g; 𝜃G) is defined in (6) and the

corresponding survival Si(Ti|ci = g, 𝜃G) = exp
(
−
∑L

l=1∫
Ti

0 𝛼il(u|ci = g;𝜽G)du
)

. Finally, the density function of the repeated

outcomes is split into the product of the density functions of the subset of outcomes data, called Yd
i , linked to each

dimension d. Given the general formulation in Equations (3) and (4), the density function is:

f (Yd
i |ci = g;𝜽G) = 𝜙(H(Y d

i );m
d
i ,V

d
i ) ×

K(d)∏

k=1

nik∏

j=1
J(Hk(Ykij)) (8)

where 𝜙 is the Gaussian density function with mean md
i = XLdi𝛽dg + Zdi𝜇dg and variance V d

i = ZdiBdgZ⊤

di + Σdi. H(Y d
i )

denotes the vector (Hk(Yki), k = 1, … ,K(d))⊤ and Σdi is the diagonal matrix composed of values 𝜎2
𝜀k

with k = 1, … ,K(d).
J(Hk(x)) is the Jacobian of the link function Hk. See Proust-Lima et al26 for further details.

To take into account the delayed entry in T0i when times-to-event are left-truncated, the final individual contribution
is divided by the probability to still be at risk of the events at entry:

lLT
i (𝜽G) =

li(𝜽G)
∑G

g=1𝜋igSi(T0i|ci = g,𝜽G)
(9)

The final log-likelihood to be maximized is computed on all the subjects as  (𝜽G) =
∑N

i=1 log
(

lLT
i (𝜽G)

)
.

3.2.2 Posterior classification

The posterior distribution of the latent classes can be derived from the observed data as:

P (ci = g|Yi, (Ti, di);𝜽G) =
P (ci = g;𝜽G) × f (Yi|ci = g;𝜽G) × f ((Ti, di)|ci = g;𝜽G)

f (Yi, (Ti, di);𝜽G)
(10)

where each element is calculated similarly as in the individual contribution to the log-likelihood in (7).
This posterior distribution is classically computed at the point estimate ̂𝜽G, giving �̂�ig = P

(
ci = g|Yi, (Ti, di); ̂𝜽G

)
, and

the posterior classification is derived: each individual is assigned to the latent class that provides the maximum individual
posterior probability, that is the most likely class ĉi = argmaxg=1,...,G�̂�ig.

3.2.3 Optimal number of latent classes

Maximum likelihood is obtained for a fixed number of latent classes G, and the optimal number of latent classes thus needs
to be a posteriori determined. Selecting the optimal number of clusters in mixture problems is a wide area of statistical
research.27
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PROUST-LIMA et al. 4003

Among information criteria, the Bayesian Information Criterion (BIC) is usually favored. Defined as BIC(G) =
−2( ̂𝜽G) + p log(N) with the lower the better, it was repeatedly shown to correctly select the optimal number of latent
classes in different mixture situations.28,29 However, as it is a likelihood-based criterion, the BIC mainly focuses on the fit
of the model to the data and may lead in some contexts to a poorly discriminant latent class structure.27,30

The discriminatory power of the latent class structure can be assessed by an entropy measure defined as EN(G) =

1 +
∑N

i=1
∑G

g=1�̂�ig log(�̂�ig)

N log(G)
with values closer to one indicating higher discrimination of the classes.31 However, as built only from

the posterior probabilities, this entropy measure completely neglects the fit of the model.
When interested both in the fit and the clustering, the Integrated Classification Likelihood criterion (ICL)31,32 has

been considered. Defined as ICL(G) = BIC(G) − 2 ×
∑N

i=1
∑G

g=11ĉi=g log(�̂�ig), this criterion penalizes the fit of the data by
the discrimination power and thus can identify the latent class structure that provides the best balance between fit and
discrimination. This is particularly useful in our exploratory context where we favor the identification of different relevant
subphenotypes (ie, classes) rather than the best fit to the data.

3.2.4 Multimodality

One critical issue with latent class models is the multimodality of the likelihood and the potential convergence toward
local suboptimal maxima33 with local optimizer. To ensure convergence toward the global likelihood maximum, we highly
recommend the use of a gridsearch that replicates the estimation process for a large number of random initial values, and
thus likely explores the entire parameter space and reaches the global likelihood maximum.

3.2.5 Software

The maximum likelihood estimation of the joint latent class model is implemented in lcmm R package20 with function
mpjlcmm when considering K ≥ 1 repeated markers and Jointlcmm when considering K = 1 marker. Log-likelihood
optimization is carried out by a robust Marquardt-Levenberg algorithm combined with stringent convergent criteria on
the log-likelihood, the parameter and the first and second derivatives. This optimizer has been demonstrated to provide
correct inference even in the case of complex log-likelihoods and/or relatively flat regions.34

The package includes a gridsearch function for the parameter space exploration, and postfit functions for reporting
the information criteria, posterior classification, goodness-of-fit, and predicted trajectories.35

3.3 Association with external information

After a latent class model estimation, one may want to assess the external predictors Xextern
i of the latent class structure ci,

or one may want to determine how the latent class structure ci relates with an external outcome Y extern
i using regression

techniques. In both cases, a naive approach consists in running the posterior regressions on an estimate of ci (for instance
the most likely class ĉi) instead of the true unknown ci, and neglecting the uncertainty in the estimate of ci. The inference
quality of this naive method, usually called “2-stage”21 or “3-step” method,23 depends on the discrimination of the latent
classes. While it can provide negligible bias in the case of highly separated classes (with high posterior probabilities, high
entropy), it may become substantially biased in the case of rather poor discrimination.21-23 Alternatives consist either in
corrections in the multi-step analysis to account for the uncertainty,23 or directly in the joint estimation of all the variables
of interest including the external information Xextern

i and/or Y extern
i to internally handle the measurement error in the

latent class assignment.21 While the joint estimation naturally handles the latent nature of the classes and the uncertainty,
one drawback is that the external information becomes part of the latent class model estimation and may slightly change
the latent class structure. In many situations, the statistician wants to determine the latent class structure using a set
of outcomes (in our case Yi and (Ti, di)), and relate this specific latent class structure with other external outcomes in
posterior analyses (in our case Xextern

i and/or Y extern
i ).

To both separate the estimation process of the latent class structure from the posterior analyses (as done in multi-step
techniques), and account for the latent nature of the class structure (as done in the joint estimation technique), we used
an intermediate approach. We considered the joint likelihood including Yi, (Ti, di) and the external information, either
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Xextern
i or Y extern

i . However, we did not re-estimate all the parameters involved, only those related to Xextern
i or Y extern

i as
explained below.

Case 1. The latent class structure as a predictor of an external outcome Y extern
i

We consider the case of a continuous marker Y extern
i either measured once or repeatedly over time. The same generic

model as defined in (3) and (4) can be applied to Y extern
i with its specific underlying level ΛD+1. Note that the use of the

identity in (3) and no random effects in (4) provides for instance a linear model for cross-sectional data. Let’s define𝝍extern
G

the total vector of parameters for this external outcome. By including the external outcome, the contribution to the joint
log-likelihood previously defined in (7) now includes a fourth element:

lY extern

i
(
𝜽G,𝝍

extern
G

)
= f

(
Yi, (Ti, di),Y extern

i ;𝜽G,𝝍
extern
G

)

=
G∑

g=1
P(ci = g;𝜽G) × f (Yi|ci = g;𝜽G) × f ((Ti, di)|ci = g;𝜽G) × f (Yextern

i |ci = g;𝝍extern
G ) (11)

The posterior regression for Y extern
i can be estimated by maximising Y extern (

̂𝜽G,𝝍
extern
G

)
=

∑N
i=1 log

(
lY extern

i

(
̂𝜽G,𝝍

extern
G

))
according to 𝝍extern

G .

Case 2. External information Xextern
i as the predictor of the latent class structure

This case is usually sought when the joint latent class model does not already include predictors of the latent class structure
in Equation (1). External predictors Xextern

i can be easily included a posteriori by updating Equation (1) with XCi = Xextern
i .

The estimation technique is then very similar as for case 1. We define 𝝃extern
G the total vector of parameters involved in

the updated formula (1) according to Xextern
i , and we consider the following contribution to the joint log-likelihood where

the component involving parameters 𝝃extern
G is now re-estimated. Note that for clarity we mention here the condition on

Xextern
i :

lXextern

i
(
𝜽G, 𝝃

extern
G

)
= f

(
Yi, (Ti, di)|Xextern

i ;𝜽G, 𝝃
extern
G

)

=
G∑

g=1
P(ci = g|Xextern

i ; 𝝃extern
G ) × f (Yi|ci = g;𝜽G) × f ((Ti, di)|ci = g;𝜽G) (12)

The posterior regression of ci according to Xextern
i can be estimated by maximising Xextern (

̂𝜽G, 𝝃
extern
G

)
=

∑N
i=1 log

(
lXextern

i

(
̂𝜽G, 𝝃

extern
G

))
according to 𝝃extern

G .

4 SIMULATION STUDY

We carried out a simulation study to explore the finite sample properties of the estimation procedure of the multivariate
joint latent class model. The simulation study is fully detailed in Supplementary Materials, Section S1. This includes the
generation algorithm, the description of the different scenarios, the results and their interpretation, as well as a replication
script in Section 3. Briefly, we generated series of 300 samples of 250, 500, or 750 subjects constituted of three latent
classes, K = 2 or 3 repeated outcomes with class-specific linear trajectories and one or two competing-cause survival
times under class-specific Weibull risks or proportional piecewise exponential hazards with parameters chosen to achieve
different levels of entropy (between 63% and 83%) and different proportions of events (between 18% and 77%). This lead
to nine scenarios (see description in Table S1), six of them run for the three sample sizes. For each sample, the model was
estimated using a grid of 100 random sets of initial values.

All the simulation results are reported in supplementary Tables S2 to S25. We also report the estimated parameters
along with coverage rates of the 95% confidence interval in Figure 2 for scenario 4 that included two competing causes of
event and an entropy of 0.71. Overall, the simulation results illustrate the correct estimation of the parameters in all the
scenarios with negligible bias and good coverage rates of the 95% confidence intervals for samples of 500 and 750 subjects.
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F I G U R E 2 Violin plots of the parameters estimates in the 300 replicates of simulation Scenario 4 for 250, 500, and 750 subjects. The
specified model included three latent classes, two markers with linear trajectory (Y1, Y2) and a class-specific and cause-specific Weibull risk
of event for two causes of event (T1, T2).
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For samples of 250 subjects, the estimates were generally well estimated although scenarios 3, 4, 5 revealed a small bias
and too low coverage rate for the class-specific survival parameters in cases where the number of events in the class was
very low (<10 events). This was explained by rare extreme values and these estimations remained overall good over the
replicates despite the very low proportion of events (see violin plots in Figures 2 and S3, for scenarios 4 and 5, respectively).

Scenario 8 also aimed to illustrate how a three-dimensional model could help identify further heterogeneity com-
pared to uni-dimensional models (with 3 classes identified while uni-dimensional models could only retrieve 2 classes)
(Supplementary section 1.3.8., Tables S23, S24).

5 APPLICATION TO MSA PROGRESSION

We applied the joint latent class methodology to describe the progression of the six markers measured repeatedly over
time and grouped into three dimensions: function with the sumscores UMSARS I and II, supine blood pressure with
the diastolic and systolic measures, orthostatic BP drop with the maximum decreases in systolic and in diastolic blood
pressure, along with the time to death. The specification of the model is summarized in Figure 3. Each parametric
assumption was carefully assessed in separate preliminary analyses for G = 1 by comparing different candidates accord-
ing to the Akaike Information Criterion (AIC) and BIC. For instance, better AIC were found when considering a Weibull
baseline risk function compared to a basis of M-splines with three internal knots, when considering quadratic splines for
the link functions compared to linear transformations, or when considering a linear trajectory of the dimensions over
time compared to nonlinear trajectories approximated by natural cubic splines or polynomials. In addition, although the
three underlying dimensions were defined based on clinical knowledge, we compared a latent process model (where the
two constituting markers are assumed to measure the same underlying process) with a bivariate mixed model (where
each marker has its own trajectory, and random effects are correlated between markers). The assumption of an under-
lying process was reasonable for the three dimensions under G = 1. The AIC and BIC concluded to the selection of the

F I G U R E 3 Diagram summarizing the definition of the joint latent class model for MSA progression (left part), and the associated
posterior analyses (right part). Are reported the chosen specifications for each submodel (carefully determined in preliminary separated
analyses after comparison with alternative candidates according to AIC).
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PROUST-LIMA et al. 4007

latent process model for Supine BP (AIC/BIC = 26,170.01/26,275.45 and 26,175.04/26,245.33 for the bivariate model and
for the latent process model, respectively) and Orthostatic BP (AIC/BIC = 25,483.22/25,588.67 and 25,471.33/25,541.63
for the bivariate model and for the latent process model, respectively). For the Function process, the bivariate mixed
model provided a better fit (AIC/BIC = 21,731.81/21,837.25 and 21,909.83/21,980.13 for the bivariate model and for the
latent process model, respectively) but the latent process model remained reasonable and was clinically justified as both
UMSARS-I and UMSARS-II scores measure Function degradation.

5.1 Selection of the number of latent classes

Joint latent class models assuming between 1 and 6 latent classes were repeatedly estimated using a grid of 100 random
initial values. Figure 4 summarizes the three statistical criteria (BIC, Entropy, ICL) used for determining the optimal
number of latent classes. While the goodness-of-fit was gradually improved when adding a new latent class, the entropy
was clearly better for the five-class model (Entropy at 0.76) suggesting that although the six-class was even closer to the
data, it did not provide a sufficiently high separation of the patients. As the ICL which accounts for both goodness-of-fit
and discrimination also favored the five-class model, we retained these five subphenotypes of MSA clinical progression.
The Sankey plot (displayed in Figure S5 in supplementary materials) describes the sequence of latent class splits with the
increasing number of classes.

5.2 Five subphenotypes of MSA progression

The mean trajectories of the six markers and the predicted death probability characterizing the five subphenotypes of
MSA progression are reported in Figure 5. The five subphenotypes differed by the shape and speed of progression of
the three dimensions, and the risk of death. The largest class (Class 3) with 46.7% of the sample was characterized
by a much slower deterioration of the function (UMSARS I and II) than others, and a relatively stable level of supine
BP, and slight increase in orthostatic BP drop. The second largest class (Class 1) with 31.4% of the sample was charac-
terized by a fast deterioration of the function but also a decrease in supine BP over time and a rather stable or slight
decrease in orthostatic BP drop. Classes 2 and 5 comprised around 9% of the sample each and were both character-
ized by similar shapes of clinical progression: fast deterioration of the function, increase in supine BP and aggravation
of the orthostatic BP drop. However, the timing was different. The patients from class 5 had a progression beginning
right after the first symptoms while this progression was slightly delayed in class 2. Finally, the smallest class (Class 4),
which included 3.7% of the sample, was characterized by a fast deterioration of the function, and at the same time, a
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F I G U R E 4 Comparison of models considering from 1 to 6 latent classes. Are reported the BIC for goodness-of-fit assessment, Entropy
for discriminatory assessment, and ICL for an overall assessment.
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F I G U R E 5 Predicted trajectories of the markers (and 95% in shades) and predicted death probability in the five latent classes. Are also
reported in grey lines the observed trajectories of the patients a posteriori classified into the latent class.
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decrease in supine BP and orthostatic BP drop which makes it very peculiar. As shown in the Sankey plot (Figure S4
in supplementary materials), the smallest latent class 4 was only identified when considering a fifth class. As this small
class substantially differs from the others, this probably explains the gain in entropy observed between the 4- and 5-class
models.

The risk of death was substantial in all the classes with a probability of death reaching 1 in all classes by 15 years after
the first symptoms. It followed the functional degradation with a more progressive risk of death in class 3 compared to
others and an earlier risk for class 5 and 1 compared to classes 3 and 4.

5.3 Determinants of the latent classes

In posterior multinomial logistic regression, we assessed the determinants of the five subphenotypes (Figure S6 in sup-
plementary materials). No difference was observed according to sex or MSA center. However, as previously identified, the
duration between the first symptoms and the diagnosis substantially differed according to the latent class with later diag-
noses for latent classes 3 and 4, and earlier diagnoses for latent classes 1 and 5. Patients with a cerebellar presentation of
the disease were more likely classified in latent class 4 compared to others, and less likely classified in the fast progres-
sors of class 1. Finally, patients with a probable diagnosis were much more likely classified in any other class than class 3
compared to patients with a possible diagnosis.

5.4 Association with MRI and fluid biomarkers

Understanding the underlying biological mechanisms of MSA is particularly crucial for therapeutic development. Indeed,
beyond MSA patients care, MSA constitutes a fast model for the group of 𝛼-synucleinopathies including Parkinson’s
disease. As such, identifying potential therapeutic targets, or differential biological mechanisms is of high importance.
The classification may be useful to explore how new biomarkers differ according to this parsimonious summary of the
MSA clinical progression.

We focused here on MRI biomarkers with five brain regions of interest (N= 86 patients), and serum and CSF measures
of total 𝛼-synuclein (N = 23) and of NfL (N = 52). Due to the small sample sizes, we focused mainly on the differences
between the two largest classes, class 1 of fast progressors and class 3 of slow progressors. The posterior linear regressions
adjusted for the exam timing displayed in Figure 6 suggested a more preserved MRI structure for class 3 than class 1
with in particular a larger putamen volume and total gray matter. The concentration of NfL, a marker linked to the
aggressiveness of axonal injury, also tended to be higher in the fast progression class 1 (classes 2 and 5 too) compared to
the slow progression class 3, especially in the serum, while the CSF concentration of total 𝛼-synuclein was slightly lower
for the fast progressors.

5.5 Goodness-of-fit assessment

We followed the strategy described in Proust-Lima et al9,14 to assess the goodness of fit of each part of the final joint latent
class model:

• longitudinal data: we compared the trajectories of weighted mean predicted values in each class to the
trajectories of weighted mean observations. Specifically, observation times were split into intervals. Then
subject-and-class-specific marker predictions computed at each observation point of an interval were averaged
with weights corresponding to the posterior individual probability to belong to each class. The same strategy
was used for the observations. Applied to the selected five-class model, it showed that the weighted averaged
predictions of each marker were very close to the weighted averaged observations (Figure S7 in supplementary
materials).

• survival data: because of the delayed entry, we did not compare the predicted and observed survival functions or
cumulative hazards in each class. Instead, we compared the weighted mean of class-and-subject-specific predicted
instantaneous risk functions to the instantaneous risk function in each class estimated by a weighted piecewise hazard
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F I G U R E 6 Posterior MRI and fluid biomarkers differences across classes predicted in separated linear regressions run on subsamples of
86 (A), 23 (B), and 52 (C) patients. Regressions are adjusted for the exam timing, and account for the uncertainty in the latent class assignments.
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model with knots every two years. 95% confidence interval was obtained by non-parametric bootstrap with 200 sam-
ples. Applied to the selected five-class model, it showed that the weighted predicted risks of death were close to the
observed ones (Figure S8 in supplementary materials).

• classification: the quality of the classification obtained from the five-class joint model was assessed by the posterior
classification table (Table S30 in Supplementary Materials). In each class, the mean posterior probability of belonging
to this class ranged from 77.7% in Class 1 to 88.6% for the slower progression class 3, and 89.4% for the small and
peculiar class 4, indicating a clear discrimination between the latent classes.

5.6 Comparison with unidimensional joint latent class models

In secondary analyses, we estimated a joint latent class model on each dimension taken separately. The model specifica-
tion and the strategy of analysis remained the same. Four classes were identified for the function (12.5%, 29.8%, 41.8%,
15.9%–with a gradient of increasing slopes) and two small classes of rapid changes were distinguished for the supine BP
(5.4%–with a substantial increase) and orthostatic BP (11.7%–with an amplification of the orthostatic hypotension), the
rest of the sample having a rather stable progression of both BPs (Figure S9). When comparing the posterior classifications
with the one of the five-class multidimensional joint model, the four latent classes of Function progression discriminated
mainly classes 1, 3, and 4 while the two small classes of Supine and Orthostatic BP rather corresponded to latent classes
2 and 5.

6 DISCUSSION

Given the complexity of some diseases and the richness of the data collected in cohort studies, methods to summarize
multivariate longitudinal information, and capture heterogeneity become real assets in biostatistics. With this work and
the associated implementation in the R package lcmm (function mpjlcmm), we provide a relevant and effective solution
validated in simulations for summarizing information from multivariate markers measured repeatedly over time and clin-
ical endpoints. In the MSA example, the approach summarized 6 marker trajectories and risk of death into five subgroups
of patients with different profiles of progression that suggest distinct subphenotypes of the disease.

In addition to unraveling a heterogeneous clinical progression, this method provides a simple parsimonious summary
of complex disease progression that can then be used to explore new research directions, and markers of interest. For
instance, in MSA, although based on a very small subset of patients, posterior analyses of the classification suggested a
preserved MRI structure in the slow progression class 3 compared to other classes, and higher NfL for the rapid progres-
sion classes confirming the higher aggressiveness of these profiles. A slightly lower concentration in CSF total 𝛼-synuclein
was also observed for the fast progressors which suggests a higher pathological sequestration of 𝛼-synuclein in the brain
for these patients.36 The differences in total 𝛼-synuclein were small across classes compared to the differences in NfL. This
is probably due to the fact that 𝛼-synuclein is a marker of the pathophysiological process rather than a marker of progres-
sion. Although further research is needed to confirm these observations, they illustrate how this statistical methodology
opens up perspectives in a complex disease such as MSA to improve the understanding of pathophysiological processes.
The statistical model relies on the assumption of conditional independence between processes, that is, all the correlations
between such rich data can be captured by a few latent classes. We are aware that this assumption is likely violated. How-
ever, our objective was not to properly assess the nature of the association between the markers and clinical endpoints
but to explore and identify heterogeneous profiles of progression that could be used as a parsimonious summary to be
considered for external analyses. In this context, we did not further test the independence assumption. We relied instead
on criteria such as the entropy or the ICL (which gives a balance between discrimination ability and goodness-of-fit)
to assess the quality of the classification, and its discrimination ability. With a final entropy of 0.76, and mean poste-
rior class-membership probabilities between 0.78 and 0.89, the five latent classes showed a very convincing split of the
population into distinct profiles of progression that can be referred to as subphenotypes.

We carried out additional simulations to explore the behavior of the method under a residual correlation of 0.2
and 0.3 between the markers (See subsection 1.3.9 in supplementary materials). Overall, the parameters’ distributions
under misspecification showed a small bias but were not too much impacted (Figure S4, Tables S25–S27). Moreover,
the percentage of individuals correctly classified remained similar to the one under true conditional independence
(about 85% overall).
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Previous works had formally addressed the issue of conditional independence in joint latent class models by focusing
on simpler settings (single repeated marker and event time). Jacqmin-Gadda et al37 and Proust-Lima et al20 developed
score tests to evaluate whether there is residual dependence between a repeated marker and clinical endpoints. The same
strategy could be undertaken to provide a score test for conditional independence adapted to the multivariate context.
Andrinopoulou et al38 and Liu et al39 also developed joint models that included both marker-event dependence on latent
classes and on shared random-effects. However, these hybrid models already showed substantial numerical problems in
the univariate situation, and their applications were limited to a too small number of classes to be useful in our context
of progression summary. We thus leave these directions of development for future research.

Beyond the multivariate nature of the processes in play, the study of chronic disease progression usually induces
additional complexities that our methodology and the associated software can handle: (i) Gaussian and non-Gaussian
distributions of markers managed by defining parameterized link functions following previous work of the authors,26

(ii) markers measuring the same underlying dimension handled by shared latent processes, (iii) delayed entry taken into
account in the estimation procedure, (iv) competing risk setting with cause-and-class specific proportional hazard models
(although not detailed here as not relevant in the MSA context, it is included in the software solution). Still, some issues
are left for future improvements. First, although the theory could apply to other natures of repeated markers, especially
within the exponential family with generalized linear mixed models applied to the latent dimensions, we only focused
on continuous markers. Second, we described the trajectory according to the time since the first symptoms under the
assumption that, at their inclusion in the cohort, the patients were able to accurately determine the time since their first
symptoms. Dealing with this type of uncertainty calls for methodologies based on latent disease time40 that could be
combined with the latent class approach in the future. It is important to recall that our solution, although flexible, remains
fully parametric. As such, each part of the model (eg, existence of underlying latent dimensions, link functions, shape of
trajectory, baseline risk functions, selection of the number of latent classes) has to be carefully determined in preliminary
analyses and posterior evaluations. In the application, we postulated notably the existence of underlying processes, each
one measured by two markers. This was clinically justified and seemed reasonable given the data both in preliminary
analyses and in the posterior comparison of predictions versus observations (Figure S7). Another essential caution with
the use of joint latent class models and mixture models in general is that they constitute flexible approaches to model
asymmetric distributions or heavy-tailed distributions even in the absence of a real latent class structure (see for instance
Bauer and Curran30 and discussants). This is why in this work where the latent class structure was central, we did not
rely only on the goodness-of-fit but also on the discrimination performances with the entropy (Figure 4) and posterior
class-membership probabilities (Table S30).

Linking latent classes to external outcomes, as done in MSA with MRI, CSF and plasma markers, constitutes one direc-
tion of research of its own due to the difficulty to account for the uncertainty in the estimated latent class structure.21-24

In our work, we chose to directly integrate the external outcomes into the joint model program to correctly handle the
uncertainty on the latent class membership, as suggested by others in a different latent class framework.21,24

In conclusion, the multi-dimensional latent class methodology described here is a powerful, flexible and effective tool
for exploring disease progression, especially in complex settings as encountered in MSA with different markers of different
dimensions and no clear biological assumption behind. It opens to a deeper understanding of the disease progression,
and exploration for phenotypes differences. Although limited in our motivating example to several MRI, CSF and plasma
markers, posterior analyses based on latent classes can also apply in high dimensional contexts with omics information
for instance.
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