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Summary

This paper investigates the convergence properties of the augmented finite element
method (AFEM). The AFEM is here used to model weak discontinuities indepen-
dently of the underlying mesh. One noticeable advantage of the AFEM over other
partition of unity methods is that it does not introduce additional global unknowns.
Numerical 2D experiments illustrate the performance of the method and draw com-
parisons with the finite element method (FEM) and the non-conforming FEM. It is
shown that the AFEM converges with an error of (ℎ0.5) in the energy norm. The
non-conforming FEM shares the same property while the FEM converges at (ℎ).
Yet, the AFEM is on par with the FEM for certain homogenization problems.
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1 INTRODUCTION

Weak discontinuities are surfaces across which the strain field has a jump while the displacement field remains continuous. These
discontinuities may result from strain localization phenomena such as shear bands in metals or kink bands in fibre reinforced
composite materials1,2. Necessary conditions for their appearance are not discussed here and we refer the interested reader to3,4,5

and references therein. In addition, any interface located in between materials with different mechanical properties is also a weak
discontinuity surface. This work deals with this latter situation where the location of weak discontinuities is known beforehand.

Modelling of heterogeneous materials with complex microstructure, such as composites, requires to represent an arbitrary
number of material interfaces. The standard finite element method (FEM) imposes the use of conforming meshes that explicitly
describe these interfaces, which may cause the discretization process to be time-consuming or burdensome.

To overcome this meshing difficulty, variants of the standard FEM allowing to embed weak discontinuities within elements
have thus been developed. They are labelled as "enriched finite element methods"6,7,8. The presence of discontinuities is mod-
elled by introducing additional degrees of freedom (DOF). Two main families can be distinguished depending on the support
of the enrichment: either the nodes or the elements9,10. Some of the most popular nodal enrichment methods include the
extended finite element method (XFEM)11,12, the generalized finite element method (GFEM)13,14 and the phantom node method
(PNM)15,16,17. These approaches are special instances of the partition of unity method (PUM)18,19 and are now recognised to
be closely related20,17,7,21,22. In this work, the term XFEM will refer to the aforementioned methods. They were shown to yield
optimal convergence rates with mesh refinement and to be as accurate as the FEM when dealing with weak discontinuities23.

The development of element-level enrichment methods started in the early 90’s24,25. Due to the nature of the enrichment,
the additional DOF can be condensed at the element level. Hence, the enriched problem is not larger than the original one,
no matter the number of discontinuities, which is an advantage when compared with the XFEM. The resulting approaches are
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called embedded finite element methods or finite elements with embedded discontinuities (EFEM)26,27,28,8,29. Yet, in contrast
to the FEM or the XFEM, EFEMs are non-conforming methods: they induce a violation of the interelement continuity of the
displacement field.

A slight modification of the standard FEM also enables to somewhat model material interfaces without meshing them. Their
effect is taken into account by assigning different material properties to the integration points of the elements according to
their position with respect to the discontinuity. Yet, this strategy is known to lead to suboptimal convergence rates since the
approximation space does not contain any weak discontinuity30. This approach appears under various names in the literature
such as "non-conforming FEM"23, "voxel-based FEM"31 or "macro finite element"32. The finite cell method (FCM)33,34 also
makes use of this strategy to model weak discontinuities. The term "non-conforming FEM" will be used to designate these
methods in the remainder of this work.

EFEMs are predominantly employed to model strong discontinuities26. Successful applications dealing with weak disconti-
nuities can be found in the literature35,36,37,38 but no information on the convergence rates of the methods are reported. Moreover,
the particular formulation of the EFEMs used in the aforementioned references differ. If these approaches have proven to be
valuable tools with a broad scope of application, key information is still missing to widen their acceptance and use, and it
remains unclear how to decide which EFEM is best suited to solve a given problem, or how it compares with other variants.
This knowledge gap reflects the primary use of EFEMs: they are principally applied to nonlinear problems involving propaga-
tion of cohesive cracks or plasticity induced shear bands. Closed-form solutions to these problems are often out of reach and
the development of error estimators in these cases is fairly complex39. Ensuring that a numerical method is convergent as well
as deriving its convergence properties is nevertheless of prime interest. Therefore, the aim of this study is to provide a precise
insight into the performances of the EFEM to model perfectly bonded interfaces. Comparisons with the standard FEM and the
non-conforming FEM will also be drawn. These numerical methods have been implemented in an in-house FE code to allow
for a fair comparison.

Our study will be focused on the particular EFEM formulation proposed by Yang and co-workers, the augmented finite
element method (AFEM)40,36. It is free from stress-locking and, contrary to numerous EFEMs, it does not require to assume
any enhanced strain modes28,29,41. It further departs from other EFEMs on several aspects: it allows to model weak and strong
discontinuities, as well as the transition from the former to the latter, and permits to embed multiple discontinuities within an
element. The relative simplicity of the AFEM allowed the authors to extend it to thermomechanical applications42, dynamic
loadings43,44 as well as three-dimensional studies of heterogeneous materials45,46. The method has been implemented as a user
element in Abaqus and appeared to be approximately 50 times faster than the phantom node method natively implemented in
this software47.

An outline of the paper is as follows. In Section 2, the use of the FEM and the non-conforming FEM made in this study are
detailed. In Section 3, the general AFEM framework for the modelling of weak discontinuities is recalled. Section 3.1 presents
the strong and weak forms of the problem as well as the condensed discretized equilibrium equations. Section 3.2 specifies
which augmented finite elements are employed in the present study. The accuracy and the convergence rate of the AFEM are
investigated through numerical experiments in Section 4 and 5. The condition number of AFEM stiffness matrices is investigated
in Section 6. The benefits and the limits of the AFEM are finally discussed in Section 7.

2 MODELLING OF WEAK DISCONTINUITIES WITH THE STANDARD FEM

Typical ways of handling weak discontinuity surfaces with the finite element method are schematised in Figure 1 and detailed
next. The discretized equilibrium equations of the standard FEM are not recalled here and we refer the interested reader to
reference textbooks48.

2.1 Discretizations matching the material interfaces: the standard FEM
The most straightforward and accurate manner to represent weak discontinuity surfaces with finite elements is to mesh them
explicitly, see Figure 1 T3 and Q4. Indeed, optimal convergence rate of the solution with mesh refinement is ensured if weak
discontinuities are located on the finite elements boundaries. Automatic meshing of complex (micro)structures relies on tailored
algorithms49,50 and GMSH51 has been employed to generate the meshes used in this study. The FE meshes are either composed
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FIGURE 1 Finite elements used in this study to represent a weak discontinuity, from left to right: triangular cell (CT3), quadri-
lateral cell (CQ4), triangular finite element (T3), quadrilateral finite element (Q4)

of linear triangular elements with one integration point (T3) or bilinear quadrilateral elements with a 2×2 Gauss integration
scheme (Q4), see Figure 1 T3 and Q4.

2.2 Discretizations not matching the weak discontinuity surfaces: the non-conforming FEM
The automatic meshing of complex microstructures may fail or generate highly distorted meshes. Some authors thus do not to
mesh the weak discontinuities and let them "cross" the standard finite elements. The effect of the underlying discontinuity is
then taken into account by assigning different material properties to the integration points of the crossed elements, according
to their position with respect to the weak discontinuity, see Figure 1 CT3 and CQ4. As stated in the introduction this approach
will be termed the "non-conforming FEM" in the remainder of this work. The finite elements crossed by a weak discontinuity
will be called "cells" in what follows. A T3 and a Q4 crossed by a discontinuity are named CT3 and CQ4 respectively. The CT3
is integrated with a 6-point integration scheme while the CQ4 uses a 3×3 Gauss scheme, see Figure 1 CT3 and CQ4. Although
they may use the same meshes, notable differences do exist between the non-conforming FEM and the AFEM. Conversely to
the latter, the former does not model any weak discontinuity but it induces no interlement discontinuities.

3 MODELLING OF WEAK DISCONTINUITIES WITH THE AFEM

3.1 Strong form, weak form and condensed discretized equilibrium equation
The reference situation to be considered is schematised in Figure 2. Let Ω be the domain occupied by a solid. A material point
inside the domain is labelled as 𝐱 ∈ Ω. A weak discontinuity surface Γ𝑐 splits Ω into two subdomains Ω+ and Ω−. The prescribed
external tractions 𝐭+𝐞𝐱𝐭 and 𝐭−𝐞𝐱𝐭 are applied on boundary Γ𝑡 = Γ+

𝑡 ∪ Γ−
𝑡 whereas the displacements �̄�+ and �̄�− are imposed on

boundary Γ𝑢 = Γ+
𝑢 ∪ Γ−

𝑢 . The domains on both sides of the discontinuity are assumed to be elastic and homogeneous, yet Ω+

and Ω− can be made of different materials. We further assume small strain and displacement conditions. In the absence of body
forces the field equations governing the boundary value problem obey the following relations

𝛁𝝈+(𝐱) = 𝟎 𝐱 ∈ Ω+ 𝛁𝝈−(𝐱) = 𝟎 𝐱 ∈ Ω− (1)
𝝈+(𝐱).𝐧+(𝐱) = 𝐭+𝐞𝐱𝐭(𝐱) 𝐱 ∈ Γ+

𝑡 𝝈−(𝐱).𝐧−(𝐱) = 𝐭−𝐞𝐱𝐭(𝐱) 𝐱 ∈ Γ−
𝑡 (2)

𝐮+(𝐱) = �̄�+(𝐱) 𝐱 ∈ Γ+
𝑢 𝐮−(𝐱) = �̄�−(𝐱) 𝐱 ∈ Γ−

𝑢 (3)
𝐭+𝐢𝐧𝐭(𝐱) = 𝝈+(𝐱).𝐧+(𝐱) 𝐱 ∈ Γ𝑐 𝐭−𝐢𝐧𝐭(𝐱) = 𝝈−(𝐱).𝐧−(𝐱) 𝐱 ∈ Γ𝑐 (4)

𝝈+ and 𝝈− stand for the stress fields in Ω+ and Ω− respectively, 𝐭+𝐢𝐧𝐭 and 𝐭−𝐞𝐱𝐭 are the tractions along the discontinuity surface Γ𝑐
whereas 𝐧+ and 𝐧− are the outward pointing normals ofΩ+ andΩ− respectively. The constitutive law and the strain-displacement
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FIGURE 2 Solid body crossed by a weak discontinuity surface

equations for the two subdomains read

𝝈+(𝐱) = 𝐂+ ∶ 𝝐+(𝐱) 𝐱 ∈ Ω+ 𝝐+(𝐱) = 1
2
(∇𝑇𝐮+(𝐱) + ∇𝐮+(𝐱)) 𝐱 ∈ Ω+ (5)

𝝈−(𝐱) = 𝐂− ∶ 𝝐−(𝐱) 𝐱 ∈ Ω− 𝝐−(𝐱) = 1
2
(∇𝑇𝐮−(𝐱) + ∇𝐮−(𝐱)) 𝐱 ∈ Ω− (6)

where 𝐂+ and 𝐂− are the stiffness tensors of the subdomains Ω+ and Ω− respectively. The displacement fields 𝐮+ and 𝐮− are
subsets of the kinematically admissible displacement field, 𝐔:

𝐮+ ∈ 𝐔 = {𝐯+ ∈ 𝐕 ∶ 𝐯+ = 𝟎 𝐱 ∈ Γ+
𝑢 } 𝐮− ∈ 𝐔 = {𝐯− ∈ 𝐕 ∶ 𝐯− = 𝟎 𝐱 ∈ Γ−

𝑢 } (7)

Equations (1)-(7) can be converted into a weak form using the principle of virtual work. Its application to the two subdomains
Ω+ and Ω− leads to

∫
Ω+

𝝈+(𝐱) ∶ 𝝐+(𝐯+(𝐱))𝑑Ω = ∫
Γ+
𝑡

𝐭+𝐞𝐱𝐭(𝐱).𝐯
+(𝐱)𝑑Γ + ∫

Γ𝑐

𝐭+𝐢𝐧𝐭(𝐱).𝐯
+(𝐱)𝑑Γ ∀𝐯 ∈ 𝐔 (8)

∫
Ω−

𝝈−(𝐱) ∶ 𝝐−(𝐯−(𝐱))𝑑Ω = ∫
Γ−
𝑡

𝐭−𝐞𝐱𝐭(𝐱).𝐯
−(𝐱)𝑑Γ + ∫

Γ𝑐

𝐭−𝐢𝐧𝐭(𝐱).𝐯
−(𝐱)𝑑Γ ∀𝐯 ∈ 𝐔 (9)

The left-hand sides of equations (8) and (9) are the internal virtual work, the right-hand sides are the virtual work carried out
by the external forces and the tractions along the weak discontinuity surface. The existence of a weak discontinuity surface
translates into the following conditions:

𝐮+(𝐱) = 𝐮−(𝐱) 𝐱 ∈ Γ𝑐 (10)
𝐭+(𝐱) = −𝐭−(𝐱) 𝐱 ∈ Γ𝑐 (11)

The subdomains Ω+ and Ω− are now discretized with finite elements. Let {𝑑+} and {𝑑−} be the vectors of degrees of freedom of
Ω+ and Ω− respectively. The displacement field in each sub-domain is obtained thanks to standard FE shape function matrices
[𝑁+] and [𝑁−]:

𝐮+(𝐱) = [𝑁+(𝐱)]{𝑑+} 𝐱 ∈ Ω+ 𝐮−(𝐱) = [𝑁−(𝐱)]{𝑑−} 𝐱 ∈ Ω− (12)

These shape functions are expressed as if the weak discontinuity surfaces were defined from the onset of the numerical calcula-
tion using a conforming mesh. Substitution of (12) into the weak forms (8) and (9), followed by the standard Bubnov–Galerkin
approach, leads to the discretized equilibrium equations

[𝐿+]{𝑑+} =
{

𝑓𝑒𝑥𝑡+

𝑓𝑤𝑒𝑎𝑘+

}

[𝐿−]{𝑑−} =
{

𝑓𝑒𝑥𝑡−

𝑓𝑤𝑒𝑎𝑘−

}

(13)

where [𝐿+] and [𝐿−] are the stiffness matrices of the two subdomains, {𝑓𝑒𝑥𝑡+} and {𝑓𝑒𝑥𝑡−} are the external force vectors
induced by the external tractions and {𝑓𝑤𝑒𝑎𝑘+} and {𝑓𝑤𝑒𝑎𝑘−} are the equivalent force vectors induced by the tractions on the
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weak discontinuity surface such that

[𝐿+] = ∫
Ω+

[𝐵+(𝐱)]𝑡[𝐂+][𝐵+(𝐱)]𝑑Ω [𝐿−] = ∫
Ω−

[𝐵−(𝐱)]𝑡[𝐂−][𝐵−(𝐱)]𝑑Ω (14)

{𝑓𝑒𝑥𝑡+} = ∫
Γ+
𝑡

[𝑁+(𝐱)]𝐭+𝐞𝐱𝐭(𝐱)𝑑Γ {𝑓𝑒𝑥𝑡−} = ∫
Γ−
𝑡

[𝑁−(𝐱)]𝐭−𝐞𝐱𝐭𝑑Γ (15)

{𝑓𝑤𝑒𝑎𝑘+} = ∫
Γ𝑐

[𝑁+(𝐱)]𝐭+𝐢𝐧𝐭(𝐱)𝑑Γ {𝑓𝑤𝑒𝑎𝑘−} = ∫
Γ𝑐

[𝑁−(𝐱)]𝐭−𝐢𝐧𝐭(𝐱)𝑑Γ (16)

Equation (14) introduces the strain-displacement matrices, [𝐵+] and [𝐵−], which contain the derivatives of the classical FE
shape functions (see, e.g.,48 section 2.5). The degrees of freedom vectors in (13) are further partitioned between those associated
with the weak discontinuity surface (called {𝑑𝑤𝑒𝑎𝑘+} and {𝑑𝑤𝑒𝑎𝑘−}) and those associated with the bulk (called {𝑑𝑒𝑥𝑡+} and
{𝑑𝑒𝑥𝑡−}).

{𝑑+} =
{

𝑑𝑒𝑥𝑡+

𝑑𝑤𝑒𝑎𝑘+

}

{𝑑−} =
{

𝑑𝑒𝑥𝑡−

𝑑𝑤𝑒𝑎𝑘−

}

(17)

This partition is used to rewrite (13) the following way:
[

𝐿11+ 𝐿12+

𝐿21+ 𝐿22+

]{

𝑑𝑒𝑥𝑡+

𝑑𝑤𝑒𝑎𝑘+

}

=
{

𝑓𝑒𝑥𝑡+

𝑓𝑤𝑒𝑎𝑘+

} [

𝐿11− 𝐿12−

𝐿21− 𝐿22−

]{

𝑑𝑒𝑥𝑡−

𝑑𝑤𝑒𝑎𝑘−

}

=
{

𝑓𝑒𝑥𝑡−

𝑓𝑤𝑒𝑎𝑘−

}

(18)

Relations (10), (11), (12) and (16) lead to

{𝑓𝑤𝑒𝑎𝑘+} = −{𝑓𝑤𝑒𝑎𝑘−} {𝑑𝑤𝑒𝑎𝑘+} = {𝑑𝑤𝑒𝑎𝑘−} (19)

Substitution of (19) into (18) allows to eliminate {𝑑𝑤𝑒𝑎𝑘+} and {𝑑𝑤𝑒𝑎𝑘−} from the the discretized equilibrium equations. The
resulting relation is called the condensed discretized equilibrium equation and reads

{𝑓𝑒𝑥𝑡} =
[

𝐿−
11 − 𝐿12−Λ−1𝐿21− −𝐿12−Λ−1𝐿21+

−𝐿12+Λ−1𝐿21− 𝐿+
11 − 𝐿12+Λ−1𝐿21+

]

{𝑑𝑒𝑥𝑡} (20)

where

{𝑑𝑒𝑥𝑡} =
{

𝑑𝑒𝑥𝑡−

𝑑𝑒𝑥𝑡+

}

{𝑓𝑒𝑥𝑡} =
{

𝑓𝑒𝑥𝑡−

𝑓𝑒𝑥𝑡+

}

(21)

and:
[Λ] = [𝐿22+] + [𝐿22−] (22)

Equation (20) introduces the stiffness matrix of the augmented finite elements. The element stiffness matrices are assembled to
form the global matrix of the system. Since {𝑑𝑤𝑒𝑎𝑘+} and {𝑑𝑤𝑒𝑎𝑘−} do not appear in the condensed discretized equilibrium
equation (20), the nodes associated with these DOF, called internal nodes (see Figure 3) do not contribute to the size of the
global stiffness matrix. Once {𝑑𝑒𝑥𝑡} is known, {𝑑𝑤𝑒𝑎𝑘+} and {𝑑𝑤𝑒𝑎𝑘−} can be readily determined. Indeed, equations (18)
and (19) lead to:

{𝑑𝑤𝑒𝑎𝑘+} = {𝑑𝑤𝑒𝑎𝑘−} = −[Λ]−1
(

[𝐿21+]{𝑑𝑒𝑥𝑡+} + [𝐿21−]{𝑑𝑒𝑥𝑡−}
)

(23)
As highlighted by Equation (12), the AFEM and the classical FEM make use of the same shape functions to describe the
displacement field on both sides of a weak discontinuity. This is illustrated in Figure 4 where a discontinuity crosses a triangular
domain. The main difference between the FEM and the AFEM lies in the fact that the internal nodes (see Figure 3) are condensed
at the element level with the AFEM. As a result, the DOF associated with these internal nodes are absent from the discretized
equilibrium equation (20). The internal nodes should be thought as internal variables associated with a given element rather than
conventional nodes shared between several elements. Hence, the AFEM can model an arbitrary number of (possibly moving)
weak discontinuities without modifying the number of DOF per element or the size of the assembled stiffness matrix. This
attractive property, not shared by the FEM or the XFEM, comes at a price: since the internal nodes are condensed at the element
level, the interelement compatibility is lost.
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3.2 Application to the 2D linear elements of this study
The condensed discretized equilibrium equation (20) can be used with parent elements of any dimension and order. Particular-
ization to 2D elements with linear shape functions is considered next. The parent elements used in this study are the constant
strain triangle, called hereafter T3, and the bilinear quadrilateral called Q4. A weak discontinuity splits a T3 into a triangle and a
quadrangle, the resulting element is called an AT3. When a Q4 is augmented, two situations can occur depending on the location
of the discontinuity: i) it is split into two quadrangles and the resulting element is named AQ4-1 or ii) it is split into a triangle
and a pentagon, the resulting element is called AQ4-2, see Figure 3. As stated in the introduction, the most salient feature of
the AFEM is that augmented elements and their parent elements share the same degrees of freedom, see Table 1. For instance,
the AT3 has the same DOF as a T3, despite the fact that the former embeds a weak discontinuity, as illustrated in Figure 4.

FIGURE 3 Node numbering of the augmented elements used in this study

FIGURE 4 Shape functions associated with the internal and external nodes of an AT3 element

The shape functions of the Q4 and the T3 can be found in classical textbooks on the finite element method see, e.g.,48. The
stiffness matrices of quadrilateral and triangular (sub)domains are computed thanks to a 2×2 points Gauss integration scheme
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and a 1-point integration scheme respectively. Pentagonal elements, called P5, are implemented using the polygonal finite ele-
ment method proposed by Sukumar and co-workers52,53,54. A 6-point integration scheme has been used to evaluate the stiffness
matrices of the P5 used in this study.

TABLE 1 Degrees of freedom of the augmented elements used in this study

Augmented Element {𝑑𝑒𝑥𝑡}𝑡 {𝑑𝑤𝑒𝑎𝑘}𝑡 (condensed DOF)
AT3 {𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑢3, 𝑣3} {𝑢4, 𝑣4, 𝑢5, 𝑣5}
AQ4-1 {𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑢3, 𝑣3, 𝑢4, 𝑣4} {𝑢5, 𝑣5, 𝑢6, 𝑣6}
AQ4-2 {𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑢3, 𝑣3, 𝑢4, 𝑣4} {𝑢5, 𝑣5, 𝑢6, 𝑣6}

4 THE BIMATERIAL BOUNDARY VALUE PROBLEM

4.1 Problem description
To investigate the performances of the AFEM we resort to a problem often encountered in the XFEM literature called the
bimaterial boundary value problem55,23,56,15,57,31. Let us consider a circular body composed of two different materials Ω1 and Ω2
as depicted in Figure 5. The radius of Ω1 is 𝑎 = 0.4 while the radius of Ω2 is 𝑏 = 2.0. The material properties in Ω1 are: 𝐸1 = 1,
𝜈1 = 0.25, and those in Ω2 are: 𝐸2 = 10, 𝜈2 = 0.3. The corresponding Lamé coefficients are: 𝜆1 = 𝜇1 = 0.4 and 𝜆2 = 5.7692,
𝜇2 = 3.8461. This set of material properties will be called soft inclusion hereafter. The two materials are perfectly bonded and
we assume plane strain conditions. The size of the domain, the material parameters and the radial loading are the same as the
one considered by Sukumar et al.55. The following displacement field is imposed on the boundary Γ of the domain:

FIGURE 5 Bimaterial boundary value problem (left) and associated numerical model (right)

{

𝑢𝑟(𝑟 = 𝑏, 𝜃) = 𝑏
𝑢𝜃(𝑟 = 𝑏, 𝜃) = 0

(24)
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The closed-form solution provided in55 in polar coordinates is recalled:

𝑢𝑟(𝑟, 𝜃) =

⎧

⎪

⎨

⎪

⎩

(

(1 − 𝑏2

𝑎2
)𝛼 + 𝑏2

𝑎2

)

𝑟 0 ≤ 𝑟 ≤ 𝑎

(𝑟 − 𝑏2

𝑟
)𝛼 + 𝑏2

𝑟
𝑎 ≤ 𝑟 ≤ 𝑏

(25)

𝑢𝜃(𝑟, 𝜃) =0 (26)

where:
𝛼 =

(𝜆1 + 𝜇1 + 𝜇2)𝑏2

(𝜆2 + 𝜇2)𝑎2 + (𝜆1 + 𝜇1)(𝑏2 − 𝑎2) + 𝜇2𝑏2
(27)

The exact strain field reads:

𝜖𝑟𝑟(𝑟, 𝜃) =

{

(1 − 𝑏2

𝑎2
)𝛼 + 𝑏2

𝑎2
0 ≤ 𝑟 ≤ 𝑎

(1 + 𝑏2

𝑟2
)𝛼 − 𝑏2

𝑟2
𝑎 ≤ 𝑟 ≤ 𝑏

(28)

𝜖𝜃𝜃(𝑟, 𝜃) =

{

(1 − 𝑏2

𝑎2
)𝛼 + 𝑏2

𝑎2
0 ≤ 𝑟 ≤ 𝑎

(1 − 𝑏2

𝑟2
)𝛼 + 𝑏2

𝑟2
𝑎 ≤ 𝑟 ≤ 𝑏

(29)

𝜖𝑟𝜃(𝑟, 𝜃) =0 (30)

In the numerical model we consider a square plate with a side length 𝐿 = 2. The exact displacement field is imposed on the
boundary of this plate (see Figure 5). To assess the convergence rate of the numerical methods we evaluate the error in the
energy norm, it is defined as follows:

||𝑒|| =
(

∫
Ω

(𝜖 − 𝜖) ∶ 𝐶 ∶ (𝜖 − 𝜖) 𝑑Ω
)

1
2

(31)

where: Ω = Ω1 ∪ Ω2, 𝜖 is the exact strain field, 𝜖 is the strain field obtained thanks to the numerical methods and 𝐶 is the
elasticity tensor. We also define the relative energy norm error percentage as:

||𝜂|| = 100% ×
(∫Ω(𝜖 − 𝜖) ∶ 𝐶 ∶ (𝜖 − 𝜖) 𝑑Ω

∫Ω 𝜖 ∶ 𝐶 ∶ 𝜖 𝑑Ω

)
1
2

(32)

FIGURE 6 Numerical methods benchmarked in this study: a) the FEM with a mesh conforming to the discontinuity, b) the
AFEM, c) the non-conforming FEM (the colour of the dots corresponds to the material properties used at the integration points
of the elements)

4.2 Numerical results and discussions
The performances of the AFEM are investigated and compared with two numerical methods: the classical FEM where the mesh
conforms to the material interface (see Figure 6a) and the so-called non-conforming FEM (see Figure 6c). The comparisons are
drawn for triangular and quadrilateral elements. The evolution of the relative energy norm error ||𝜂|| with the element size ℎ
is plotted in Figure 7. The optimal convergence rate of linear FEs in the energy norm is known to be 158. It can be observed in
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Figure 7 that this theoretical rate is indeed reached by standard FEs (i.e., the elements denoted T3 and Q4). The convergence
rate of the non-conforming FEM is approximately 0.5 which is in accordance with previously reported results23,31. The AFEM
converges monotonically at the same rate. To gain further insight on these results, the spatial distribution of energy error is

FIGURE 7 Rate of convergence in the energy norm for the bimaterial problem with the soft inclusion material properties:
𝐸1 = 1, 𝜈1 = 0.25, 𝐸2 = 10, 𝜈2 = 0.3

depicted in Figure 8 for the meshes with quadrilateral elements of size h=0.05. As expected, the highest error levels are located
at the vicinity of the interface where the strain gradients are maximum. In this zone, the error induced by the AFEM is higher
than the one of the FEM and the non-conforming FEM. The latter nevertheless introduces a larger pollution error in the inclusion
where the expected constant strain field is poorly approximated. It also appears that the FEM outperforms the non-conforming
FEM and the AFEM everywhere in the domain. The previous observations hold true with other element sizes, as well as with
triangular elements. The sole results depicted in Figure 7 would suggest that the non-conforming FEM is more accurate than the
AFEM. This assertion actually depends on the stiffness ratio between the inclusion and the matrix. Indeed, the poor ability of
the non-conforming FEM to model the constant strain in the inclusion makes it less efficient than the AFEM if a stiffer inclusion
is modelled. To illustrate this point, the bimaterial boundary value problem is repeated with the following material properties:
𝐸1 = 200, 𝜈1 = 0.25 in Ω1 and 𝐸2 = 1, 𝜈2 = 0.3 in Ω2. Such a stiffness contrast is typical of carbon fibre reinforced plastics see,
e.g.,59. This set of material properties will be called hard inclusion hereafter. With these material properties the AFEM performs
better than the non-conforming FEM, see Figure 9. We also notice that the use of the non-conforming FEM now induces higher
error levels than the FEM and the AFEM, not only in the inclusion but also in the rest of the domain, see Figure 10.
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FIGURE 8 Error in the energy norm for quadrilateral meshes of size ℎ = 0.05 with the soft inclusion material properties:
𝐸1 = 1, 𝜈1 = 0.25, 𝐸2 = 10, 𝜈2 = 0.3, a) FEM (with Q4 elements), b) AFEM (with AQ4 elements), c) non-conforming FEM
(with CQ4 elements)

FIGURE 9 Rate of convergence in the energy norm for the bimaterial problem with the hard inclusion material properties:
𝐸1 = 200, 𝜈1 = 0.25, 𝐸2 = 1, 𝜈2 = 0.3

5 EFFECTIVE STIFFNESS OF HETEROGENEOUS MATERIALS

Depending on the quantity of interest, one may accept a moderate error on the local field, as long as the effective properties fall
within the expected accuracy. Thus, in this next numerical setup we now examine an homogenization problem.



S. ESSONGUE ET AL 11

FIGURE 10 Error in the energy norm for quadrilateral meshes of size ℎ = 0.05 and the hard inclusion material properties:
𝐸1 = 200, 𝜈1 = 0.25, 𝐸2 = 1, 𝜈2 = 0.3: a) FEM (with Q4 elements), b) AFEM (with AQ4 elements), c) non-conforming FEM
(with CQ4 elements)

5.1 Problem description
Numerical homogenization is a way to derive the macroscopic properties of heterogeneous materials based on computations
performed at the microscopic scale. While several quantities can be extracted from the microscopic computations, the reaction
forces on the boundary of the microscopic cell may suffice to derive its effective macroscopic properties60. To investigate the
performances of the AFEM, we thus submit a square cell comprising seven inclusions to a simple shear loading and measure the
associated reaction force. Comparisons are drawn for triangular and quadrilateral elements. Dirichlet boundary conditions are
used to generate the loading. Let 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) be the displacement fields in directions 𝑥 and 𝑦 respectively, the boundary
conditions write: 𝑢(𝑥 = 0) = 𝑣(𝑥 = 0) = 𝑢(𝑥 = 𝐿) = 0 and 𝑣(𝑥 = 𝐿) = 1, see Figure 11. The side length of the square domain

FIGURE 11 Microscopic cell clamped on one side and submitted to a vertical displacement on the other side

is 𝐿 = 10 and plane strain conditions are assumed. The material properties of the inclusions and the surrounding material are:
𝐸1 = 10, 𝜈1 = 0.2 and 𝐸2 = 1, 𝜈2 = 0.3 respectively. This set of material properties will be called hard inclusion hereafter.
The locations of the inclusions as well as their radius are given in Table 2. The accuracy of the AFEM is compared to those
of the FEM and the non-conforming FEM. To illustrate the use of these strategies, the shear strain field obtained with meshes
comprising approximately the same number of degrees of freedom is plotted in Figure 12. The relative error in reaction force is
used to compare the numerical methods mentioned above. It is defined as follows:

||𝑒|| = 100% ×
𝑓𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑓𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
(33)
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TABLE 2 Location and radius of the inclusions

inclusion coordinates of the center {x,y} radius
1 {5.2, 3.7} 1.5
2 {8.0, 5.5} 1.0
3 {2.0, 2.2} 1.4
4 {8.2, 1.8} 1.1
5 {5.0, 1.0} 0.7
6 {3.0, 7.3} 2.1
7 {7.0, 8.4} 0.8

FIGURE 12 Shear strain field within the microscopic cell with the hard inclusion material properties: a) FEM (6798 DOF), b)
AFEM (5000 DOF) and c) non-conforming FEM (5000 DOF)

where 𝑓𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 is the exact reaction force and 𝑓𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 is the reaction force obtained with the numerical methods. The "exact"
reaction force is estimated using an overrefined Q4 mesh with 7 million degrees of freedom.

5.2 Numerical results and discussions
The evolution of the relative error in reaction force with mesh refinement is plotted in Figure 13. The AFEM ability to obtain
the exact reaction force is notably influenced by the choice of the parent element, i.e., triangular or quadrilateral, which departs
from the observations made in the previous section: the use of augmented triangular or quadrilateral elements provided similar
error levels in the energy norm for a given element size (see Figure 7 and 9). The example investigated here emphasizes the
superior accuracy of the AQ4 over the AT3. The solutions obtained with the AFEM appears to be softer than the exact solution,
i.e., the reaction forces are systematically underestimated when the microstructure is submitted to a given displacement. This
differs from the FEM which is proven to overestimate the stiffness see, e.g.,48 p.188. The microstructures modelled with the
non-conforming FEM are also overly stiff and the associated results are systematically less accurate than those obtained with
the FEM or the AFEM. One also notices that the FEM outperforms the AFEM when triangular elements are considered but
this is no longer the case with quadrilateral elements where the AFEM predictions are on par with the FEM results, see Figure
13. As revealed in the previous section, the relative performances of the AFEM and the non-conforming FEM depend on the
ratio of material properties at the weak discontinuity. For the comparisons to be complete, we thus repeated the microstructural
problem with the following properties: 𝐸1 = 1, 𝜈1 = 0.2 and 𝐸2 = 10, 𝜈2 = 0.3 respectively. This set of material properties is
called soft inclusion. The AFEM is now observed to be moderately less accurate than the non-conforming FEM, see Figure 14,
and the latter appears to perform as well as the FEM in this case.
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FIGURE 13 Evolution of the relative error in reaction force with mesh refinement with the hard inclusion material properties

6 CONDITIONING ISSUES

The use of the XFEM to model weak or strong discontinuities may result in a poor conditioning of the linear system of equations
to be solved. Indeed, the condition number of XFEM matrices deteriorates severely as discontinuities get close to a node,
see, e.g.,22. As a result, tackling XFEM problems with iterative solvers imposes to use both classical preconditioners (such as
incomplete LU) and XFEM-tailored ones61,22. The aim of this section is to assess how sensitive is the AFEM to the position of
a weak discontinuity within an element. To do so, condition numbers of stiffness matrices arising from the use of the AFEM are
compared with those obtained with the FEM.

6.1 Problem description
The numerical experiments presented in this section are inspired from the ones performed in22. A triangular domain that embeds
a weak discontinuity is considered. The weak discontinuity splits the triangular domain into two elastic and isotropic domains :
domain 1 whose material properties are 𝐸1 and 𝜈1 and domain 2 with material properties 𝐸2 and 𝜈2 , see Figure 15.

This situation is modelled with the standard FEM and the AFEM. The FEM mesh is made of 2 elements (a Q4 and a T3) and
the resulting assembled stiffness matrix is 10×10. A single augmented triangular element (AT3) models the whole triangular
domain, resulting in a 6×6 stiffness matrix. The position of the discontinuity is parametrised by the value 𝑦𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 ∈ ]−1,+1[.
The values −1 and 1 are excluded from the interval since they would lead to the generation of a zero-volume element with the
FEM and a zero-volume subdomain with the AFEM. One should simply use a classical triangular element (T3), embedding
no weak discontinuity, to handle this situation with the aforementioned methods. The stiffness matrix obtained with the FEM,
𝐾𝐹𝐸𝑀 , has three zero eigenvalues since three rigid body motions are possible. The same holds true for the AFEM stiffness
matrices 𝐾𝐴𝐹𝐸𝑀 . In order to determine the condition number - 𝜅 - of these matrices, we compute their eigenvalues, rank them
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FIGURE 14 Evolution of the relative error in reaction force with mesh refinement with the soft inclusion material properties

FIGURE 15 Triangular domain split by a weak discontinuity

in descending order and suppress the three expected zero eigenvalues. This is formally expressed by the following equations:

𝜅𝐹𝐸𝑀 =
1𝑠𝑡𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝐾𝐹𝐸𝑀 )
7𝑡ℎ𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝐾𝐹𝐸𝑀 )

𝜅𝐴𝐹𝐸𝑀 =
1𝑠𝑡𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝐾𝐴𝐹𝐸𝑀 )
3𝑟𝑑𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝐾𝐴𝐹𝐸𝑀 )

(34)

6.2 Numerical results and discussions
The evolution of the condition number with the position of the discontinuity are plotted in Figure 16. Two sets of material
properties are investigated and we compare the results obtained with the FEM and the AFEM. The curves plotted in Figure 16
are discontinuous at 𝑦𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 = 0. It corresponds to a change of the shape functions describing the displacement field on both
sides of the weak discontinuity. Indeed, when 𝑦𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 > 0, domains 1 and 2 are a triangle and a quadrilateral, respectively,
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but it is the opposite as soon as 𝑦𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 < 0. When 𝑦𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 = 0, a degenerated element is created: the quadrilateral
BCED becomes a triangle since nodes E and C are superimposed. No specific procedure was needed to handle this case and
it does not severely deteriorate the condition numbers. The main result of these numerical experiments is that the condition
number of AFEM matrices is systematically lower than the one of FEM matrices. Hence, there is no need to develop specific
preconditioners in order to solve AFEM problems with iterative solvers.

FIGURE 16 Evolution of the condition number with the position of the weak discontinuity, for two sets of material properties
(each curve is made of two hundred thousand regularly-spaced points)

7 CONCLUSIONS

The ability of the AFEM to model weak discontinuity surfaces in 2D has been thoroughly investigated. To make this investigation
as complete as possible, triangular and quadrilateral elements were used, the ratio of elements sizes between the coarsest and
the finest meshes was systematically greater than ten, the error in the energy norm as well as the error in reaction forces were
considered and the contrast of material properties at the weak discontinuity was varied. The performances of the AFEM were
compared with the ones of the non-conforming FEM and the FEM. The latter is known to be optimally convergent for the set of
problems tackled in this study. The convergence rate of the AFEM in the energy norm was found to be suboptimal:(ℎ0.5) instead
of (ℎ). Our study suggests that the observed loss of convergence is caused by the violation of the interelement compatibility
induced by the use of augmented elements. Indeed, this incompatibility is the most significant difference between the FEM and
the AFEM.
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The non-conforming FEM shares the same convergence rate as the AFEM. One cannot claim superiority of one method over
the other. Indeed, their relative performances are notably impacted by the stiffness ratio of the materials at the weak discontinuity.
The non-conforming FEM was found to be more accurate than the AFEM if soft inclusions embedded in a harder matrix are
modelled. On the other hand, the AFEM is of superior accuracy when stiff fibres surrounded by a softer matrix are modelled. A
noticeable advantage of the AFEM over the non-conforming FEM is that it naturally allows to model the transition from a weak
discontinuity to a strong one.

One of the most significant findings to emerge from this study is that augmented quadrilateral elements (AQ4) can provide
results as accurate as the FEM in homogenization problems, see Figure 13. The AFEM thus enjoys the flexibility of the XFEM in
dealing with discontinuities independently of the mesh while greatly lowering its complexity: it needs neither additional degrees
of freedom nor blending elements and makes use of standard quadrature schemes.

In light of the observed levels of error in the energy norm at the vicinity of weak discontinuities, the ability of the AFEM to
model non-linear interfacial phenomena is questionable. The AFEM has already been successfully used to simulate fibre–matrix
interface debonding36 but it is believed that these aspects deserve further investigations.

Possible extensions of the AFEM include the modelling of moving weak discontinuities such as encountered in Stefan prob-
lems. The AFEM is an ideal candidate to tackle these situations for at least two reasons: the imposition of boundary conditions
on the interface is trivial (see equations (18) and (19)) and, thanks to the condensation process, the size of the system of linear
equations is unaffected by the location and the number of weak discontinuities. Our study does not allow to rigorously estimate
the convergence rate of the AFEM when applied to (time-dependent) Stefan problems since we have only considered (time-
independent) elliptic partial differential equations (PDEs). Nevertheless, we believe that the same convergence rate as the one
in this study should be observed, if the AFEM implementation follows the guidelines proposed by Belytschko and co-workers
for the XFEM62.
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