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Abstract

In a randomized study, leveraging covariates related to the outcome (e.g. disease status) may 

produce less variable estimates of the effect of exposure. For contagion processes operating on 

a contact network, transmission can only occur through ties that connect affected and unaffected 

individuals; the outcome of such a process is known to depend intimately on the structure of the 

network. In this paper, we investigate the use of contact network features as efficiency covariates 

in exposure effect estimation. Using augmented generalized estimating equations (GEE), we 

estimate how gains in efficiency depend on the network structure and spread of the contagious 

agent or behavior. We apply this approach to simulated randomized trials using a stochastic 

compartmental contagion model on a collection of model-based contact networks and compare 

the bias, power, and variance of the estimated exposure effects using an assortment of network 

covariate adjustment strategies. We also demonstrate the use of network-augmented GEEs on a 

clustered randomized trial evaluating the effects of wastewater monitoring on COVID-19 cases in 

residential buildings at the the University of California San Diego.
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1. Introduction

Contact networks capture the structure of possible pairwise transmissions (represented 

by network edges) in a population of actors (represented by network nodes) for various 

types of contagion processes; these may describe the spread of pathogens, behaviors, or 

ideas. Transmission on the network can only occur through edges that connect exposed 

and unexposed individuals; given that the structure of the network constrains pairwise 

transmissions, the outcome of such a process must depend on this structure. In general, 

the relationship between network structure and contagion processes can be complex (Frank 

and Strauss, 1986; Newman, 2010); in investigation of exposure effects from observational 

data, one must consider that network properties may confound such effects. Furthermore, 

knowledge of the degree to which network features predict outcome can also improve 

efficiency of estimation.

This paper investigates the question of the degree to which incorporating information about 

contact network structure and summaries of contagion process outcomes at baseline improve 

the accuracy of estimates of exposure effects on outcomes that reflect a contagion process 

operating on a network. Regardless of whether a study is observational or randomized, as 

long as individual outcomes are correlated only within discrete and independent clusters 

but not across them, estimates of the treatment or exposure effect that ignore correlation 

may still be unbiased—provided that all confounding factors are measured and appropriately 

modeled in the observational setting. Consistent estimation of the variance must adjust for 

within-cluster outcome correlation (Rosenbaum, 2002; Murray, 1998; Eldridge and Kerry, 

2012). Of note, in both randomized and observational studies, contact network information 

can improve statistical efficiency of estimation (Chemie et al., 2014).

To accommodate the inter-cluster correlation of outcomes, we make use of Generalized 

Estimating Equations (GEEs) (Zeger and Liang, 1986) that provide estimates of the 

average marginal treatment effect across all clusters in cluster randomized trials or in 

settings characterized by a correlation across groups of individuals (Murray, 1998). In this 

manuscript, we consider the augmented GEE (Prague et al., 2016), which allows for the 

use of a user-defined outcome model to improve estimation efficiency. The variance of 

this augmented estimate decreases asymptotically if the covariates included in the outcome 

model predict the outcome. Other semiparametric approaches with potential efficiency gains 

have been developed, such as targeted maximum likelihood estimation (TMLE) for clustered 

data (Balzer et al., 2017). Although our investigation focuses on bias and efficiency using 

the augmented GEE, the issues we discuss are relevant for the TMLE approach as well.

The paper is structured as follows. Section 2 provides some background on networks and 

presents the details of the estimation procedure, including how to incorporate contact 

network structure in the estimation process. Section 3 demonstrates the ability of our 

methods to evaluate the potential gains in efficiency under different conditions in a 

simulation study that considers a range of network types. Section 4 considers a data example 

from a clustered randomized trial conducted at the University of California San Diego. 

Section 5 provides concluding remarks.
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2. Methods

2.1 Networks

This section provides background on network concepts and the notation used throughout 

this paper. We assume that the true data generating mechanism is a simple susceptible-

infected (SI) contagion process spreading through a network. We identify a network as a 

collection of nodes, such that outcomes within the network are correlated while outcomes 

across networks are independent. Complete data on network and contagion processes are 

not generally observable; but even when they are not, it may nevertheless be possible to 

characterize certain features of processes and/or networks.

A simple network G consists of set of nodes N = 1, …, n  and edges E ⊆ N × N. The 

placement of edges may be described by an n × n symmetric adjacency matrix e, where 

element eij = eji is 1 if an edge exists between nodes i and j and is 0 otherwise. The degree 

of node i, denoted as ki, is the number of edges that are adjacent to it: ki = ∑jeij. Mean 

neighbor degree of node i, ∑j
eijkj
ki

, is the unweighted average of a node’s neighbors’ degrees. 

Degree assortativity is a composite measure of mean neighbor degree across the network, 

defined as the Pearson correlation coefficient of degrees of adjacent nodes taken over all 

network edges (Callaway et al., 2001), which may be calculated as follows. The concept of 

excess degree is often used in analytical treatment of network models; the excess degree of a 

node is defined as one less than the (actual) degree of the node. Let the marginal probability 

of a node having excess degree k be qk, and let the probability of this node connecting with 

a node with excess degree k′ be pkk′. Degree assortativity can then be calculated for a given 

network using a sum across all degree pairs (Newman, 2002) as 1
σq

2 ∑kk′kk′ pkk′ − qkqk′ , where 

σq
2 is the variance of the excess degree distribution for the network. A connected component 

is a maximal subset of nodes for which a path exists between each pair of nodes. A path 
exists between two nodes i and j if and only if there exists a subset of edges Eij ⊆ E in the 

network that connect nodes i and j. Let C be the number of components in the network, 

and node i belongs to the connected component with label ci ∈ 1, …, C , where component 

labels are assumed to be ordered from largest to smallest. The largest connected component 

(LCC) contains ∑i I ci = 1  nodes. The mean component size is n/C.

The contagion status of each node or that of the node’s network neighbors might be 

observable at baseline. We describe a person who has been impacted by the contagion 

process as affected (e.g., infected if the process is infectious or impacted if the process 

alters behavior), and we use Ii(t) to denote the binary process outcome for node i at time t. 

One simple metric of contagion status is the number of affected neighbors at baseline for 

node i, ∑jeijIj(0), or the number of affected individuals at baseline belonging to the same 

component as a given node ∑j I ci = cj Ij(0). Another metric is the length of the shortest path 

between each node i and each infected individual j in the network at baseline. The shortest 

path length between nodes i and j is dij, where dij: = ∞ when no path exists between the 

two nodes. The shortest path length from the closest node affected at baseline is minj dij. 

The sum of the inverse path lengths to node i is ∑j dij
−1. Some of these metrics may 
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be difficult to determine in practice given limited knowledge about a network or process 

outcomes; our interest lies in examining whether their inclusion in analyses yields strong 

enough improvements in estimation to justify the efforts necessary to gather the required 

data. Table 1 summarizes these network features.

2.2 GEE-based estimation of the effect of a randomized exposure on outcome

Generalized estimating equations (GEE) provide a general approach for analyzing correlated 

outcomes that: i) is more robust to variance structure misspecification and relies less on 

parametric assumptions than the standard likelihood methods, and ii) provides population 

level conclusions on the effect of an exposure on an outcome. This section reviews the 

augmented GEE described in (Prague et al., 2016) and describes incorporation of contact 

network structure in the estimation process.

Consider an randomized study of a contagion process that consists of k = 1, …, m clusters 

with i = 1, …, nk individuals per cluster, and ∑kni = n is the total number of individuals in 

the study. The binary outcome for individual j in cluster i, Y ij, is 1 if the individual is 

affected by the process by the end of the study, otherwise Y ij = 0. Yi = Y i1, …, Y ini
⊤ denotes 

the associated vector of outcomes in cluster i. We assume that there is no mixing across 

clusters and that outcomes are independent across them. We consider a setting where some 

of the clusters are randomized to a specific treatment, intervention, or exposure while 

others are not; we use Ai = a to denote an exposure indicator such that a = 1 for the 

exposed clusters and a = 0 for the unexposed (control) clusters. In Figure 1, we show a 

schematic of such a trial. The outcome can be modeled as a function of exposure such 

that E Yi = μi β, Ai = ℎ−1 β0 + βAAi i = 1, …, n
 with a link function h. The general form of a 

classical GEE is U(β) = ∑i = 1
m Di

TVi
−1 Yi − μi β, Ai , where Di = ∂μi β, Ai

∂βT  is the design matrix, 

Vi is the covariance matrix equal to ϕRi
1/2C(α)Ri

1/2, Ri a diagonal matrix with elements 

var Y ij , ϕ is the dispersion parameter, and C(α) is the “working” correlation structure 

with non-diagonal terms α. Parameters are estimated by setting U(β) to 0. Because our 

goal is to estimate the effect of exposure, our causal parameter of interest βA is given as: 

ℎ−1 E(Y ∣ A = 1) − ℎ−1 E(Y ∣ A = 0) .

We assume each individual i in cluster j to have a set of P cluster-level and 

individual-level covariates Xij = Xij
(1), …, Xij

(P ) ⊤, with all covariates represented compactly 

as Xi = Xi1, …, Xini
⊤. Some of the covariates may relate to the network in which the 

individual is embedded and are described in the previous subsection. Even when the effect 

of intervention is not confounded, such as in a randomized setting, there exist chance 

imbalances in the post-randomization distribution of covariate values across treatment arms. 

It is then possible to improve efficiency of estimation by introducing covariate adjustment 

to the standard GEE framework by augmenting the GEE itself. This requires specification 

of an outcome model (OM) Bi Xi, Ai = a, ηB = Bij Xi, Ai = a, ηB j = 1, …, ni which is an arbitrary 

function of Xi for each exposure level, and ηB are nuisance parameters to be estimated. 

Estimation is most efficient if the OM correctly models the probability of the outcome 
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of interest given baseline covariates E Y ij ∣ Xi, Ai = a . We will call the OM “correctly 

specified” as it corresponds to the true data generation process. Equation 1 incorporates 

these additional terms in the estimating function.

0 = ∑
i = 1

m
Di

TVi
−1 Yi − μi β, Ai

− ∑
a = 0, 1

πa(1 − π)1 − aDi
TVi

−1 Bi Xi, Ai = a, ηB − μi β, Ai = a
(1)

The variance of β is estimated by using an empirical or “sandwich” estimator, which is also 

robust in the sense that it provides valid standard errors even when the assumed covariance 

structure is not correct. Given the OM, the exposure effect is represented by the vector of 

coefficients β.

In this paper, one can estimate the OM as E Y ij ∣ Xi, Ai = a  based on some regression model, 

such as a simple GLM. Due to potential treatment-covariate interaction, we fit separate OM 

models for the two treatment arms. In our simulation study, we will consider (1) augmented 

GEEs adjusting for each of the thirteen covariates listed in Table 1 alone, (2) an augmented 

GEE adjusting for all covariates, and (3) an augmented GEE employing a stepwise selection 

of relevant network network covariates Xi.

In settings with missing data, one can include an additional propensity score (PS) term to 

account for data missingness. Including both the OM and the PS yields the doubly-robust 

(DR) GEE, which is consistent and asymptotically normal (CAN) if either the OM or PS 

are correctly specified (Prague et al., 2016). Our investigation focuses solely on the use of 

network covariates in the augmented GEE, but this approach can be generalized to the DR 

GEE for studies with missing data.

3. Simulation Study

In this section, we describe simulation of a contagion process on a network in a randomized 

study setting to estimate the effect of an intervention on that process. We use this simulation 

study to investigate the usefulness of our method to reduce variance of estimates of effects 

of exposure. As before, we assume that individuals are nested within a collection of 

independent clusters, each with its own contact network structure, and that the outcome of 

interest arises from a contagion process propagating through network ties. We also assume 

that the intervention will reduce the rate of the contagion by varying amounts.

We first describe the network generation for each cluster and the contagious spreading 

processes as well as the effect of the exposure (or intervention) on the latter. To estimate the 

average exposure effect, we apply the augmented GEE described above and compare results 

to a standard GEE and the effect of the simulation conditions on their relative efficiencies.

Simulated Contact Networks

The network generation model in our simulation study is the degree-corrected stochastic 

block model with degree correlation. Because of the complexity of this model, it is not 
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possible to analytically obtain an estimate of the improvement in efficiency resulting from 

incorporation of network information in analyses. The original stochastic block model 

(Anderson et al., 1992) assumes that, in a given network, each node i = 1, …, n belongs to 

only one block bi in a partition of nodes B = 1, …, B ; the set of node memberships is 

given by the vector b = b1, …, bn . In this model, the probability of an edge between nodes i 

and j depends only on their block membership P eij = 1 = pbibj. An extension of this model, 

the so-called degree-corrected stochastic block model, allows each node i to have arbitrary 

expected degree θi: = E ki , where ki is the observed degree of node i (Karrer and Newman, 

2011). The likelihood associated with this model assumes that the mean number of edges 

νij between nodes i and j is the product of the expected degrees of nodes i and j (θi and θj, 

respectively), multiplied by the expected amount of mixing ωbi, bj between the blocks to which 

nodes i and j belong. The full likelihood of this model is

P (e ∣ θ, ω, b) = ∏
i < j

νij
eij

eij!exp −νij × ∏
i

1
2νii

eij/2

eij/2 ! exp − 1
2νii , (2)

where νij = θiθjωbi, bj. The model assumes that eij is Poisson distributed, allowing for multiple 

edges between pairs of nodes, which converges to a simple Bernoulli network (having binary 

edges) for sparse networks in the limit n ∞ (Karrer and Newman, 2011). The 1/2 terms in 

the second half of the likelihood account for the fact that self-edges (edges from one node to 

itself) are counted twice by this indexing.

In addition to block structure and node degree, networks may vary in the extent to which 

degrees of adjacent nodes are correlated (Newman, 2002). One metric for quantifying 

this property is degree assortativity, which was defined above. Degree assortativity can be 

varied in the network generating process by performing degree assortative rewiring, which 

increases or decreases the assortativity in the network while preserving block structure and 

each node’s degree (Xulvi-Brunet and Sokolov, 2004; Rao et al., 1996). The details of this 

algorithm are given in the Appendix.

BLOCK STRUCTURE—Each network/cluster in our simulation comprises of eight blocks. We 

simulate networks using two types of block structure: random and heterogeneous. For a 

complete description of the block structures used, see Section 2 of the Supplementary 

Material. A diagram of these structures is shown in Figure 2.

Contagion Process

We simulate a contagion process (Pastor-Satorras et al., 2015) by employing a stochastic 

compartmental SI (susceptible-infectious) model (Anderson and May, 1991), shown in 

Algorithm 1. Initially, S% of all nodes are selected to be affected by the contagion process 

(capable of transmitting) at random across all study clusters/networks i = 1, …, m. After 

initiation, affected node j in network i selects zij of their kij neighbors at random and 

transmits to them with probability p0, where zij is the node’s affectivity, which may vary 

between 0 and kij. Zhou et al. showed that the properties of spreading processes on networks 

can depend strongly on affectivity (Zhou et al., 2006). Unit affectivity and degree affectivity 
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occur when an individual attempts to affect either one partner (selected at random) or all 

partners, respectively, per unit time. (Illustrative diagrams of the contagion process over time 

are given in Section 1 of the Supplementary Material.) This process is repeated until B% 

of the population is affected by contagion, which defines the baseline, or earliest time an 

infection is assumed to be observed, and can be included in the estimation procedure without 

risk of bias in the exposure effect estimate. Half of the clusters are exposed (Ai = 1) and 

half unexposed (Ai = 0), at random. The contagion process continues for T time steps with 

a per-infected-node probability to infect a susceptible network neighbor p0 in unexposed 

clusters and p1 in exposed clusters. The contagion process ends at time T.

Algorithm 1:

Stochastic Compartmental Contagion Process

1 S% of all nodes are selected uniformly at random to be initially affected.

2 Until B% population incidence:

   For each affected node j (in random order):

    a) Successively select zij neighbors j1, …, jzij.

    b) If neighbor j′ ∈ j1, …, jzij  is already affected, do nothing. If not, affect with probability p0.

3 Repeat T times:

   For each affected node j (in random order):

    a) Successively select zij neighbors j1, …, jzij.

    b) If neighbor j′ ∈ j1, …, jzij  is already affected, do nothing. If not, affect with probability:

      p0 for those in unexposed clusters.

      p1 for those in exposed clusters.

Simulation Setting Parameters

Each simulated study consists of a contagion process propagating on the networks associated 

with m = 48 clusters of size 200, totaling 9600 individuals. The initial seed percentage S% is 

set to 2%, and the baseline discovery B% is set to 15%. For each scenario, we perform 1000 

iterations of the simulation.

The number of clusters was chosen to be roughly comparable to cluster randomized 

trials investigating varied interventions such as influenza vaccines (Loeb et al., 2016) 

(52 clusters), hygiene programs (Freeman et al., 2012) (135 clusters over three treatment 

arms), and financial services (Ksoll et al., 2016) (46 clusters).The validity of the GEE 

robust sandwich variance estimates requires an asymptotically large number of independent 

clusters. Thus, it has been suggested that GEEs only be applied when the number of clusters 

exceeds 30 (Hayes and Moulton, 2017). When the number of clusters is small, a variety 

of small-sample bias corrections can be applied (Mancl and DeRouen, 2001; Fay and 

Graubard, 2001; Kauermann and Caroll, 2001). Another alternative are permutation tests, 

which may be used for valid hypothesis testing even if the number of clusters is low. For our 

application, we use the Fay small-sample adjustment (Fay and Graubard, 2001) built into the 

CRTgeeDR R package from Prague et al. (2017).
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SENSITIVITY ANALYSIS AND SCENARIOS—To estimate the sensitivity of estimation performance 

on simulation features, we vary four aspects of the simulation in two ways each: degree 

distribution (Poisson or heavy-tailed log-normal distribution), assortativity (−0.2 and 0.2), 

block mixing structure (random or heterogenous), and infectivity (unit or degree). This leads 

to a total of 24 = 16 scenarios.

CONTAGION PROCESS—The contagion process continues for T = 5 time steps. For simplicity, 

we assume an exposure effect that reduces contagious spread: the probability each affected 

node affects a selected neighbor is p0 = 0.15 in unexposed clusters and p1 = 0.12 in exposed 

clusters. We chose a small effect of intervention so that the power of the trials remains low 

enough to observe changes due to augmentation of the GEE. Due to major differences in 

transmission in scenarios including unit versus degree affectivity, we divide the probability 

of transmission by a constant factor of 9 in all of the scenarios exhibiting degree affectivity. 

This constant was chosen to attain similar levels of power between the unit affectivity 

and degree affectivity scenarios when estimates are obtained from the unadjusted GEE (an 

average of 42.6% for the unit affectivity scenarios and 41.8% for the degree affectivity 

scenarios).

Evaluation of overall approach

PERFORMANCE METRICS—In principle, the randomized setting should be free from 

confounding factors, and the augmented GEE approach should reduce variance in the 

estimation of βA. All GEEs used an exchangeable correlation structure. Based on the 

simulation specifications, we define estimation metrics for the average exposure effect 

βA. For r = 1, …, R replicates, the estimate of exposure effect is denoted β r and the 

estimated standard deviation sd β r . These standard deviation estimates are compared with 

the empirical bootstrap estimates, which are calculated as the standard deviations of all 

estimates β r in the R replicates. Empirical power and coverage are derived from these 

simulation study point estimates and their confidence intervals. Power is based on 0.05 level 

tests of the exposure effect. Coverage is defined as the percentage of replicates for which 

the true value of exposure effect is included in the 95% confidence interval of its estimate. 

Since the contagious spreading rates in unexposed and exposed groups are specified as p0 

and p1 at the node level, the true value for the average exposure effect must be estimated 

through simulation (Woodward, 2001). To estimate the true underlying exposure effect 

βA, we simulate an additional 20,000 clustered randomized trials, each with a uniquely 

generated network satisfying the scenario of interest, and obtain the mean treatment effect, 

averaged over all trials. We define improvement in estimation efficiency as the percent 

reduction in root mean squared error (RMSE) for each covariate set in the outcome model, 

comparing the augmentation adjustment RMSEadj to that of the unadjusted GEE (RMSEGEE):

Improvement : = 100 × 1 − RMSEadj

RMSEGEE

. (3)
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Simulation Results

Due to inherent randomness, the covariates included in the outcome model may be 

correlated with the exposure. By augmenting the GEE with such covariates, we can adjust 

for that imbalance and obtain higher efficiency. Bias in estimation, average model standard 

error, empirical standard error, RMSE reduction, power, and coverage are provided in Table 

2; full simulation results are given in Section 3 in Supplementary Material. Results are 

averaged across the 16 observational scenarios with the standard deviations across scenarios 

shown in parentheses. Averaged across all simulation replications and variants, inclusion of 

covariates in outcome and propensity score models led to gains in efficiency. We also find 

that a single covariate, the number of affected nodes in the same component as the node at 

baseline (X(10)), provides a reduction in RMSE comparable to or higher than that achieved 

by the variable selection approach.

NETWORK FEATURE SELECTION—The covariates selected in a stepwise procedure for inclusion 

in the outcome model vary across the different simulated datasets. To assess which 

covariates are most useful for adjustment in the outcome model, we measure the frequency 

of covariate inclusion and its variability by simulation scenario (see Figure 3). Baseline 

status (X(0)), degree (X(1)) and covariates related to contagion at baseline (covariates X(9) 

and X(11)) are included most often; others are selected in a range of frequencies.

SENSITIVITY ANALYSIS RESULTS—Features of the simulated contagion process affect 

performance metrics such as power and improvement in RMSE. To evaluate the sizes 

of these effects, we used simple linear regression treating the RMSE as the outcome 

and simulation features (i.e., mean degree, degree distribution, assortativity, block mixing 

structure, infectivity mode, and infection prevalence at baseline) as covariates; these are 

coded as binary variables. The fitted coefficients represent the metric change when changing 

simulation features, holding all other simulation features constant. The percent improvement 

in RMSE is shown in Table 3. For example, holding all other simulation features constant 

and using stepwise model selection, a contagion process exhibiting degree affectivity shows 

an additional RMSE reduction of 7.2 percentage points compared to a contagion process 

exhibiting unit affectivity. Using covariate X(9) as a predictor yields much larger reductions 

in RMSE if the contagion exhibits degree affectivity instead of unit affectivity. This suggests 

that the contagion status of a node’s neighbors can be quite predictive of the risk of the node 

becoming affected, especially in the degree affectivity case. Table 4 shows analogous results 

for changes in power, holding all other simulation features constant.

4. Application to Clustered Randomized Trial

In the following section, we demonstrate the application of our method to a CRT conducted 

at the University of California San Diego (UCSD).

Wastewater Monitoring Cluster Randomized Trial

Wastewater monitoring paired with automated reporting systems can be utilized for 

fore-casting COVID-19 cases and preventing outbreaks. Here, we consider the clustered 

randomized trial component of the wastewater surveillance program implemented at UCSD 
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(Karthikeyan et al., 2021). In this program, wastewater monitors were placed inside 

manholes associated with selected UCSD residential buildings. Between November 23 and 

December 29, 2020, manholes were randomized to either receive wastewater monitors or 

not. The intervention was also paired with an alert system that notified residents when 

COVID-19 was detected in the wastewater associated with their building.

In keeping with the structure of our simulation example, we define each cluster by a unique 

manhole. Thus, a single cluster is composed of the set of residence buildings associated with 

a single manhole. Each residence building is represented by a single node within the contact 

network associated with its respective cluster. For this simple example, we considered each 

cluster to be a complete (maximum density) network, such that there exists an edge between 

every pair of buildings that reside in the same cluster. In total, we considered 41 manholes, 

and the sizes of manhole-associated clusters ranged between 1 and 7 residence buildings.

During the period of this study, all on-campus UCSD students were mandated to adhere 

to a biweekly testing schedule. We define the outcome of interest as the total number of 

positive COVID-19 tests registered during the period of randomization. During the period 

of randomization, a total of 11930 tests were returned, with 68 of these tests indicating a 

positive COVID-19 result.

Results

In Table 5, we summarize results obtained by augmenting a GEE with a selection of 

the various network features defined in Section 2. The definition of several network 

covariates requires knowledge about the number of cases at baseline, prior to the delivery 

of randomized treatment. As a proxy for this measure, we consider the number of positive 

cases registered from each residence during the three months prior to the introduction of 

wastewater monitoring devices. During this initial baseline period, a total of 20655 tests 

were returned, and 28 showed a positive COVID-19 result.

In addition, we note that because the networks for every cluster was complete, some of the 

network features are identical. A few examples are X(9) and X(10), or X(1) and X(2). We also 

define an additional network covariate, X(13), which is defined as the sum of the total cases 

occurring in neighbors at baseline.

All of the selected network covariates led to significant improvements in variance estimates. 

Particularly of note is the network covariate X(1), the individual-level covariate of node 

degree. In most of our simulated scenarios, X(1) led only to minor improvements in 

efficiency, but in this data example, its associated improvement is significant. This is likely 

due to a higher variance in degree distribution among clusters in the UCSD trial when 

compared to our simulations, where degree distribution was controlled by scenario.

5. Discussion

Spread of a contagious process depends on contact network structure and contagious process 

dynamics. To estimate the marginal effect of exposure on this process, augmented GEE 

methods as described above can be used to reduce the variation of the exposure effect 
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estimate. Even after randomization, chance imbalances in covariates can still exist between 

treatment arms. Through a user-specified outcome model, estimation efficiency can be 

improved by taking these covariate imbalances into account (Stephens et al., 2012).

In settings where network information is available, augmenting the GEE procedure is 

particularly important. The space of possible networks is high-dimensional; hence network 

structure, even when described by summary statistics, can vary widely between clusters, and 

imbalance between treatment arms is almost guaranteed. Furthermore, the degree to which 

differing networks impact individual outcomes also varies. Due to high potential variability 

between treatment arms, the inclusion of relevant network covariates in the augmented GEE 

may lead to significant efficiency gains.

Our focus was investigation of the extent to which power and RMSE in exposure effect 

estimates depend on specific network properties. Adjusting for contact network features and 

baseline contagion improved power and yielded a considerable reduction in RMSE across a 

range of simulation settings.

In our simulation studies, covariates derived from a variety of network features differed in 

their usefulness in reducing exposure estimate variance. They also differed in the degree 

to which collection of the required information would be feasible. Obtaining the degree of 

an individual might be relatively easy to collect in some settings by using a simple survey, 

but the gains we observed from using this covariate were very modest. We found that the 

number of nodes in the component affected at baseline yielded the largest reduction in 

variance; though perhaps more challenging to obtain, this quantity may also be feasible to 

estimate in some important settings, such as infectious disease outbreaks. The number of 

neighbors affected at baseline also yielded large reductions in variance and may be estimated 

under similar settings. While not a network covariate, individual baseline status was selected 

for in the stepwise models 100% of the time, and as a lone augmentation term, still yielded 

significant reductions in variance.

In addition, we applied our method to a real data example from the a clustered randomized 

trial on the efficacy of wastewater monitoring at UCSD. Again, augmentation using a variety 

of network features led to significant increases in statistical efficiency. Notably, one feature 

(X(1)) that did not lead to significant efficiency gains in the simulated scenarios led to 

a large improvement in the data example. While the degree distribution across clusters 

was relatively homogeneous in the simulated scenarios, the complete networks in the data 

example had high variance in degree distributions. Thus, correcting for chance imbalances 

in degree distributions across the treatment and control arms was far more effective in the 

data example. For the data example, we chose to assume complete networks existed within 

each cluster, even though one might imagine more advanced methods of inferring contact 

networks between residence buildings. However, we note that augmentation with network 

features will lead to efficiency gains as long as the network features are imbalanced across 

treatment arms and are also associated with the outcome of interest. Under these conditions, 

the use of estimated contact networks or proxies for network features can still increase 

efficiency.
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This work invites several extensions. Information may be missing or misreported for 

individual outcomes, contact network data, or both; incompleteness of data may lead to 

bias or increased variation in estimating the exposure effect. Methods for addressing missing 

information on both networks and outcomes need to be developed. Although we carried out 

a wide range of simulations, the range of possible scenarios in which the methods might 

be relevant is large and beyond the scope of any single paper to address. Simulation of 

other settings would be useful to help guide randomized studies in which augmentation by 

network features may help improve efficiency of estimation. Appropriate methods still need 

to be developed for observational studies with network-related confounding. Lastly, the SI 

contagion model presented in this work most closely resembles the effect of an educational 

intervention; to model an infectious disease, SIR, SIS, and other compartmental models may 

be more realistic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Appendix

6. Appendix

Degree assortative rewiring.

This is performed by randomly selecting two edges within a block pair and rewiring them, 

as described in Algorithm 2. A diagram of this process is shown in Figure 4. To decrease 

assortativity, the inequality in Step 3 must be reversed. There exist cases where it is not 

possible to obtain high (or low) enough assortativity after specifying the degree of each 

node. When this occurs, we accept the network if assortativity converges to within 10% of 

the desired assortativity, and regenerate the entire network if it does not.

Algorithm 2

Edge Rewiring to Adjust Assortativity

1 Select two blocks bl and bl′ at random.

2 Select two edges (N1,N2) and (N3,N4) at random between blocks bl and bl′.

3 If kN1 − kN2 + kN3 − kN4 > kN1 − kN4 + kN2 − kN3 :

    Remove edges (N1,N2) and (N3,N4)

    Add edges (N1,N4) and (N2,N3)
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Figure 1: 
Six clusters immediately after randomization in an idealized clustered randomized trial. 

Three clusters have been randomized to treatment (blue), and three have been randomized to 

control (white). Each cluster has nine nodes, three of which are already infected at baseline 

and are shaded red. Internal network structure varies between clusters, and differing cluster-

level covariates can be calculated for each cluster. For example, in the fifth (bottom-center) 

cluster, the mean degree is 2, LCC size is 7 (X(5)), and 3 total components are present (X(8)). 

Individual outcomes in separate clusters are independent, as no edges exist between clusters.

Wang et al. Page 15

Obs Stud. Author manuscript; available in PMC 2023 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
The top and bottom rows show the two types of mixing, and the left and right panels show 

the block mixing structure and block mixing matrices, respectively. In all diagrams, the eight 

blocks represent the eight groups of nodes that partition each network/cluster. Panel a shows 

the random block structure, with lines connecting blocks that share edges. Panel b shows the 

corresponding mixing matrix, where the rows and columns represent each block, and color 

shade (see the color bar) represents the fraction of edges shared between members of each 

block. Panels c and d show the block mixing structure and matrices for the heterogeneous 

structure, respectively.
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Figure 3: 
The distribution of the proportion of occasions each covariate is included in the outcome 

model, under a stepwise procedure. The covariates along the x-axis are described in Table 1. 

Blue bars show results for the exposed group, and red bars show results for the unexposed 

group. The middle values represent medians, the bars represent the (25, 75)% quartiles 

across scenarios, and endpoints indicate minima and maxima.

Wang et al. Page 17

Obs Stud. Author manuscript; available in PMC 2023 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
A schematic of degree assortative rewiring. Panel a displays a network, containing nodes 

N1, …, N4. Panel b highlights two edges selected within the same block pair. Panel c shows a 

potential rewiring, which will only occur if rewiring will increase assortativity. In this case, 

rewiring would increase degree assortativity, and panel d displays the rewiring.
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Table 1:

A collection of summaries of the contact network and contagion status at baseline.

X(0): Status of node i at baseline Ii(0)
X(1): Degree of node i ki

X(2): Mean neighbor degree of node i ∑j
eijkj
ki

X(3): Assortativity See text

X(4): Member of LCC I ci = 1
X(5): Size of largest component ∑i I ci = 1

X(6): Mean component size n/C
X(7): Number of components C

X(8): Size of node i’s component ∑j I ci = cj

X(9): Number of neighbors affected at baseline ∑jeijIj(0)

X(10): Number of affected nodes within component at baseline ∑j I ci = cj Iij(0)

X(11): 1/nearest affected path length at baseline minjdij
−1

X(12): ∑j 1/path length to affected j at baseline ∑j dij
−1
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Table 2:

Exposure effect statistics averaged across each simulation characteristic, adjusted for all confounding factors. 

Each row displays a metric, and each column displays an adjustment feature or strategy for the outcome 

model. Standard deviations across scenarios are shown in parentheses. The “None” column corresponds to a 

standard GEE.

None X (0) X (9) X (10) All Stepwise

Bias 0.000 −0.000 −0.000 −0.000 −0.001 −0.000

Estimated SE 0.066 0.042 0.043 0.036 0.035 0.035

Empirical SE 0.068 0.043 0.044 0.039 0.039 0.038

Improvement (%) 0(0) 36(2) 34(10) 43(3) 41(5) 43(5)

Power 42(5) 77(5) 76(11) 87(4) 88(4) 89(4)

Coverage 94(1) 94(1) 94(1) 93(1) 92(1) 92(1)
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Table 3:

Percent improvement in RMSE reduction when changing simulation assumptions. Rows display a simulation 

assumption, and columns display an adjustment feature or strategy. The Intercept value represents the RMSE 

reduction associated with each augmentation term, under the scenario exhibiting unit affectivity, Poisson 

degree distribution, disassortativity, and no community structure.

X (0) X (9) X (10) All Step

(Intercept) 35.0 25.4 39.2 33.1 37.0

Degree vs. Unit Affectivity −1.4 19.1 3.8 8.2 7.2

Log-Normal vs. Poisson −0.5 −2.1 −0.9 2.0 −0.3

Assortative vs. Disassortative 1.4 −0.1 2.6 2.1 2.3

Communities vs. No Communities 2.0 0.2 1.3 4.3 3.9
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Table 4:

Percent increase in power when changing simulation assumptions. Rows display a simulation assumption, and 

columns display an adjustment feature or strategy. The Intercept value represents change in power associated 

with each augmentation term, under the scenario exhibiting unit affectivity, Poisson degree distribution, 

disassortativity, and no community structure.

None X (0) X (9) X (10) All Step

(Intercept) 48.5 84.1 73.0 88.6 87.1 88.2

Degree vs. Unit Infectivity −0.9 −3.0 19.2 3.3 6.2 6.1

Log-Normal vs. Poisson 0.4 0.5 −0.2 0.4 1.6 0.6

Assortative vs. Disassortative −2.7 −1.7 −2.9 −0.1 −1.0 0.5

Communities vs. No Communities −9.4 −9.1 −10.0 −7.0 −4.2 −4.3
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Table 5:

Point estimates, robust sandwich variances, and percent improvements for selected network covariates. Not all 

network covariates listed in Table 1 were included, as many are redundant when applied to complete networks.

β Variance Improvement

Unaugmented −0.691 0.286 NA

X(0) −0.648 0.208 27.4%

X(1) −0.618 0.196 31.5%

X(9) −0.496 0.238 16.7%

X(13) −0.609 0.215 24.9%
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