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A B S T R A C T   

The improvement of horse welfare through housing conditions has become a real issue in recent years and have 
highlighted the detrimental effect of individual housing of horses on their health and behaviour. In this new 
study, we analysed the blood transcriptome of 45 sport horses housed individually that were previously exam
ined for their behaviour and gut microbiota. We performed differential and regression analyses of gene 
expression, followed by downstream bioinformatic analyses, to unveil the molecular pathways related to the 
behavioural changes associated with welfare impairment in these sport horses. We found that aggressiveness 
towards humans was the behavioural indicator the most correlated to blood gene expression and that the 
pathways involved belonged mainly to systemic inflammation. In contrast, the correlations between genes, alert 
postures and unresponsiveness towards the environment were weak. When blood gene expression profiling was 
combined with faecal microbiota of a sub-population of horses, stereotypies came out as the most correlated to 
blood gene expression. This study shows that aggressiveness towards humans and stereotypies are behavioural 
indicators that covary with physiological alterations. Further studies are needed regarding the biological cor
relates of unresponsiveness to the environment and alert postures.   

1. Introduction 

The improvement of horse welfare through housing conditions has 
become a real issue in recent years [1–4]. These recent studies, in 
addition to others published over the last 20 years, have highlighted the 
detrimental effect of individual housing of horses on their health and 
behaviour, mainly due to restrictions regarding social interactions [5], 
movements [6] and continuous grazing [7]. All three have been shown 
to be natural needs in a recent meta-analysis [8]. 

Because welfare is a multidimensional concept including the inter
action between physical and psychological components, multidisci
plinary approaches are required to give the best possible account of the 
welfare state of animals [9]. In particular high-throughput molecular 
technologies provide biological signature of the effects of negative or 
positive environmental conditions and may help to decipher the con
tributions of different physiological systems [10]. Although such 
“omics” technologies have been used to characterise stress responses in 
various farm animal species such as pig (eg Refs. [11,12]), chicken (eg 

Refs. [13,14]) or dairy cattle (eg Refs. [15,16]), their use in horse for 
welfare-related traits are scarce. Along these lines, we and others have 
recently used gut microbiota profiling [17–20] and blood transcriptomic 
signatures [21–23] or integrative genomics [24] to complement 
behavioural indicators of poor welfare in horse. 

In this new study, we analysed the blood transcriptome of horses 
housed individually that were first examined for their behaviour and gut 
microbiota [4,19]. The study population consisted of sport horses 
observed for 50 non-consecutive days over nine months. In particular, 
four behavioural indicators arising from inappropriate living conditions 
and reflecting poor mental and physical states were studied in depth [4, 
19,25]. Stereotypies, defined as repetitive unvarying behaviours 
without obvious goal or function [26] have been related to chronic 
mental distress [27], immune systems dysfunctions [28] and heath im
pairments [29]. Aggressiveness towards humans is also related to 
behavioural restrictions [30] and numerous physiological and health 
impairments [31,32]. Unresponsiveness to the environment is thought 
to reflect a depressive-like state [33] in horses and has been related to a 
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drop in plasma cortisol, anhedonia [34] and impaired selective attention 
[35]. Alert postures, reflected by the increase in vigilant behaviours and 
excessive scanning of the environment [36] could be associated with a 
general loss of condition [37] and the experience of anxiety. We recently 
shown that these four behavioural indicators are expressed indepen
dently from each other [25] and that they must be assessed individually 
to evaluate the horses’ welfare. 

To complete the behavioural investigations of our previous studies 
and identify physiological covariates that could provide a better un
derstanding of the links between mental and physical health, we per
formed differential and regression analyses of gene expression to unveil 
the molecular pathways related to the behavioural changes associated 
with welfare impairment in sport horses. We found that aggressiveness 
towards humans was the behavioural indicator the most correlated to 
blood gene expression and that the pathways involved belonged mainly 
to systemic inflammation. When blood gene expression profiling was 
combined with faecal microbiota of a sub-population of horses, blood 
biochemical and behavioural data, stereotypies came out as the most 
correlated to blood gene expression and hematocrit:hemoglobin ratio, 
percentage of monocytes and various bacteria taxa. Altogether, these 
biological profiling complete the characterisation of several behavioural 
indicators of poor welfare in horses by revealing their biological 
correlates. 

2. Material and methods 

2.1. Animals 

The study included 45 sport horses housed in individual boxes in four 
distinct barns within the same stable, without access to paddocks or 
pastures, selected among a larger study including 187 horses and 
described in Ref. [4]. The horses selected were those which showed the 
most contrasting values for each behavioural indicator. Their individual 
and housing parameters are presented in Supplementary Table S1. As 
age, bedding material and the presence of a window in the box opening 
toward the external environment have been shown to have a significant 
influence on several behavioural indicators [4], they were included in 
the analysis. 

2.2. Behavioural assessment using the scan sampling method 

Each horse was observed on 50 non-consecutive days distributed 
over nine months, over 90-min observation sessions, ensuring that the 
sessions were equally distributed across the time of the day (09:00 to 
10:30 h, 10:30 to 12:00 h, 12:00 to 13:30 h, 13:30 to 15:00 h and 15:00 
to 16:30 h). Each session was repeated ten times. The behavioural 
assessment was carried out using the scan sampling method [38]: the 
observer regularly walked in front of the loose boxes at a distance of at 
least 1.5 m from the door, making as little noise as possible, and 
recorded the instantaneous activity of each animal (feeding, locomotion, 
exploration, resting, observation). As this study focused on four 
behavioural indicators of poor welfare (stereotypies, aggressive behav
iours towards humans, the “withdrawn” posture reflecting unrespon
siveness to the environment and the alert posture potentially indicating 
hypervigilance when repeated; Supplementary Table S2), the observer 
stopped for 5 s in front of the horse if he was expressing one of these 
indicators, to make sure that it was the right behaviour. For example, the 
“withdrawn posture” has similar aspects to a standing resting posture 
and it is necessary to observe the horse for a few seconds to accurately 
make the distinction. Five scans were recorded per session and the 
average number of total scans analysed per subject was 195.1 (±22.5) 
(variations in the number of scans resulted from the absence of the horse 
or the presence of the caretaker in the loose box at the time of the 
observation). The frequencies of each of the four behavioural indicators 
were calculated from the total number of scans recorded per horse. 

2.3. Blood RNA extraction 

As we wanted to correlate gene and behavioural indicators expres
sion, at first, we selected 32 horses that were the most contrasted for a 
global welfare score combining the scores obtained for each of the four 
behavioural indicators four months after the beginning of the study. This 
date was chosen because it corresponds to a rest period for the horses as 
there was no competition at the time. The global score for each horse 
was calculated as below: 

global welfare score=(ST+AG+UN+AL) / 4  

where ST, AG, UN and AL are the z-scores for stereotypies, aggressive
ness towards humans, unresponsiveness to the environment, and alert 
postures respectively. The z-score for each horse and each behavioural 
indicator was calculated as below: 

z − score =
x − μ

σ  

where x is the behavioural indicator value, μ is the behavioural indicator 
mean for the population and σ is the standard deviation for the 
population. 

The results of this first approach suggested that the behavioural in
dicators were independent (see Results section). Thus, we decided to 
performed analyses considering the scores of each behavioural indicator 
separately. At that end, we used the same cohort to select extreme horses 
for each behavioural indicator. For aggressiveness towards humans, 2 
contrasted groups of 8 horses with high and low scores were selected; for 
alert posture, 9 horses per group, and for unresponsiveness to the 
environment, 8 horses per group. As there were only three horses with a 
high level of stereotypies, we no longer considered this behavioural 
indicator in the study. Based on this extreme phenotype selection, 45 
horses were chosen. 

As Ref. [4] showed that some physiological and/or housing factors 
have a significant influence on behavioural indicators (bedding material 
and presence in the box of a window opening on the external environ
ment for aggressiveness towards humans, age for unresponsiveness to 
the environment and bedding material for alert postures), we selected 
the contrasted horses so that these parameters were evenly distributed 
between the two contrasted groups for each behavioural indicator 
(Supplementary Table S3, Supplementary Table S2). 

Four months after the beginning of the study (T1), venous blood (10 
ml) was collected once between 09:00 and 12:00 from the horses using 
EDTA tubes (BD Vacutainer®). In order to stabilize intracellular RNA, 
0.8 ml of venous blood was transferred to a tube containing 0.8 ml of 
Lysis Buffer DL (Macherey-Nagel, Düren, Germany). After homogeni
zation, the samples were maintained at − 20 ◦C until RNA extraction. 
Total RNA was extracted using the NucleoSpin® RNA Blood kit 
(Macherey-Nagel, Düren, Germany). The manufacturer’s protocol was 
modified to obtain sufficient ARN quantities for the microarray gene 
expression analyses: extraction was carried out from 1.6 ml of the mixed 
blood and Lysis Buffer DL. Twenty μl of proteinase K was then added to 
complete blood lysis. To adjust RNA binding conditions, 0.8 ml of 70% 
ethanol was added. The following steps were not modified, except the 
elution that was carried out with 40 μl of RNase-free water. Total RNA 
quality was assessed using RNA Pico chips on a Bioanalyzer 2100 
(Agilent, Boeblingen, Germany), and its concentration was measured on 
a NanoDrop One Spectrophotometer (ThermoScientific, Illkirch, 
France). 

2.4. Microarray gene expression analyses 

Gene expression profiles were performed at the GeT-TRiX facility 
(GénoToul, Génopole Toulouse Midi-Pyrénées) using Agilent Sureprint 
G3 Horse_60 K_2016_01_22 021322 GE microarrays (8 × 60 K, design 
AMADID 081421) following the manufacturer’s instructions. For each 
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sample, Cyanine-3 (Cy3) labelled cRNA was prepared from 50 ng of total 
RNA using the One-Color Quick Amp Labeling kit (Agilent Technolo
gies) according to the manufacturer’s instructions, followed by Agen
court RNAClean XP (Agencourt Bioscience Corporation, Beverly, 
Massachusetts). Dye incorporation and cRNA yield were checked using 
Dropsense™ 96 UV/VIS droplet reader (Trinean, Belgium). A total of 
600 ng of Cy3-labelled cRNA were hybridized on the microarray slides 
following the manufacturer’s instructions. Immediately after washing, 
the slides were scanned on Agilent G2505C Microarray Scanner using 
Agilent Scan Control A.8.5.1 software. The fluorescence signal was 
extracted using Agilent Feature Extraction software v10.10.1.1 with 
default parameters. 

Microarray data and experimental details are available in NCBI’s 
Gene Expression Omnibus [39] and are accessible through GEO Series 
accession number GSE215200 (https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE215200). 

2.5. Impact of blood cell proportions in gene expression profiles 

We assessed whether the observed gene expression changes in the 
different analyses (High vs. Low) were related to changes in cell pro
portions in the blood samples using the Celltype Computational Differ
ential Estimation CellCODE R package [40]. 

2.6. Blood haematological assays and faecal measurements 

As described by Ref. [19], blood samples were also collected at the 
beginning of the first month (T0) and at the end of the ninth month (T2) 
of the behavioural analysis part of the study. Whole blood samples were 
taken in EDTA and lithium heparin tubes (BD Vacutainer ®, 10 mL) for 
haematological assays. Blood was stirred for 15 min at room tempera
ture to facilitate oxygenation. The erythron was assessed from periph
eral blood samples by calculating the number of circulating red blood 
cells (RBC), haemoglobin concentration (HB), packed cell volume 
(PCV), volumetric indices, such as mean corpuscular volume (MCV), 
mean corpuscular haemoglobin (MCH) and mean corpuscular haemo
globin concentration (MCHC). The leukon was assessed from data 
derived from the total and differential count of white blood cells (WBC) 
and the analysis of WBC morphology. Different WBCs were analysed, 
including leucocytes (lymphocytes (LYM), monocytes (MON), neutro
phils (NEU), basophils (BAS), and eosinophils (EOS)). The total blood 
cells were counted with an MS9-5 Hematology Counter® (digital auto
matic hematology analyzer, Melet Schloesing Laboratories, France). 

Fresh faecal samples from each animal were collected from the 
rectum at T0 and T2, as described in our previous studies. Approxi
mately 10 g of faeces were collected from the center of several faecal 
balls, avoiding collection of faecal material that was touching the 
veterinarian globes. Faecal aliquots for microbiota analysis were 
immediately snap-frozen in liquid nitrogen and stored at − 80 ◦C until 
DNA extraction, whereas faecal aliquots to measure the faecal pH were 
immediately sent to the laboratory. Total DNA was extracted using the 
EZNA Stool DNA Kit (Omega Bio-Tek, Norcross, Georgia, USA) following 
the manufacturer’s instructions. DNA was then quantified using a Qubit 
and a dsDNA HS assay kit (Thermo Fisher). 

The V3–V4 hyper-variable region of the 16 S rRNA gene was 
amplified, as previously reported by our team [41]. The concentration of 
the purified amplicons was measured using a Nanodrop 8000 spectro
photometer (Thermo Fisher) and their quality was checked using DNA 
7500 chips onto a Bioanalyzer 2100 (Agilent Technologies). All libraries 
were pooled at equimolar concentration, and the final pool had a diluted 
concentration of 5 nM and was used for sequencing. The pooled libraries 
were mixed with 15% PhiX control according to the protocol provided 
by Illumina (Illumina, San Diego, CA, USA) and sequenced on a single 
MiSeq (Illumina, USA) run using a MiSeq Reagent Kit v2 (500 cycles). 

The Divisive Amplicon Denoising Algorithm (DADA) was imple
mented using the DADA2 plug-in for QIIME 2 (version 2019.10) to 

perform quality filtering and chimaera removal and to construct a 
feature table consisting of read abundance per amplicon sequence 
variant (ASV) by sample [42]. DADA2 models the amplicon sequencing 
error to identify unique ASV and infers sample composition more 
accurately than traditional Operational Taxonomic Unit (OTU) picking 
methods that identify representative sequences from clusters of se
quences based on a % similarity cut-off [42]. The output of DADA2 was 
an abundance table in which each unique sequence was characterised by 
its abundance in each sample. Taxonomic assignments were given to 
ASVs by importing SILVA 16 S representative sequences and consensus 
taxonomy (release 132, 99% of identity) to QIIME 2 and classifying 
representative ASVs using the naive Bayes classifier plug-in [43]. The 
feature table, taxonomy, and phylogenetic tree were then exported from 
QIIME 2 to the R statistical environment and combined into a phyloseq 
object [44]. Prevalence filtering was applied to remove ASVs with less 
than 1% prevalence and in fewer than three individuals, decreasing the 
possibility of data artefacts affecting the analysis [42]. To reduce the 
effects of uncertainty in ASV taxonomic classification, we conducted 
most of our analysis at the microbial genus level. 

The phyloseq (version 1.32.0) [45], vegan (version 2.5.6) [46] and 
microbiome packages (version 1.10.0) were used in R (version 4.0.2) for 
the downstream steps of analysis. The abundance of data was aggregated 
at genus, family, order, class and phyla levels throughout the 
taxonomic-agglomeration method in the phyloseq R package, which 
merges taxa of the same taxonomic category for a user-specific taxo
nomic group. The genera abundance data were scaled to proportions to 
correct the differences in read depth. This processing step was per
formed by scaling the reads for each taxon in a given sample by the total 
number of reads in that sample. 

2.7. qPCR quantification of the bacterial, fungal, and protozoan 
concentration 

The concentrations of bacteria, anaerobic fungi, and protozoa in 
faecal samples were quantified by qPCR using a QuantStudio 12 K Flex 
platform (Thermo Fisher Scientific, Waltham, USA). Primers for real- 
time amplification of bacteria (FOR: 5′-CAGCMGCCGCGGTAANWC-3’; 
REV: 5′-CCGTCAATTCMTTT-RAGTTT-3′), anaerobic fungi (FOR: 5′- 
TCCTACCCTTTGTGAATTTG-3’; REV: 5′-CTGCGTTCTTCATCGTTGCG- 
3′) and protozoa (FOR: 5′-GCTTTCGWTGGTAGTG-TATT-3’; REV: 5′- 
CTTGCCCTCYAATCGTWCT-3′), are described in Refs. [47,48]. Further 
details are reported by Ref. [41]. 

2.8. Statistical analyses 

Microarray data were analysed using R (R version 4.1.3, R Core 
Team, 2018) and Bioconductor packages (http://www.bioconductor. 
org, v.3.15) [49] as described in GEO accession GSE215200. Raw data 
(median signal intensity) were filtered, log2 transformed, corrected for 
batch effects (microarray washing bath serials), and quantile normalized 
[50] using the limma package (v.3.50.3) [51]. 

The differential analysis was performed using the limma R package. 
A linear model was fitted for each gene using the limma lmFit() function 
[51], considering microarray slide positions as a blocking factor. 
Pair-wise comparisons between contrasted horses for each behavioural 
indicator (High vs Low, Supplementary Fig. S1) were applied using 
specific contrasts. As previous analyses showed that some factors spe
cifically influence each behavioural indicator [4], contrasted horses 
from experimental groups were balanced for these factors as shown in 
Supplementary Table S3, Supplementary Table S2. A correction for 
multiple testing was applied using the Benjamini-Hochberg procedure 
(BH) [52], to control the False Discovery Rate (FDR). Probes with FDR 
≤0.05 were considered to be differentially expressed between 
conditions. 

For the annotation of the Agilent chip probes, we used the annotation 
provided by Agilent and for the non-annotated probes, the annotation 
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was performed using Nucleotide BLAST (https://blast.ncbi.nlm.nih. 
gov/). These BLASTs were performed with the following parameters: 
Organism = Equus caballus; minimum cover = 95%, minimum identity 
= 95%. The relationships between gene expression and welfare in
dicators were analysed using the R package mixOmics v.6.18.1 [53]. 
Principal component analysis (PCA), sparse Partial Least Square (sPLS), 
and sparse Partial Least Square Discriminant Analysis (sPLSDA) were 
performed to explore the data set structure, characterise the correlation 
between gene and behavioural indicators expressions and identify the 
genes that contributed the most to explaining differences between 
contrasted horses for each behavioural indicator (High vs Low, Supple
mentary Fig. S1). The functions of the genes selected through sPLS and 
sPLSDA were annotated using GeneCards (http://www.genecards.org/), 
and each list of genes was analysed using Ingenuity Pathway Analysis 
(IPA, QIAGEN Inc., https://www.qiagenbioinformatics.com/products 
/ingenuitypathway-analysis). 

A gene set enrichment analysis using the R package GAGE [54] was 
also performed to identify if genes belonging to specific GO terms or 
KEGG pathways were over-represented in the gene data set. Significance 
was set at an FDR ≤0.05. 

2.9. Biochemical, microbiota and behavioural data integration was 
carried out using several approaches and different combinations of data 
sets 

Before the integration, we applied an additional pre-processing step 
for the biochemical assay data, faecal microbiota and behavioural 
expression data. In particular, to eliminate intra-individual variability 
and focus on the differential signals between T1 and T0, we considered Δ 
values (T1–T0) for each of these data sets, as described by Ref. [41]. 

The integration of data was then performed using two different 
methods and working with all data sets available, namely: (1) whole 
blood transcriptome; (2) Δ values of faecal 16 S rRNA gene sequencing 
data; (3) Δ values of the biochemical assay metabolites; (4) Δ values of 
the behavioural expression; and (5) Δ values of the concentration of 
faecal microorganisms. 

As a first integration approach, a global non-metric multidimen
sional scaling (NMDS) ordination was used to extract and summarise the 
variation in blood genes (the “response variable”) using the “metaMDS” 
function in the vegan R package [55]. The stress value was calculated to 
determine the dimensions for each NMDS. Stress value measures how 
much the distances in the reduced ordination space depart from the 
distances in the original p-dimensional space. High-stress values indicate 
a greater possibility that the structuring of observations in the ordina
tion space is entirely unrelated to the actual full-dimensional area. 

The other data sets (the “explanatory variables”) were then fitted to 
the ordination plots using the “envfit” function in the vegan R package 
[55] with 10,000 permutations. The “envfit” function performs multi
variate analysis of variance (MANOVA) and linear correlations for cat
egorical and continuous variables. The effect size and significance of 
each covariate were determined by comparing the difference in the 
centroids of each group relative to the total variation, and all of the 
p-values derived from the “envfit” function were Benjamini-Hochberg 
adjusted. The obtained r2 gives the proportion of variability (that is, 
the main dimensions of the ordination) that can be attributed to the 
explanatory variables. 

The N-integration algorithm DIABLO of the mixOmics R package was 
used as a second integration approach. It is to be noted that, in the case 
of the N-integration algorithm DIABLO, the variables of all the data sets 
were also centred and scaled to unit variance before integration. In this 
case, the relationships among all data sets were studied by adding a 
categorical variable, i.e., the stereotypical behaviour of horses. For this 
analysis, 11 horses with missing values for one or more covariables were 
excluded. We also excluded one horse which was considered as an 
outlier. Thus, the analysis was performed on 33 horses. Horses with no 
stereotypical behaviours during the experiment (n = 20) were compared 

to horses that had expressed stereotypical behaviour at least once across 
the investigation (n = 13). DIABLO seeks to estimate latent components 
by modelling and maximising the correlation between pairs of pre- 
specified datasets to unravel similar functional relationships between 
them [56]. A complete weighted design was considered, and the “block. 
splsda” function was used to predict the number of latent components 
and discriminants. The model was first fine-tuned using leave-one-out 
cross-validation by splitting the data into training and testing. Then, 
classification error rates were calculated using balanced error rates 
(BERs) between the predicted latent variables with the centroid of the 
class labels (i.e., stereotypies vs non-stereotypies) using the “max. dist” 
function. BERs account for differences in the number of samples be
tween different categories. Only interactions with r ≥ |0.70| were 
visualised using CIRCOS. 

3. Results 

3.1. Correlation between behaviour and transcriptomic data 

In the first analysis, we categorized the horses according to a global 
welfare score combining the scores obtained for each of the four 
behavioural indicators, i.e., stereotypies, aggressiveness towards 
humans, unresponsiveness to the environment, and alert postures. We 
reasoned that the horses cumulating the highest scores in the various 
behavioural troubles would display the highest welfare impairment. We 
found no differentially expressed probes using a false discovery rate of 
5% or a threshold non-adjusted p-value <0.005 when comparing the 2 
groups of the contrasted horses. To gather information about the global 
structure of the behavioural indicators, a Principal Component Analysis 
(PCA) was carried out on the expressed behaviours for the 187 horses. 
We observed that the behavioural indicators were independent and 
opposed along the two first components, with the first component ac
counting for 27% of the total variation (Supplementary Fig. S2). This 
result suggests that combining the scores of the four behavioural in
dicators may mask genes’ influence on the expression of a particular 
behaviour because genes correlated to a given behavioural indicator 
may show an opposed tendency with another behavioural indicator. 

Thus, we performed transcriptome differential analyses considering 
the scores of each behavioural indicator separately. For aggressiveness 
towards humans, two contrasted groups of eight horses with high (7.3 ±
4.0% of scans) and low scores (0.0 ± 0.0%) were selected. In contrast, 
nine and eight horses per group were chosen for alert posture (high 7.7 
± 2.3%; low 0.0 ± 0.0%) and unresponsiveness to the environment 
(high 9.3 ± 1.0%; low 0.2 ± 0.4%), respectively. As there were only 
three horses with a high level of stereotypies, balanced contrasted 
groups were not available. Considering presence or absence of stereo
typies did not provide significant results neither thus we no longer 
considered this behavioural indicator in this part of the study. The 
behavioural, physiological and housing parameters of the selected 
horses are summarised in Supplementary Table S3, Supplementary 
Table S2. The distribution of these horses for each of the three behav
ioural indicators is presented in Supplementary Fig. S1. We found no 
significant changes in immune cell subtypes’ proportion in the different 
analyses using CellCODE (Supplementary Table S4, Supplementary 
Table S3). At an FDR ≤5%, no differentially expressed probes were 
detected for aggressiveness towards humans or unresponsiveness to the 
environment and only one probe for alert posture. Relaxing the 
threshold to a non-adjusted p-value of 0.005 provided 0, 3, and 24 
differentially expressed probes for each of the three above-mentioned 
indicators. Because this number of differentially expressed probes is 
too low for the downstream bioinformatic analyses, we then used sparse 
least squares (sPLS) regression analyses to identify the most correlated 
(correlation value ≥ 0.5) genes with each of the three behavioural in
dicators using the three groups of horses. As shown in Fig. 1, genes’ 
highest levels of correlation were found with aggressiveness towards 
humans, whatever the horses’ selection. Arising from these results, we 
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focused our downstream analysis on the “aggressiveness towards 
humans” trait. 

Within the sPLS analysis for “aggressiveness towards humans”, we 
detected 356 probes correlated with this behaviour which correspond to 
205 unique genes. Within those genes, 99 were negatively and 106 
positively correlated (correlation value ≥ 0.5). We then used Ingenuity 
Pathway Analysis (IPA) software to understand these genes’ functional 
implications better and reveal the molecular pathways and up- 
regulators underpinning this gene set. Supplementary Fig. S3 shows 
that the over-represented biological process terms were strongly asso
ciated with inflammatory response (e.g., cytokines IL-1A, IL1B, IL-5 

expression, T cell responses, adhesion of immune cells) as well as cell 
differentiation pathways (differentiation of embryonic tissue, tumour 
cell lines, bone cells, etc.). Using the upstream regulator analysis of the 
IPA software, we detected 64 upstream regulators with a p-value less 
than 0.001 (Supplementary Table S5, Supplementary Table S4). These 
regulators were related to the onset of inflammation, apoptosis, and cell 
differentiation/growth. The list of estimated up-regulators is summar
ised in Fig. 2A through a CIRCOS plot. IPA analysis also provided a 
network of the genes positively associated with aggressiveness towards 
humans. Fig. 2B shows that these regulators act in a feed-forward and 
feedback manner to control the spatiotemporal expression patterns of 

Fig. 1. Heatmaps from sPLS analyses performed on contrasted horses for the behavioural indicators (Aggressiveness towards humans (A); Alert postures (B), 
Unresponsiveness to the environment (C)). The plots display the correlation levels between gene expression and the behavioural indicators variables. Genes are 
clustered according to the direction and the intensity of the correlation with behavioural indicators. The most positive and negative correlations are represented in 
dark red and dark blue respectively as it is indicated in the color key legend. 

Fig. 2. Gene expression positively correlated to aggressiveness towards humans A) CIRCOS plot of main upregulators and their target genes positively 
correlated to aggressiveness towards humans. B) Network of genes positively correlated to aggressiveness towards humans (r > 0.5) generated through the use of 
QIAGEN IPA (QIAGEN Inc., https://digitalinsights.qiagen.com/IPA). 
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pathways related to inflammation and immune responses (e.g., NFKB 
signalling, acute phase response signalling, and wound healing signal
ling). Next, we performed a sPLSDA (sparse least-square discriminating 
analysis) in which the horses with high or low aggressiveness scores 
were considered a discriminatory category (Fig. 3A) contrary to the sPLS 
analysis, where the quantitative scores of aggressiveness were consid
ered. We detected 158 probes correlated with this behaviour, which 
correspond to 110 unique genes. Within those genes, 51 were negatively 
correlated and 59 positively correlated. Similar to sPLS, the most rele
vant cellular activities controlled by the 51 positively correlated genes 
were inflammatory-related pathways, e.g., NFKB, wound healing and 
neuroinflammation and glucocorticoid receptor signaling (Fig. 3B). 
However, only six genes were shared between the sPLS and sPLSDA 
analyses. Finally, we performed a gene set enrichment analysis (GSEA) 
using KEGG (Kyoto Encyclopedia of Genes and Genomes), which again 
confirmed the importance of the inflammatory pathways and immune 
responses in the expression of aggressiveness towards humans (Table 1). 

3.2. Integration of blood transcriptome and biochemical parameters, 
behavioural expression, faecal microbiota and microorganism 
concentrations 

Given that gut microbiota is considered a central organ because of its 
direct and indirect roles in horse physiology, including improved 
metabolic health and welfare [18,19], we tethered the whole blood 
transcriptome profiling and behaviour data to the gut ecosystem. By 
jointly characterising the whole blood transcriptome, biochemical pa
rameters, behaviour and faecal microbiota of 45 horses, we aimed to 
improve our understanding of the holobiont under behaviour 
impairment. 

To this aim, we applied two independent statistical methods using 
the whole blood transcriptome as the response variable and the other 
data sets, namely biochemical assay profiles, the faecal microbiota 
composition, the concentrations of bacteria, anaerobic fungi, and pro
tozoa and the frequencies of the behavioural indicators as exploratory 
variables (except for stereotypies). We first used global NMDS ordina
tions to visualise the structure of blood transcriptome (ordination stress 
= 21%, k = 2, non-metric fit r2 = 0. 0.954), and we then fitted all sets of 

explanatory variables to the ordination to find the most influential 
variables (Supplementary Table S6, Supplementary Table S5). Bacteria 
such as Prevotella, Eggerthella, Succinivibrio, Paraprevotella, Ruminobacer, 

Fig. 3. sPLSDA analysis of aggressiveness towards humans A) Sample plots from sPLSDA performed on the gene expression data, including 95% confidence 
ellipses. Samples are projected into the space spanned by the first two components and coloured by their aggressiveness subtypes. B) Network of genes positively 
correlated to aggressiveness towards humans (r > 0.5) generated through the use of QIAGEN IPA (QIAGEN Inc., https://digitalinsights.qiagen.com/IPA). 

Table 1 
Enrichment analysis using KEGG pathways performed on contrasted horses for 
aggressiveness towards humans.  

Global behavioural score 

KEGG pathways Class FDR q- 
value 

hsa04640 Hematopoietic cell 
lineage 

Organismal Systems; Immune 
system 

1,80E- 
08 

hsa04060 Cytokine-cytokine 
receptor interaction 

Environmental Information 
Processing; Signaling molecules 
and interaction 

1,43E- 
07 

hsa04610 Complement and 
coagulation cascades 

Organismal Systems; Immune 
system 

1,45E- 
05 

hsa04061 Viral protein 
interaction with cytokine and 
cytokine receptor 

Environmental Information 
Processing; Signaling molecules 
and interaction 

2,10E- 
05 

hsa03320 PPAR signaling 
pathway 

Organismal Systems; Endocrine 
system 

1,09E- 
03 

hsa04512 ECM-receptor 
interaction 

Environmental Information 
Processing; Signaling molecules 
and interaction 

2,08E- 
03 

hsa04657 IL-17 signaling 
pathway 

Organismal Systems; Immune 
system 

3,04E- 
03 

hsa04145 Phagosome Cellular Processes; Transport and 
catabolism 

9,55E- 
03 

hsa04080 Neuroactive ligand- 
receptor interaction 

Environmental Information 
Processing; Signaling molecules 
and interaction 

1,25E- 
02 

hsa04810 Regulation of actin 
cytoskeleton 

Cellular Processes; Cell motility 1,84E- 
02 

hsa04510 Focal adhesion Cellular Processes; Cellular 
community - eukaryotes 

4,58E- 
02 

hsa04668 TNF signaling pathway Environmental Information 
Processing; Signal transduction 

4,58E- 
02 

hsa04672 Intestinal immune 
network for IgA production 

Organismal Systems; Immune 
system 

6,21E- 
02 

hsa04620 Toll-like receptor 
signaling pathway 

Organismal Systems; Immune 
system 

9,45E- 
02  
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Rikenella, Treponema, Rummeliibacillus and Clostridia members (Fla
vonifractor, Clostridium III, Anaerostipes, Lachnospira) showed the stron
gest correlation to all ordinations, together with blood biochemical 
parameters (e.g., haematocrit: haemoglobin ratio, and % of monocytes) 
and the presence or absence of stereotypies (adjusted p < 0.05; Fig. 4). 

Because the presence/absence of stereotypies was a primary driver of 
the overall structural variation of the blood transcriptome (envfit, R2 =

0.193, adjusted p = 0.040; (Supplementary Table S6, Table S5), we 
examined further the relationships among all the above data sets by 
adding the stereotypies as a categorical variable. We used the DIABLO 
framework from mixOmics [56]. While the blood transcriptome showed 
high levels of covariation with the faecal microbiota (r2 = 0.84, Sup
plementary Fig. S4), it was impossible to identify a tight relationship 
with the other data sets. A more fine-grained view of this biological 
system was then obtained by focusing on pairwise correlations between 
variables. The first component of the DIABLO analysis highlighted a 
significant link between a subset of 50 genes and ten gut bacterial taxa 
(e.g., the genus Kurthia, Lysinibacillus, Prevotella, Rummeliibacillus, Sol
ibacillus, Paraprevotella, Enterococcus, Ruminococcus, Saccharofermentans 
and the family Lachnospiraceae; Supplementary Fig. S5). Overall, this 
method validated the associations already detected with the NMDS 
approach. Moreover, five more Bacilli taxa found with DIABLO appeared 
to be functionally related to other previously identified microorganisms, 
thus providing indirect support to those findings. This was the case for 
Kurthia, Lysinibacillus, Rummeliibacillus, Solibacillus, and Enterococcus 
(Fig. 5). 

4. Discussion 

4.1. Aggressiveness towards humans is associated with transcriptional 
pathways of inflammation, apoptosis, and growth/differentiation 

The sPLS analyses revealed that aggressiveness towards humans is 
strongly associated with the expression of a set of genes. In contrast, the 
correlations between genes, high frequencies of alert postures and un
responsiveness towards the environment were weak. Stereotypies could 
not be analysed appropriately by differential analyses because too few 
horses displayed high levels of this behaviour. Using presence or absence 
of stereotypies as contrasted groups did not lead to significant results 
neither. Interestingly, we found in a previous analysis that aggressive
ness towards humans showed, compared to unresponsiveness to the 
environment or alert postures, a higher repeatability and convergent 
validity using three different methods of assessment [25]. More labile 
behaviours, such as unresponsiveness to the environment or alert pos
tures, may explain why correlations with whole blood transcriptome are 
difficult to observe. 

The bioinformatic investigations that followed the sPLS analysis 
revealed the importance of inflammation, apoptosis, growth, and cell 
differentiation. Inflammatory pathways were again highlighted after a 
sPLSDA analysis on aggressiveness traits. Aggressiveness or reactive 
aggression, defined as an impulsive response to provocations, frustra
tions or threats from the environment, has been studied in various 
species. The activity of Monoamine oxidase A (MAOA), which degrades 
amine neurotransmitters, such as dopamine, norepinephrine, and sero
tonin, via oxidative deamination, was found to correlate to aggressive 
behaviour in mice, including aggressiveness induced by social isolation 
[57] as well as in humans [58] and cattle [59]. In this study, the MAOA 
gene was expressed in blood, but no correlation was found with 
aggressiveness towards humans. 

Inflammation and immune functions were the most important 
pathways unveiled by the sPLS or sPLSDA analyses. Other tran
scriptomic studies conducted in mouse models of aggressiveness [60] or 
in zebrafish [61] but on brain tissues, led to the same conclusions. In 
mice prefrontal cortex of aggressive versus non-aggressive mice, the 
transcriptomic analysis uncovered NFKB and MAPK pathways which are 
known to be both involved in inflammation [60]. In brains of aggressive 
vs non-aggressive zebrafishes, RNAseq analysis also unveiled an 
important role of the inflammatory pathway such as MAPK, involving 
the expression of several pro-inflammatory cytokines, chemokine re
ceptors and other genes related to immune system activation [61]. 
Changes in pro-inflammatory cytokine levels have been linked to 
aggressiveness in animals and humans [62]. Along the same lines, a 
recent study found that the neutrophil to lymphocyte ratio was 
increased in horses that were relocated to individual stabling after six 
weeks housed in one social group on pasture [63]. The hypothesis is that 
it is beneficial for the organism to up-regulate the immune functions 
during and after stressful and/or aggressive encounters where physical 
injuries are likely to occur. The up-regulation of the “wound healing 
pathway” found in the sPLS and sPLSDA analyses favour this hypothesis. 
The glucocorticoid signalling pathway was also found to be up-regulated 
in these analyses. Although a causal link between aberrant 
hypothalamic-pituitary-adrenal (HPA) axis and aggressiveness has not 
been proved so far, developmentally low or high HPA axis reactivity is 
typically found to be aligned with the emergence of aggressive pheno
types [64]. Exposure to stressful experiences during different stages of 
development is known to have long-term consequences on HPA axis 
function and behaviour. For instance, sudden and early weaning is 
associated with increased reactivity to humans and long-term elevated 
cortisol levels compared to foals progressively separated from their 
mother [22]. Such weaning practice, in addition to the housing condi
tions in individual stalls, may have favour aggressiveness towards 
humans in part of the horses of this study. 

Finally, pathways related to apoptosis as well as cell growth and 

Fig. 4. Associations between genes, microbiota, behaviour, and circu
lating blood parameters. Effect sizes of variables over multidimensional 
scaling (NMDS) ordination plot. Covariates are coloured according to the 
dataset type: bacteria in dark blue and the other variables in green. Horizontal 
bars show the amount of variance (r2) explained by each covariate in the model 
as determined by the ‘envfit’ function. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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differentiation, were uncovered by the sPLS (but not sPLSDA) analysis. 
In a study comparing horses kept alone in individual boxes with horses 
submitted to a socially and physically enriched environment for 12 
weeks, apoptosis pathways were associated with the first condition [23], 
in agreement with the data from this study. The gene expression cor
relation with cell growth and differentiation, especially bone cells (os
teoblasts), is more difficult to interpret. However, in some inflammatory 
conditions such as ankylosing spondylitis abnormal bone formation 
occur through the activation of Bone Morphogenetic Protein (BMP) 
transcription factors [65] that was found positively correlated with 
aggressiveness towards human in this study. 

Importantly for the health of horses, aggressiveness towards humans 
was previously found to be correlated with inflammatory conditions 
such as chronic back pain [32], various injuries [31] and lameness [66]. 

4.2. Integration of faecal microbiota composition and gene expression is 
associated to the expression of stereotypies 

Because faecal microbiota and circulating biochemical parameters 
had been measured on the same 45 horse population, we combined these 
datasets with the transcriptomic analysis and the behavioural indicators 
to characterise the holobiont. These analyses did not detect associations 

between whole blood transcriptome, gut microbiota composition and 
aggressiveness. This was not unexpected because using the full cohort of 
individuals (n = 187 [19]) the “Aggressiveness towards humans” did not 
relate to overall gut microbiota composition. Still, two lactate-producing 
bacteria (Streptococcus and Butyrivibrio) were correlated to aggressive
ness [19]. This correlation was not found here, probably due to the 
lower number of horses analysed. By contrast, presence or absence of 
stereotypies were correlated to gene expression when combined to 
microbiota composition in the subpopulation analysed here as expected 
from the whole horse population study, which detected stereotypies as 
the behavioural indicator that correlated the most to microbiota 
composition [19]. However, Ruminobacter was the only bacteria genus 
in common between the two analyses. As for the gene set correlated to 
stereotypies, we did not detect a functional network or apparent path
ways that would describe the whole gene set. Among the gene positively 
correlated to stereotypies, CD80 is involved in the production of cyto
kines, while ZCCHC2, CXorf23, and TAF1 have a role in the positive 
regulation of gene transcription. Interestingly, a SNP within the ZCCH2 
gene was found to be linked to depressive symptoms in human [67] and 
TAF1 was shown to play a role in the apoptosis of endothelial cells under 
high glucose conditions [68]. Further work on these genes is required to 
explain their relationship with stereotypies in horses. Finally, the 

Fig. 5. A variable plot of genes, fecal microorganisms’ quantification, bacteria, behaviours, and hematological parameters that predict the presence or 
absence of stereotypies in horses. Circos plot demonstrates the bio-signature from multiple datasets over the two components. Each dataset is given a different 
color. Transcriptome data is represented in violet, fecal microorganisms’ quantification in light green, bacteria in blue, behaviours in yellow and hematological 
parameters in light green. The red and blue lines indicate positive and negative correlations between the two variables (r ≥ |0.70|), providing information on which 
an explanatory relationship likely links variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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percentage of monocytes was also correlated to stereotypies, suggesting 
a higher inflammatory status in horses with stereotypies, fitting with the 
expression of CD80 and maybe with TAF1. 

5. Conclusion and practical implications 

This study shows that aggressive and stereotypic horses are not only 
“nasty horses” or “badly educated”. 

We have highlighted physiological correlates in blood gene expres
sion and in their faecal microbiota composition that support the fact that 
these horses are indeed experiencing physical suffering and compro
mised welfare. These results add to the existing body of knowledge on 
these two indicators. On the contrary, further studies are needed on the 
higher expressions of "unresponsiveness to the environment" and "alert 
postures” and their relationships with transcriptomic data. Indeed, this 
work has several limitations that may explain the lack of correlation 
with the transcriptome for these latter traits. First, these two behav
ioural alterations, measured twice, showed weak correlations between 
the two periods of measurements [25]; second, the scan sampling 
method used, in particular for short-term behaviour such as alert posture 
may not be the most appropriate; third, the horse sample for each 
behavioural indicator is small for sPLS regressions because they were 
first selected for differential gene expression analyses, which may also 
explain the discrepancy with the data made on 45 horses when tran
scriptomic was combined to biochemical and microbiota data; fourth, 
the annotation of the horse genome is not complete which inevitably 
reduce the chance to obtain significant results. However, the latter is 
going to improve with the recent efforts made in annotating the horse 
genome through the Functional Annotation of the Animal Genomes 
(FAANG) project [69]. 
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